摘要:?jiǎn)慰寺】贵w(monoclonal antibody,mAb)作為一種有效的生物制劑,廣泛應(yīng)用于疾病的診斷和防治中。為解決傳統(tǒng)的mAb制備技術(shù)存在制備周期長(zhǎng)抗體親和力低等弊端,科研人員在傳統(tǒng)雜交瘤技術(shù)基礎(chǔ)上研發(fā)了抗體展示技術(shù)、嵌合抗體技術(shù)和轉(zhuǎn)基因小鼠技術(shù)及單個(gè)B細(xì)胞技術(shù)等抗體制備新策略,從而使mAb制備技術(shù)得到較快發(fā)展。從應(yīng)用廣泛的mAb制備新技術(shù)研究進(jìn)展出發(fā),對(duì)這些技術(shù)的原理、優(yōu)缺點(diǎn)及其在新發(fā)和重大傳染病防治中的應(yīng)用現(xiàn)狀和前景進(jìn)行概述,旨在為mAb制備技術(shù)研究和疫病防控提供理論參考。
關(guān)鍵詞:?jiǎn)慰寺】贵w;新技術(shù);應(yīng)用現(xiàn)狀
doi:10.13304/j.nykjdb.2023.0725
中圖分類(lèi)號(hào):S85 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):10080864(2024)11021015
單克隆抗體(monoclonal antibody,mAb)是由單一B細(xì)胞克隆受到抗原刺激分化形成的漿細(xì)胞分泌的結(jié)構(gòu)均一、僅針對(duì)某一特定抗原表位的抗體,因其具有特異性強(qiáng)、純度高、均一性好等優(yōu)點(diǎn),廣泛應(yīng)用于疾病的診斷和防治。1975年,K?hler等[1]將能分泌抗綿羊紅細(xì)胞抗體的B淋巴細(xì)胞與小鼠骨髓瘤細(xì)胞融合產(chǎn)生雜交瘤細(xì)胞,使對(duì)靶抗原具有高特異性和親和力的mAb有望成為臨床治療的生物制劑,從而開(kāi)啟了mAb 研發(fā)的新紀(jì)元[23]。mAb 作為一種生物研究工具[4],在生物科學(xué)研究及醫(yī)學(xué)領(lǐng)域中發(fā)揮著重要作用[56],如在細(xì)菌性疾病(如炭疽)和病毒性疾?。ㄈ绨滩。┲杏袕V泛應(yīng)用[7-9]。繼傳統(tǒng)雜交瘤技術(shù)之后,科研人員已經(jīng)開(kāi)發(fā)和完善了多種mAb制備新技術(shù),如噬菌體展示技術(shù)、單個(gè)B細(xì)胞抗體制備技術(shù),在延長(zhǎng)B細(xì)胞壽命、提高B細(xì)胞和骨髓瘤細(xì)胞的融合率、克服人抗小鼠抗體反應(yīng)、構(gòu)建優(yōu)良的抗體文庫(kù)等方面優(yōu)化mAb性能[10-12],以滿足其應(yīng)用需求。根據(jù)mAb制備技術(shù)的特點(diǎn),將其分為抗體展示技術(shù)、單個(gè)B細(xì)胞抗體制備技術(shù)和其他抗體制備技術(shù)。本文對(duì)上述技術(shù)的研究現(xiàn)狀進(jìn)行概述和總結(jié),以期為mAb制備技術(shù)的發(fā)展提供理論借鑒。
1 抗體展示技術(shù)
雜交瘤技術(shù)雖然為mAb研發(fā)及應(yīng)用提供了有效、簡(jiǎn)便的支撐技術(shù),然而其制備周期長(zhǎng),且產(chǎn)生的抗體存在免疫原性高和半衰期短等缺陷,研究人員相繼開(kāi)發(fā)了噬菌體展示技術(shù)、酵母展示技術(shù)和核糖體展示技術(shù),以獲得優(yōu)良mAb。
1.1 噬菌體展示技術(shù)
自100多年前發(fā)現(xiàn)噬菌體以來(lái),其結(jié)構(gòu)和功能陸續(xù)被解析,并被作為克隆載體應(yīng)用到基因工程中。1985年,Smith[13]將噬菌體作為載體,借助基因工程手段將編碼57個(gè)氨基酸多肽的外源基因插入絲狀噬菌體衣殼蛋白pⅢ基因中,隨著子代噬菌體形成而重新組裝,該外源蛋白質(zhì)或多肽與噬菌體的衣殼蛋白pⅢ融合表達(dá)在噬菌體表面,即為噬菌體展示技術(shù)。噬菌體展示技術(shù)是一種用于篩選和分離靶標(biāo)特異性肽的有效技術(shù),即在噬菌體基因組中插入編碼相應(yīng)多肽的基因,在噬菌體表面展示外源肽或抗體[14-16]。在此技術(shù)中主要用到3類(lèi)噬菌體,分別為裂解性噬菌體(T4)、溫和性噬菌體(λ)和溶原性噬菌體(M13)[17]。其中,M13常用于多功能分析平臺(tái),其各種功能區(qū)域進(jìn)行功能傳導(dǎo)而不會(huì)相互干擾,且獨(dú)特的絲狀結(jié)構(gòu)和柔韌性提高了靶向多肽親和力,被廣泛應(yīng)用于mAb制備過(guò)程[18]。為了在噬菌體上展示外源多肽,將所需DNA 序列插入M13噬菌體pⅢ或pⅧ蛋白的基因中。使用主要衣殼蛋白pⅧ的方法提供了多價(jià)展示,只有含6~7個(gè)氨基酸的短肽可以在衣殼蛋白pⅧ基因上展示[19]。因此,大多數(shù)組合文庫(kù)(如抗體或蛋白質(zhì))都使用衣殼蛋白pⅧ展示。自1990年Mccafferty等[20]在絲狀噬菌體上成功展示了人類(lèi)單鏈抗體(single-chain fragment,scFv)以來(lái),該技術(shù)在制備人類(lèi)和其他動(dòng)物抗體方面得到較快發(fā)展。2002年,利用噬菌體展示生產(chǎn)的首個(gè)獲批的單抗adalimumab 可用于治療類(lèi)風(fēng)濕性關(guān)節(jié)炎(rheumatoid arthritis,RA);2011 年治療系統(tǒng)性紅斑狼瘡的belimumab 在美國(guó)上市;2012年治療吸入性炭疽的raxibacumab上市[2122]。Meyer等[23]成功制備了靶向鼠傷寒沙門(mén)氏菌外膜蛋白D(outer membrane protein D,OmpD)的特異性scFv,且可用于競(jìng)爭(zhēng)性酶聯(lián)免疫吸附試驗(yàn)(enzyme-linked immunosorbent assay,ELISA)中檢測(cè)鼠傷寒抗原。Henning等[24]成功研發(fā)了治療炭疽的抗體obiltoxaximab 并于2020 年獲批上市。Hülseweh 等[25] 用西部馬腦炎病毒(western equineencephalitis virus,WEEV)免疫獼猴,經(jīng)噬菌體展示篩選到WEEV 的中和抗體ToR69-3A。Bertoglio等[26]和Roth等[27]用噬菌體展示技術(shù)篩選抗SARSCoV-2 的抗體COR-101,且該抗體正處于臨床驗(yàn)證階段。
噬菌體展示技術(shù)因具有高通量、篩選周期短、操作簡(jiǎn)單、不受免疫程序和機(jī)體內(nèi)環(huán)境影響等優(yōu)點(diǎn),常被用于展示不同類(lèi)型蛋白,因此在藥物研發(fā)和抗體篩選方面具有廣泛應(yīng)用前景[28](表1)。然而該技術(shù)也存在不足之處,如不能進(jìn)行真核表達(dá)、氨基酸的改造受宿主限制等仍是噬菌體技術(shù)在應(yīng)用中亟待解決的問(wèn)題[39]。
1.2 酵母展示技術(shù)
酵母展示技術(shù)(yeast display technology,YSD)是一種基于真核表達(dá)系統(tǒng)的抗體制備技術(shù),可在一定程度上彌補(bǔ)噬菌體展示技術(shù)不能高效地對(duì)展示抗體進(jìn)行翻譯后修飾的缺陷[40]。YSD原理是將外源蛋白與酵母衣殼蛋白融合從而將外源蛋白展示在酵母表面。自1997 年YSD 初次用于制備mAb以來(lái),已成功篩選到靶向程序性細(xì)胞死亡蛋白1(programmed cell death protein 1, PD-1)的全人源化sintilimab等單抗,在篩選和構(gòu)建抗原結(jié)合片段(antigen-binding fragment, Fab)庫(kù)、scFv庫(kù)和免疫球蛋白G(immunoglobulin G,IgG)庫(kù)等抗體工程中發(fā)揮重要作用[41-46]。YSD用真核系統(tǒng)表達(dá)宿主蛋白質(zhì),可在內(nèi)質(zhì)網(wǎng)和高爾基體中更準(zhǔn)確地翻譯蛋白質(zhì),且能使蛋白質(zhì)進(jìn)行更好地折疊、修飾。此外,YSD 在熒光激活細(xì)胞分選(fluorescenceactivatedcell sorting,F(xiàn)ACS)時(shí)可實(shí)時(shí)進(jìn)行參數(shù)分析,并準(zhǔn)確地區(qū)分表現(xiàn)不同特性(如親和力或穩(wěn)定性)的突變體,是制備工程抗體的有力技術(shù),酵母雜交已用于生成抗體庫(kù)以提高其轉(zhuǎn)化效率[47]。迄今為止,YSD在蛋白質(zhì)?蛋白質(zhì)相互作用、抗體設(shè)計(jì)、疫苗和抗生素開(kāi)發(fā)、生物傳感器生產(chǎn)、免疫動(dòng)物中篩選抗體庫(kù)中的應(yīng)用已被報(bào)道[48]。此外,YSD還可應(yīng)用于篩選非常規(guī)抗體[49]。YSD是一項(xiàng)有應(yīng)用前景的技術(shù),但需在生物技術(shù)應(yīng)用方面進(jìn)行優(yōu)化,如其篩選的抗體庫(kù)容量只有109,比基于噬菌體和細(xì)菌展示技術(shù)獲得的抗體庫(kù)容量(分別為1011~1012、1011)低了2~3個(gè)數(shù)量級(jí)[50]。因此,提高抗體庫(kù)容量及展示效率是應(yīng)用YSD需關(guān)注的問(wèn)題。Ferrara等[51]將噬菌體展示和酵母展示相結(jié)合來(lái)篩選抗體,彌補(bǔ)了YSD篩選抗體庫(kù)容量小的不足;Kova?evi? 等[52] 利用綠色熒光蛋白(greenfluorescent protein,GFP)提高酵母展示對(duì)葡萄糖氧化酶的高通量篩選的性能。由于酵母表面存在多個(gè)支架蛋白,在篩選抗體時(shí)可能會(huì)出現(xiàn)多種隨機(jī)的寡聚蛋白結(jié)合,應(yīng)盡量避免此類(lèi)現(xiàn)象的發(fā)生,保證篩選抗體的結(jié)合力。近年來(lái),研究者在啟動(dòng)子、信號(hào)肽、靶標(biāo)、借助多種酶進(jìn)行表達(dá)、選擇不同酵母菌株(更換細(xì)胞壁蛋白質(zhì)組成以獲得合適的展示環(huán)境)、酵母細(xì)胞壁修飾和修飾分泌通路等方面對(duì)酵母展示技術(shù)進(jìn)行優(yōu)化,使其更好地應(yīng)用于篩選mAb[53]。
1.3 核糖體展示技術(shù)
核糖體是細(xì)胞內(nèi)的重要細(xì)胞器,承擔(dān)著合成蛋白質(zhì)的任務(wù)。在生物學(xué)研究中,核糖體展示技術(shù)逐漸成為一種熱門(mén)的mAb制備技術(shù)。1997年,Hanes 等[54] 成功地將核糖體展示技術(shù)(ribosomedisplay technology,RDT)用于創(chuàng)建多肽庫(kù),挖掘了該技術(shù)在抗體制備中的潛力。RDT利用PCR 擴(kuò)增能分泌目的抗體的B細(xì)胞的cDNA,然后將擴(kuò)增的目的片段轉(zhuǎn)移至核糖體進(jìn)行5個(gè)循環(huán)的轉(zhuǎn)錄、翻譯、抗原親和力篩選等過(guò)程,獲得正確折疊和修飾的scFv或蛋白質(zhì)。皮爾斯?。≒ierce’s disease,PD)是由木質(zhì)部難養(yǎng)菌引起的一種葡萄養(yǎng)殖業(yè)常見(jiàn)細(xì)菌病,Azizi 等[55]和Kunamneni 等[56]利用兔真核網(wǎng)狀組織在體外合成抗體核糖體展示文庫(kù)中篩選到靶向木質(zhì)部難養(yǎng)菌外膜蛋白MopB 的重組scFv,為篩選PD治療抗體提供了一種簡(jiǎn)單而穩(wěn)定的展示技術(shù)。在翻譯的過(guò)程中,因?yàn)閙RNA 3’末端缺失終止密碼子,發(fā)生mRNA-蛋白質(zhì)結(jié)合在核糖體表面的現(xiàn)象,出現(xiàn)蛋白質(zhì)(抗體)?核糖體-mRNA(protein-ribosome-mRNA,PRM)三元復(fù)合物,將單個(gè)抗體片段與其相應(yīng)的mRNA連接起來(lái)。PRM復(fù)合物是mRNA移除末端終止密碼子而形成的,導(dǎo)致翻譯時(shí)核糖體在mRNA末端停滯,新生的多肽不能釋放。蛋白質(zhì)-mRNA連接的同時(shí)通過(guò)具有相似親和力的相應(yīng)配體分離mRNA及所需蛋白質(zhì)(抗體)。與配體緊密結(jié)合的蛋白質(zhì)-mRNA復(fù)合物經(jīng)逆轉(zhuǎn)錄PCR(reverse transcription-PCR,RT-PCR)恢復(fù)編碼蛋白質(zhì)的DNA序列,并在PCR中擴(kuò)增生成可用于進(jìn)一步加工和表達(dá)蛋白質(zhì)的模板,或再進(jìn)行3~5個(gè)循環(huán)的轉(zhuǎn)錄、翻譯以獲得特異性強(qiáng)、庫(kù)容量大和親和力高的抗體庫(kù)[57]。
RDT是一種高效的體外無(wú)細(xì)胞系統(tǒng),在體外產(chǎn)生蛋白質(zhì)-mRNA復(fù)合物,克服了基于細(xì)胞方法的許多局限性[58]。與雜交瘤技術(shù)相比,RDT有許多優(yōu)點(diǎn)。首先,該方法無(wú)需細(xì)胞,通過(guò)真核系統(tǒng)提高轉(zhuǎn)化效率、選擇高親和力結(jié)合位點(diǎn)且能夠進(jìn)行翻譯后修飾,在篩選大型文庫(kù)時(shí)不會(huì)影響文庫(kù)大小,且篩選效率更高。其次,該技術(shù)通過(guò)RT-PCR技術(shù)易于構(gòu)建大量點(diǎn)突變體文庫(kù)。此外,由于不涉及細(xì)胞培養(yǎng),故制備mAb過(guò)程更快速,所以RDT已廣泛用于真核生物和原核生物翻譯系統(tǒng)[59]。RDT在生物學(xué)研究中具有廣泛的應(yīng)用場(chǎng)景(表2)。首先,RDT可用于篩選特定的抗體或抗原,在研究機(jī)體免疫、有效治療疾病方面有重要作用。其次,RDT可用于研究蛋白質(zhì)的結(jié)構(gòu)和功能,從而揭示其在生物過(guò)程中的作用機(jī)制。此外,RDT還可用于尋找新的藥物靶點(diǎn)和開(kāi)發(fā)新的藥物,為藥物研發(fā)提供新的思路和方法。RDT的出現(xiàn)為生物學(xué)研究帶來(lái)了新的機(jī)遇,同時(shí)也存在一定的挑戰(zhàn),該技術(shù)存在一個(gè)明顯不足之處,即篩選文庫(kù)時(shí)功能性核糖體含量取決于該文庫(kù)的大小。同時(shí),如何進(jìn)一步增強(qiáng)體系的穩(wěn)定性,并使其抗體復(fù)合物保持穩(wěn)定的狀態(tài)也是亟待解決的問(wèn)題[65]。
2 單個(gè)B 細(xì)胞抗體制備技術(shù)
單個(gè)B細(xì)胞抗體制備技術(shù)可以通過(guò)識(shí)別和提取特異性B細(xì)胞抗原,并將特異性B細(xì)胞基因進(jìn)行擴(kuò)增,再經(jīng)過(guò)表達(dá)、篩選和鑒定抗原特異性抗體等步驟,最終篩選出有效的目的抗體。該技術(shù)可以在僅有少量B 細(xì)胞的情況下快速地完成mAb的制備,同時(shí)還能保留抗體輕重鏈可變區(qū),具有高效率、多樣性等優(yōu)勢(shì),是強(qiáng)有力的mAb 制備技術(shù)[66]。
2.1 鑒定和分離單個(gè)B 細(xì)胞
抗體主要來(lái)源于外周血的漿細(xì)胞、單個(gè)記憶B細(xì)胞及從正常的骨髓中分離前B細(xì)胞[67]。因研究目的不同,抗體基因的來(lái)源有所差異。當(dāng)外周血充足時(shí),可采用濃度梯度方法或采用流式分選等方法從外周血液中初步分離B細(xì)胞,利用酶聯(lián)免疫斑點(diǎn)試驗(yàn)(enzyme-linked immunospot assay,ELISPOT)技術(shù)對(duì)抗原特異性細(xì)胞的豐度進(jìn)行評(píng)估,篩選出抗原特異性抗體含量高的血液樣本,以獲得更高含量的特異性抗體[68]。ELISA技術(shù)是一種實(shí)驗(yàn)室常見(jiàn)的檢測(cè)抗體的方法,Gilbert等[69]借助以細(xì)胞為試驗(yàn)材料的ELISA技術(shù)(cell-based ELISA)可以檢測(cè)血液樣本中的抗腫瘤抗體水平,表明可以使用ELISA法對(duì)不同供血者的血樣中的特異性抗體含量進(jìn)行直接比較。通過(guò)隨機(jī)或特異地分離抗原特異性B細(xì)胞可以有效地提取血清中的抗原特異性抗體,前者操作簡(jiǎn)單,僅需分離B細(xì)胞,可用于血清中抗原特異性抗體含量高的免疫人員或病人,可最大限度地減少后續(xù)抗體特異性鑒定的工作量。而對(duì)于特異抗體比較少的患者,需分離抗腫瘤抗體、自身免疫抗體,則需要使用后者來(lái)分離抗原特異性B細(xì)胞,雖操作繁瑣,但有利于分選抗原特異性B細(xì)胞。
熒光激活細(xì)胞分選法(FACS)、激光捕獲顯微切割法(laser capture microdissection,LCM)和顯微操作法(micromanipulation)等是主要的隨機(jī)B 細(xì)胞分選方法(圖1)。顯微操作法作為一種分離B細(xì)胞的經(jīng)典方法,可用于從早期胚胎或未培養(yǎng)的微生物中取出細(xì)胞,在顯微鏡引導(dǎo)下,通過(guò)手動(dòng)操作顯微操作器,從而人工分離B細(xì)胞于含特異性培養(yǎng)液的培養(yǎng)基中,該方法不需要復(fù)雜的操作和特殊的儀器設(shè)備,但存在耗時(shí)較長(zhǎng)、分離效率低和分離細(xì)胞種類(lèi)有限以及吞吐量低的缺陷[70]。1986年,Monajembashi等首次提出激光微束顯微切割技術(shù),使用激光微束對(duì)人染色體進(jìn)行顯微解剖;1996年,Emmert-Buck等開(kāi)發(fā)了一種基于免疫組庫(kù)的激光捕獲顯微切割法(immune repertoirelasercapture microdissection, IR-LCM)來(lái)分離靶細(xì)胞與組織,該系統(tǒng)需要通過(guò)組織化學(xué)和免疫熒光技術(shù)對(duì)樣品進(jìn)行染色,再利用顯微激光切割系統(tǒng)對(duì)細(xì)胞形態(tài)和染色結(jié)果進(jìn)行觀察,從而可以獲得單細(xì)胞群或單細(xì)胞的詳細(xì)信息[71]。LCM可以通過(guò)顯微鏡及熒光劑來(lái)實(shí)現(xiàn)可視化,一步即可從樣品中特異挑選同類(lèi)細(xì)胞或單一細(xì)胞,且能準(zhǔn)確定位、操作簡(jiǎn)便;但該技術(shù)成本高、需要組織學(xué)的專(zhuān)業(yè)知識(shí)、不能在短時(shí)間內(nèi)獲得大量單個(gè)B細(xì)胞,同時(shí)由于沒(méi)有蓋玻片易導(dǎo)致樣品脫水,解剖組織的質(zhì)量可能無(wú)法達(dá)到進(jìn)一步處理樣品所需的標(biāo)準(zhǔn)。FACS可用于分選血細(xì)胞、骨髓細(xì)胞、腫瘤細(xì)胞等多種類(lèi)型的細(xì)胞,該方法基于熒光試劑與細(xì)胞分選儀,采用激光束來(lái)激發(fā)與抗體偶聯(lián)的熒光素產(chǎn)生熒光信號(hào),從而自動(dòng)地分選或分析細(xì)胞。該技術(shù)雖然對(duì)儀器和樣品的要求嚴(yán)苛、操作繁瑣,但其能靈活地分離多種細(xì)胞、分辨率率高、可操作性強(qiáng)且實(shí)現(xiàn)了自動(dòng)化,已成為當(dāng)前常用的隨機(jī)分離B細(xì)胞方法。
為分離出抗原特異性單個(gè)B細(xì)胞,當(dāng)前廣泛應(yīng)用的方法有熒光標(biāo)記抗原多參數(shù)細(xì)胞分選法、抗原標(biāo)記磁珠分選法、微雕法/細(xì)胞微陣列芯片法及酶聯(lián)免疫斑點(diǎn)微陣列芯片法(immunospot arrayassay on a chip,ISAAC)[7273]。表3為單個(gè)B細(xì)胞分離方法的優(yōu)缺點(diǎn)。熒光標(biāo)記抗原多參數(shù)細(xì)胞分選法是在FACS的基礎(chǔ)上,用帶有熒光的靶抗原與B細(xì)胞表面的膜抗體相結(jié)合,可有效地分離出抗原特異性B細(xì)胞,這種新興的分離B細(xì)胞的方法不僅可以迅速、精準(zhǔn)、有效地從上萬(wàn)個(gè)細(xì)胞中分選出抗原特異性B細(xì)胞,且具備對(duì)單個(gè)B細(xì)胞的多種參數(shù)的檢測(cè)功能,該技術(shù)不僅有助于提升篩查的精度,還能收集大量的B細(xì)胞的相關(guān)資料,并將其廣泛地應(yīng)用到各種研究領(lǐng)域。抗原標(biāo)記磁珠分選法的基本原理是目標(biāo)抗原連接的磁珠能特異性將目標(biāo)抗原與細(xì)胞表面目標(biāo)抗原特異性抗體相結(jié)合,使能形成特異性抗原抗體復(fù)合物的B細(xì)胞吸附在磁場(chǎng)內(nèi),而未能連接磁珠的細(xì)胞則不能留在磁場(chǎng)中,從而高效、準(zhǔn)確地分離目的細(xì)胞;盡管該方法的操作相對(duì)復(fù)雜,但其可在數(shù)分鐘內(nèi)從復(fù)雜的細(xì)胞混合物中分離出高純度的目的細(xì)胞,因而已被用于從腫瘤樣本中分離單個(gè)細(xì)胞。微雕法根據(jù)靶細(xì)胞的大小表面抗原等特性在芯片上分離靶細(xì)胞,該方法是以微陣列芯片識(shí)別、軟光刻(softlithography)為基礎(chǔ),將能產(chǎn)生抗原特異性抗體的B細(xì)胞進(jìn)行恢復(fù)和克隆,獲得能夠產(chǎn)生特異性抗體的B細(xì)胞并誘導(dǎo)B細(xì)胞產(chǎn)生抗體,然后將產(chǎn)生的抗體依次置于芯片孔內(nèi),再將芯片轉(zhuǎn)移至相應(yīng)蛋白芯片,從而實(shí)現(xiàn)對(duì)目標(biāo)抗原的特異性識(shí)別,進(jìn)而將攜帶目標(biāo)抗原特異性抗體的B細(xì)胞轉(zhuǎn)移到培養(yǎng)皿中,進(jìn)行下一步克隆[73];該方法不僅能夠節(jié)省大量的時(shí)間和資金,還能迅速、準(zhǔn)確地獲取大量克隆B細(xì)胞,同時(shí)也能準(zhǔn)確地識(shí)別和檢測(cè)到抗體的分泌。ISAAC通過(guò)在芯片上包被抗免疫球蛋白抗體實(shí)現(xiàn)對(duì)B細(xì)胞的快速捕獲,并利用生物素標(biāo)記的靶抗原實(shí)現(xiàn)對(duì)B細(xì)胞的快速、精準(zhǔn)分選,這一技術(shù)在生產(chǎn)流感病毒抗體時(shí)發(fā)揮了重要作用。與微雕法相比,ISAAC法可以在同一芯片上同時(shí)篩選出多個(gè)靶標(biāo)的抗體,從而大大提高了B細(xì)胞分選的效率,是微陣列芯片法的延伸和完善,在分選B細(xì)胞中具有良好廣闊的應(yīng)用前景。
2.2 擴(kuò)增和克隆抗體基因
在進(jìn)行細(xì)胞分選時(shí),一般需要把B細(xì)胞放入合適的容器(如96孔板),其中含有一定數(shù)量的細(xì)胞溶解液、RNA酶抑制劑以及PCR反應(yīng)試劑。因?yàn)閱渭?xì)胞RNA的含量低,所以選擇合適的容器有利于進(jìn)行大量操作,避免樣本丟失、防止交叉污染。B細(xì)胞的抗體表達(dá)水平因其基因轉(zhuǎn)錄本的數(shù)目而變化,這些基因轉(zhuǎn)錄本的數(shù)目比其他基因轉(zhuǎn)錄本的數(shù)目多得多,表明它們具有更強(qiáng)的免疫反應(yīng)能力。為獲取更多的免疫反應(yīng)信息,可以使用套式或半套式逆轉(zhuǎn)錄PCR(nested or semi-nestedRT-PCR)來(lái)檢測(cè)B細(xì)胞內(nèi)的免疫反應(yīng)基因,這一過(guò)程非常復(fù)雜,因?yàn)榧瓤紤]了檢測(cè)的準(zhǔn)確度,又考慮了檢測(cè)的速度。因而,使用正確的引物序列和選擇合適的核酸擴(kuò)增方法非常重要。在Smart常用的mRNA全長(zhǎng)擴(kuò)增技術(shù)中,SMARTScribe RT逆轉(zhuǎn)錄酶在poly-T堿基的下游引物處開(kāi)始逆轉(zhuǎn)錄的第1步。然后,在轉(zhuǎn)錄結(jié)束時(shí)加入幾個(gè)超過(guò)模板的C堿基,之后可以使用具有3個(gè)G堿基的上游引物進(jìn)一步擴(kuò)增轉(zhuǎn)錄的cDNA,以增加捕獲RNA數(shù)量。這種技術(shù)不穩(wěn)定,低表達(dá)的轉(zhuǎn)錄本可能會(huì)丟失。單細(xì)胞標(biāo)記逆轉(zhuǎn)錄(single-cell taggedreverse transcription, STRT)技術(shù)使用生物素將cDNA固定在磁珠上并引入讀取標(biāo)記進(jìn)一步擴(kuò)增環(huán)化的cDNA。然而,具有發(fā)夾結(jié)構(gòu)的寡聚脫氧核苷酸被用作基于PCR的半隨機(jī)引物mRNA轉(zhuǎn)錄組擴(kuò)增技術(shù)的引物,不能保證其擴(kuò)增產(chǎn)物的完整性,且不能有效地防止插入、缺失及突變的發(fā)生[76]。
2.3 表達(dá)、篩選和鑒定抗原特異性抗體
原核系統(tǒng)作為最早的基因表達(dá)系統(tǒng),在表達(dá)抗體基因中較常用,為鑒定抗體的抗原特異性及生物活性提供了保障[77]。與之相比,通過(guò)使用真核表達(dá)技術(shù),尤其是哺乳動(dòng)物細(xì)胞表達(dá)技術(shù)能夠輕松地將抗體加工成具備高度穩(wěn)定的結(jié)構(gòu)和功能的產(chǎn)品,常見(jiàn)的有CHO、HEK293細(xì)胞系等。用親和層析和離子交換層析純化到的抗體不僅可用ELISA、蛋白質(zhì)印跡(western blotting,WB)十二烷基硫酸鈉聚丙烯酰胺凝膠電泳(sodium dodecylsulfate-polyacrylamide gel electrophoresis, SDSPAGE)分析,還能采用體內(nèi)藥物活性測(cè)定法、免疫沉淀試驗(yàn)、活細(xì)胞成像測(cè)定法、蝕斑法、半數(shù)蝕斑減少中和試驗(yàn)等實(shí)驗(yàn)室方法篩選或鑒定抗體及其生物學(xué)特性[78]。
3 其他制備技術(shù)
3.1 嵌合抗體技術(shù)
早期生產(chǎn)mAb大多是鼠源的,當(dāng)該類(lèi)抗體用于治療人類(lèi)疾病時(shí),在使用者體內(nèi)會(huì)產(chǎn)生抗鼠抗體,即人抗鼠抗體(human anti-mouse antibody,HAMA),這是一種人體抵御異源蛋白侵害的有害免疫產(chǎn)物,以致于mAb 不能達(dá)到預(yù)期的治療效果。為此,Morrison等[79]開(kāi)發(fā)了一種基于人源mAb恒定區(qū)與鼠源mAb相結(jié)合的嵌合方法,將其嵌入到載體中,實(shí)現(xiàn)對(duì)宿主mAb的高效轉(zhuǎn)染,從而提高治療效果;人鼠嵌合mAb通過(guò)基因工程改造,在保留mAb Fab片段的基礎(chǔ)上,獲得與人更加相似的mAb,具有良好的生物相容性。abciximab/IIIa 是美國(guó)食品藥品監(jiān)督管理局(Food and DrugAdministration,F(xiàn)DA)于1994 年批準(zhǔn)的一種新型的嵌合抗體,具有廣泛的臨床應(yīng)用前景[80]。
另外,基于人?鼠嵌合型抗體,利用互補(bǔ)決定區(qū)(complementarity-determining regions,CDR)是抗體可變區(qū)(V區(qū))的一部分,且具有與抗原發(fā)生相互作用并與之結(jié)合的功能,因而使用基因工程技術(shù)移除和植入外源的CDR,建立了一類(lèi)新型的人源化抗體,并對(duì)其性能和功效進(jìn)行探究[81]。當(dāng)獲得了相應(yīng)鼠源抗體后,只需將該抗體的CDR序列植入人類(lèi)抗體,即可獲得90%以上由人源序列組成抗體,有效地保證了靶標(biāo)抗體的特異性,可以顯著降低HAMA的產(chǎn)生。然而,此類(lèi)mAb中仍有部分鼠源性基因片段,無(wú)法徹底消除人源化mAb產(chǎn)生的免疫排斥風(fēng)險(xiǎn)[82]。
3.2 轉(zhuǎn)基因小鼠技術(shù)
1989年,第一批全人源化mAb制備成功,其主要利用了噬菌體展示和轉(zhuǎn)基因小鼠2種平行技術(shù),轉(zhuǎn)基因小鼠技術(shù)以轉(zhuǎn)基因小鼠為載體,利用基因工程手段在小鼠的基因組中插入人源化mAb的基因,從而實(shí)現(xiàn)人的抗體可變區(qū)基因在小鼠的淋巴細(xì)胞中的重組和表達(dá)。在此基礎(chǔ)上,對(duì)轉(zhuǎn)基因小鼠制備的雜合細(xì)胞進(jìn)行篩選,最終得到具有較高親和力及抗原特異性的人源化mAb[83]。FDA于2006年通過(guò)了首個(gè)由基因改造的鼠源人體抗體panitumumab,其可以抑制表皮生長(zhǎng)因子受體(epidermal growth factor receptor, EGFR),用于晚期結(jié)直腸癌的治療;2009年,靶向人類(lèi)白細(xì)胞介素-1β(interleukin-1β,IL-1β)的canakinumab 被批準(zhǔn)上市,用于治療周期性發(fā)燒和系統(tǒng)性青少年風(fēng)濕性關(guān)節(jié)炎;同年,靶向CD20的ofatumumab也被批準(zhǔn)上市,用于治療慢性淋巴細(xì)胞白血??;2020年,美國(guó)FDA 批準(zhǔn)了首個(gè)治療埃博拉病毒的抗體——inmazeb,本質(zhì)上是regeneron pharmaceuticals使用轉(zhuǎn)基因小鼠開(kāi)發(fā)的3 種抗體(atoltivimab、maftivimab 和odesivimab)的混合物[84]。與其他制備人源抗體的方法比較,轉(zhuǎn)基因小鼠技術(shù)不僅具有增加抗體的多樣性、無(wú)需對(duì)抗體進(jìn)行人源化加工等優(yōu)勢(shì),而且可在小鼠體內(nèi)篩選成熟的、高親和力的抗體。然而,由于人源化mAb的基因較大,如何在轉(zhuǎn)基因小鼠體內(nèi)更高效地表達(dá)人源化mAb重鏈的V(variable)基因片段、D(diversity)基因片段,和J(joining)基因片段,仍是轉(zhuǎn)基因抗體技術(shù)所需解決的難點(diǎn)。此外,轉(zhuǎn)基因動(dòng)物產(chǎn)生的全人源化mAb并沒(méi)有野生型抗體產(chǎn)生的作用明顯,且轉(zhuǎn)基因小鼠免疫系統(tǒng)不能產(chǎn)生和人體完全相同的抗體。早期的方法是使用微型基因,即使使用少量基因也可以獲得具有良好結(jié)合特性的mAb[85]。為解決轉(zhuǎn)入的人源化抗體基因與動(dòng)物B細(xì)胞結(jié)合的問(wèn)題,獲得多樣性更豐富、親和力更高的候選抗體,需要對(duì)動(dòng)物抗體產(chǎn)生的機(jī)制進(jìn)行更加深入的研究,同時(shí),在面臨突發(fā)性生物安全事件時(shí),如何快速大量的生產(chǎn)全人抗體也是未來(lái)人源抗體轉(zhuǎn)基因動(dòng)物培育需要重點(diǎn)解決的問(wèn)題。
3.3 RNA-多肽融合技術(shù)
RNA-多肽融合技術(shù)又稱(chēng)mRNA展示技術(shù),該技術(shù)最早是Roberts等[86]用于體外選擇多肽和蛋白質(zhì)的;Nemoto等[87]進(jìn)行了類(lèi)似的試驗(yàn)。該展示系統(tǒng)采用了一種新型的生物信息學(xué)方法,即以嘌呤霉素為模板,將其與mRNA及mRNA編碼的多肽進(jìn)行共價(jià)偶聯(lián),并將其與mRNA的3’端相連。在基因表達(dá)過(guò)程中,核酸與DNA結(jié)合后,核酸與核酸結(jié)合。mRNA-DNA-嘌呤霉素分子文庫(kù)可以在體外進(jìn)行表達(dá),之后用固定的目標(biāo)分子篩選出純化的RNA-多肽復(fù)合物,類(lèi)似于核糖體展示系統(tǒng),該復(fù)合物可利用RT-RCR進(jìn)一步擴(kuò)增[88]。
4 抗體制備新技術(shù)在獸醫(yī)領(lǐng)域中的應(yīng)用
開(kāi)發(fā)和改進(jìn)制備單抗技術(shù)是為了更好地發(fā)揮mAb在治療和防控動(dòng)物疫病中的作用[89]。自mAb開(kāi)發(fā)以來(lái),雜交瘤技術(shù)就與之形影相隨,應(yīng)用于非洲豬瘟病毒(African swine fever virus, ASFV)、豬瘟病毒(classical swine fever virus, CSFV)、豬繁殖與呼吸綜合征病毒(porcine reproductive and respiratorysyndrome virus,PRRSV)等病原的mAb制備,相應(yīng)地在細(xì)胞無(wú)限繁殖、細(xì)胞融合等方面得到一定的改進(jìn)和優(yōu)化。表4為mAb制備技術(shù)的優(yōu)缺點(diǎn)及其應(yīng)用。最先用于解決細(xì)胞無(wú)限繁殖的方法是利用B淋巴細(xì)胞和骨髓瘤細(xì)胞進(jìn)行融合,后來(lái)探索了用皰疹病毒感染人B 細(xì)胞以達(dá)到無(wú)限繁殖的效果。融合效率是制約雜交瘤細(xì)胞無(wú)限繁殖的重要因素,因此在雜交瘤技術(shù)制備mAb中,不僅需要考慮細(xì)胞能否無(wú)限繁殖,還需考慮雜交瘤細(xì)胞的融合效率。起初是通過(guò)用聚乙二醇(polyethyleneglycol,PEG)與雜交瘤細(xì)胞化學(xué)融合來(lái)提高其融合效率。然而,PEG在一定程度上具有細(xì)胞毒性且可能發(fā)生非特異性膜融合。因此,又開(kāi)發(fā)了促進(jìn)雜交瘤細(xì)胞的病毒(如仙臺(tái)病毒、水泡性口炎病毒)或電融合等多種技術(shù)來(lái)代替PEG在雜交瘤細(xì)胞融合中的作用。盡管這些新方法比PEG介導(dǎo)的方法有所改善,但仍然不能特異性地控制特定B淋巴細(xì)胞與骨髓瘤細(xì)胞的融合。雖然雜交瘤技術(shù)受到這些方面的限制,但由于其具有可操作性強(qiáng)、成本低廉等優(yōu)點(diǎn),目前仍是實(shí)驗(yàn)室中制備mAb的常用技術(shù)。繼雜交瘤技術(shù)之后,研發(fā)了一系列針對(duì)mAb制備的技術(shù),如一些體外抗體篩選技術(shù)在mAb制備中得到廣泛使用。自從將噬菌體展示技術(shù)引用到展示抗體或多肽中,因其具有高通量、篩選周期短、操作簡(jiǎn)單等優(yōu)點(diǎn),已被用于分離各種類(lèi)型的天然抗體,且篩選的抗體需經(jīng)過(guò)生物淘選故而抗原特異性較高。噬菌體展示在免疫治療和疫苗開(kāi)發(fā)領(lǐng)域發(fā)揮李重要作用,在動(dòng)物疫病的防控方面也大有可為。然而在噬菌體表面上產(chǎn)生和呈現(xiàn)疏水肽或重組蛋白形成聚合體的問(wèn)題仍未解決,開(kāi)發(fā)新穎和改進(jìn)的噬菌體展示平臺(tái)是噬菌體展示技術(shù)在抗體制備領(lǐng)域的重要突破口。繼噬菌體之后,酵母被應(yīng)用到抗體制備中。酵母作為一種單細(xì)胞生物,依靠真核表達(dá)系統(tǒng),在翻譯后正確折疊和修飾復(fù)雜的核蛋白,在一定程度上解決了噬菌體和細(xì)菌展示系統(tǒng)中缺乏翻譯后修飾以及錯(cuò)誤折疊蛋白(抗體)的問(wèn)題。在酵母表面錨定蛋白的C 端或N 端插入外源蛋白不會(huì)破壞表面蛋白的結(jié)構(gòu),也不會(huì)影響表面展示效果。此外,在酵母展示中,整個(gè)抗體的溶解度得到提高,因?yàn)樵摷夹g(shù)可用于哺乳動(dòng)物糖基化的修飾中。此外,伴侶蛋白的存在有助于酵母正確折疊內(nèi)質(zhì)網(wǎng)中蛋白質(zhì),可用于制備ASFV單抗[99]。
此外,由于單個(gè)B細(xì)胞抗體能夠迅速生成高親和力、高特異性的人源抗體而備受重視,但仍面臨著諸多問(wèn)題,如抗原標(biāo)記、抗原分選、引物設(shè)計(jì)等。與此同時(shí),其他經(jīng)典的制備技術(shù)仍被廣泛應(yīng)用。
5 小結(jié)與展望
隨著分子檢測(cè)技術(shù)、人工智能、微生物學(xué)發(fā)展,抗體制備技術(shù)也得到較大發(fā)展。Ravn等[100]首次將下一代測(cè)序技術(shù)應(yīng)用到噬菌體篩選mAb過(guò)程中,大大提高了篩選目的抗體效率。Dufner等[101]利用噬菌體和核糖體展示提高了抗體篩選效率?;谌斯ぶ悄荛_(kāi)發(fā)的AlphaFold 和RoseTTAfold 這2 種技術(shù)成功預(yù)測(cè)蛋白質(zhì)結(jié)構(gòu)[102103]。Ruffolo 等[104]開(kāi)發(fā)了一種DeepAb 技術(shù),可高效地預(yù)測(cè)和優(yōu)化抗體結(jié)構(gòu)??贵w制備技術(shù)與下一代測(cè)序技術(shù)、細(xì)胞分選技術(shù)等生物技術(shù)相結(jié)合,與噬菌體、酵母菌、核糖體等相關(guān)生物材料的特性相結(jié)合,在人工智能軟件的幫助下必將在篩選mAb過(guò)程發(fā)揮更加強(qiáng)大的作用。盡管抗體制備技術(shù)在不同程度和方面上對(duì)mAb篩選工程進(jìn)行了優(yōu)化和改進(jìn),但無(wú)法改變mAb存在不能進(jìn)行凝集反應(yīng)、無(wú)法應(yīng)用于一些檢測(cè)方法中且在治療病毒引起的神經(jīng)性疾病作用有限等缺點(diǎn),而納米抗體(nanobody,Nb)等新型抗體在一定程度上彌補(bǔ)了上述缺點(diǎn),有望成為未來(lái)研發(fā)和利用的重要對(duì)象。表5和表6列出了幾種在獸醫(yī)及人醫(yī)領(lǐng)域常用的Nb??傮w而言,無(wú)論哪種mAb制備技術(shù)都有各自的優(yōu)勢(shì)和不足,在制備過(guò)程中需要根據(jù)使用mAb的目的和需要為導(dǎo)向,針對(duì)性地選擇抗體種類(lèi)及其制備技術(shù)和方法。隨著人們?cè)絹?lái)越關(guān)注抗體藥物、試劑的安全性和有效性,抗體制備技術(shù)仍需在實(shí)踐過(guò)程中不斷解決自身的缺陷、不斷創(chuàng)新,從而得到更好的應(yīng)用。
參 考 文 獻(xiàn)
[1] K?HLER G, MILSTEIN C. Continuous cultures of fused cells
secreting antibody of predefined specificity [J]. Nature, 1975,
256: 495-497.
[2] RASO V. Antibodies in diagnosis and therapy. the magic
bullet:nearing the century mark [J]. Semin. Cancer Biol., 1990,
1(3):227-242.
[3] ZINN S, VAZQUEZ-LOMBARDI R, ZIMMERMANN C, et al ..
Advances in antibody-based therapy in oncology [J]. Nat.
Cancer, 2023, 4:165-180.
[4] ANAND T, VIRMANI N, BERA B C, et al .. Phage display
technique as a tool for diagnosis and antibody selection for
coronaviruses [J]. Curr. Microbiol., 2021,78(4):1124-1134.
[5] KAPLON H, CRESCIOLI S, CHENOWETH A, et al .. Antibodies
to watch in 2023 [J/OL]. MAbs, 2023, 15(1): 2153410 [2023-09-
06]. https://doi.org/10.1080/19420862.2022.2153410.
[6] 黃小容,趙衛(wèi),孫九峰.單克隆抗體制備技術(shù)及在重大傳染病
防治中應(yīng)用進(jìn)展[J].華南預(yù)防醫(yī)學(xué),2022,48(3):276-280.
HUANG X R,ZHAO W,SUN J F. Development of monoclonal
antibody preparation technology and its application in the
prevention and control of major infectious diseases [J]. South
China J. Prev. Med., 2022,48(3):276-280.
[7] GREIG S L. Obiltoxaximab: first global approval [J]. Drugs,
2016,76(7):823-830.
[8] JULG B, BAROUCH D. Broadly neutralizing antibodies for HIV-1
prevention and therapy [J/OL]. Semin. Immunol., 2021,51:101475
[2023-09-06]. https://doi.org/10.1016/j.smim.2021.101475.
[9] STEPHENSON K E, WAGH K, KORBER B,et al .. Vaccines
and broadly neutralizing antibodies for HIV-1 prevention [J].
Annu. Rev. Immunol.,2020,38:673-703.
[10] KHONGORZUL P, LING C J, KHAN F U, et al .. Antibodydrug
conjugates:a comprehensive review [J]. Mol. Cancer Res.,
2020,18(1):3-19.
[11] PARRAY H A, SHUKLA S, SAMAL S, et al.. Hybridoma
technology a versatile method for isolation of monoclonal antibodies,
its applicability across species,limitations,advancement and future
perspectives [J/OL]. Int. Immunopharmacol., 2020, 85: 106639
[2023-09-06]. https://doi.org/10.1016/j.intimp.2020.106639.
[12] DE ALMEIDA R, NAKAMURA C N, DE LIMA FONTES M,
et al .. Enhanced immunization techniques to obtain highly
specific monoclonal antibodies [J]. mAbs, 2018, 10(1):46-54.
[13] SMITH G P. Filamentous fusion phage: novel expression
vectors that display cloned antigens on the virion surface [J].
Science,1985,228(4705):1315-1317.
[14] SAW P E,SONG E W. Phage display screening of therapeutic
peptide for cancer targeting and therapy [J]. Protein Cell, 2019,
10(11):787-807.
[15] MAHDAVI S Z B, OROOJALIAN F, EYVAZI S, et al .. An
overview on display systems (phage, bacterial, and yeast
display) for production of anticancer antibodies; advantages
and disadvantages [J]. Int. J. Biol. Macromol., 2022, 208:
421-442.
[16] SIOUD M. Phage display libraries:from binders to targeted drug
delivery and human therapeutics [J]. Mol. Biotechnol., 2019,61(4):
286-303.
[17] KARIMI M, MIRSHEKARI H, MOOSAVI BASRI S M, et al ..
Bacteriophages and phage-inspired nanocarriers for targeted
delivery of therapeutic cargos [J]. Adv. Drug Deliv. Rev., 2016,
106(A):45-62.
[18] WANG R, LI H D, CAO Y, et al .. M13 phage: a versatile
building block for a highly specific analysis platform [J]. Anal.
Bioanal. Chem., 2023,415(18):3927-3944.
[19] LOPES R S, QUEIROZ M A F, GOMES S T M, et al .. Phage
display:an important tool in the discovery of peptides with anti-
HIV activity [J]. Biotechnol. Adv., 2018,36(7):1847-1854.
[20] MCCAFFERTY J, GRIFFITHS A D, WINTER G, et al .. Phage
antibodies: filamentous phage displaying antibody variable
domains [J]. Nature, 1990,348:552-554.
[21] NAGANO K, TSUTSUMI Y. Phage display technology as a
powerful platform for antibody drug discovery [J/OL]. Viruses,
2021,13(2):178 [2023-09-06]. https://doi.org/10.3390/v13020178.
[22] NORRIS M H, BLACKBURN J K. Raxibacumab:a panacea for
anthrax disease? [J]. Lancet Infect. Dis., 2020,20(8):886-887.
[23] MEYER T, STRATMANN-SELKE J, MEENS J, et al .. Isolation
of scFv fragments specific to OmpD of Salmonella
Typhimurium [J]. Vet. Microbiol., 2011,147(1/2):162-169.
[24] HENNING L N, CARPENTER S, STARK G V, et al ..
Development of protective immunity in New Zealand white
rabbits challenged with Bacillus anthracis spores and treated
with antibiotics and obiltoxaximab, a monoclonal antibody against
protective antigen [J/OL]. Antimicrob. Agents Chemother., 2018,62
(2):e01590-17 [2023-09-06]. https://doi.org/10.1128/AAC.01590-17.
[25] HüLSEWEH B, RüLKER T, PELAT T, et al .. Human-like
antibodies neutralizing western equine encephalitis virus [J].
mAbs, 2014,6(3):718-727.
[26] BERTOGLIO F, FüHNER V, RUSCHIG M, et al .. A SARSCoV-
2 neutralizing antibody selected from COVID-19 patients
binds to the ACE2-RBD interface and is tolerant to most
known RBD mutations [J/OL]. Cell Rep., 2021, 36(4): 109433
[2023-09-06]. https://doi.org/10.1016/j.celrep.2021.109433.
[27] ROTH K D R, WENZEL E V, RUSCHIG M, et al .. Developing
recombinant antibodies by phage display against infectious
diseases and toxins for diagnostics and therapy [J/OL].Front.
Cell. Infect. Microbiol., 2021,11:697876 [2023-09-06]. https://
doi.org/10.3389/fcimb.2021.697876.
[28] JAROSZEWICZ W, MORCINEK-OR?OWSKA J, PIERZYNOWSKA
K, et al .. Phage display and other peptide display technologies
[J/OL].FEMS Microbiol. Rev., 2022,46(2):fuab052 [2023-09-
06]. https://doi.org/10.1093/femsre/fuab052.
[29] KAZA V K, NATHAN B. Inclusion of Rabishield in the WHO
guidelines for rabies postexposure prophylaxis [J]. Indian J.
Pharmacol., 2023,55(2):141-142.
[30] WALSH S R, SEAMAN M S. Broadly neutralizing antibodies
for HIV-1 prevention [J/OL].Front. Immunol., 2021,12:712122
[2023-09-06]. https://doi.org/10.3389/fimmu.2021.712122.
[31] BAUM A, FULTON B O, WLOGA E, et al .. Antibody cocktail
to SARS-CoV-2 spike protein prevents rapid mutational escape
seen with individual antibodies [J]. Science, 2020,369(6506):
1014-1018.
[32] HANSEN J, BAUM A, PASCAL K E, et al .. Studies in
humanized mice and convalescent humans yield a SARS-CoV-
2 antibody cocktail [J]. Science, 2020,369(6506):1010-1014.
[33] SAPHIRE E O, SCHENDEL S L, GUNN B M, et al .. Antibodymediated
protection against Ebola virus [J]. Nat. Immunol.,
2018,19:1169-1178.
[34] WENZEL E V, BOSNAK M, TIERNEY R, et al .. Human
antibodies neutralizing diphtheria toxin in vitro and in vivo [J/OL].
Sci. Rep., 2020,10(1):571 [2023-09-06].https://doi.org/10.1038/
s41598-019-57103-5.
[35] KUMMERFELDT C E. Raxibacumab: potential role in the
treatment of inhalational anthrax [J]. Infect. Drug Resist., 2014,
7:101-109.
[36] CAO Y L, WANG J, JIAN F C, et al .. Omicron escapes the
majority of existing SARS-CoV-2 neutralizing antibodies [J].
Nature, 2022,602:657-663.
[37] JACOB S T, CROZIER I, FISCHER 2nd W A, et al .. Ebola
virus disease [J/OL]. Nat. Rev. Dis. Primers, 2020, 6(1): 13
[2023-09-06]. https://doi.org/10.1038/s41572-020-0147-3.
[38] BURMESTER G R, PANACCIONE R, GORDON K B, et al ..
Adalimumab: long-term safety in 23458 patients from global
clinical trials in rheumatoid arthritis, juvenile idiopathic
arthritis, ankylosing spondylitis, psoriatic arthritis, psoriasis
and Crohn’s disease [J]. Ann. Rheum. Dis., 2013, 72(4):
517-524.
[39] GULIY O I, EVSTIGNEEVA S S, DYKMAN L A. Recombinant
antibodies by phage display for bioanalytical applications [J/OL].
Biosens. Bioelectron., 2023,222:114909 [2023-09-06].https://doi.
org/10.1016/j.bios.2022.114909.
[40] BODER E T, WITTRUP K D. Yeast surface display for screening
combinatorial polypeptide libraries [J].Nat. Biotechnol., 1997,15:
553-557.
[41] DENG M. The approval of sintilimab for classical Hodgkin’s
lymphoma:views and perspectives of anti-PD-1/PD-L1 antibodies
in China [J]. Antib. Ther., 2019,2(2):54-55.
[42] ROSOWSKI S, BECKER S, TOLEIKIS L, et al .. A novel onestep
approach for the construction of yeast surface display Fab
antibody libraries [J/OL]. Microb. Cell Fact., 2018, 17(1): 3
[2023-09-06]. https://doi.org/10.1186/s12934-017-0853-z.
[43] BAEK D S, PARK S W, ADAMS C, et al.. Yeast mating as a tool
for highly effective discovery and engineering of antibodies via
display methodologies [J]. Meth. Mol. Biol., 2022, 2491:313-333.
[44] GRZESCHIK J, YANAKIEVA D, ROTH L, et al .. Yeast
surface display in combination with fluorescence-activated cell
sorting enables the rapid isolation of antibody fragments derived
from immunized chickens [J/OL]. Biotechnol. J., 2019, 14(4):
e1800466 [2023-09-06]. https://doi.org/10.1002/biot.201800466.
[45] ROUHA H, BADARAU A, VISRAM Z C, et al .. Five birds,
one stone: neutralization of α-hemolysin and 4 bi-component
leukocidins of Staphylococcus aureus with a single human
monoclonal antibody [J]. Mabs, 2015, 7(1): 243-254.
[46] YANG Z, DU M J, WANG W, et al.. Affinity maturation of an
TpoR targeting antibody in full-length IgG form for enhanced
agonist activity [J]. Protein Eng. Des. Sel., 2018,31(7/8):233-241.
[47] SCHR?TER C, BECK J, KRAH S, et al .. Selection of
antibodies with tailored properties by application of highthroughput
multiparameter fluorescence-activated cell sorting
of yeast-displayed immune libraries [J]. Mol. Biotechnol., 2018,
60(10):727-735.
[48] SUN W, YANG Z N, LIN H, et al .. Improvement in affinity and
thermostability of a fully human antibody against interleukin-
17A by yeast-display technology and CDR grafting [J]. Acta
Pharm. Sin. B, 2019,9(5):960-972.
[49] MCMAHON C, BAIER A S, PASCOLUTTI R,et al .. Yeast
surface display platform for rapid discovery of conformationally
selective nanobodies [J]. Nat. Struct. Mol. Biol., 2018, 25:
289-296.
[50] VALLDORF B, HINZ S C, RUSSO G, et al .. Antibody display
technologies: selecting the cream of the crop [J]. Biol. Chem.,
2021, 403(5-6): 455-477.
[51] FERRARA F, SOLURI M F, SBLATTERO D. Recombinant
antibody selections by combining phage and yeast display [J].
Methods Mol. Biol., 2019, 1904:339-352.
[52] KOVA?EVI? G, OSTAFE R, BALA? A M, et al ..Development
of GFP-based high-throughput screening system for directed
evolution of glucose oxidase [J]. J. Biosci. Bioeng., 2019,127(1):
30-37.
[53] TEYMENNET-RAMíREZ K V, MARTíNEZ-MORALES F,
TREJO-HERNáNDEZ M R. Yeast surface display system:
strategies for improvement and biotechnological applications [J/OL].
Front. Bioeng. Biotechnol., 2021,9: 794742 [2023-09-06]. https://
doi.org/10.3389/fbioe.2021.794742.
[54] HANES J, PLüCKTHUN A. In vitro selection and evolution of
functional proteins by using ribosome display [J]. Micromachines,
1997,94(10):4937-4942.
[55] AZIZI A, ARORA A, MARKIV A ,et al .. Ribosome display of
combinatorial antibody libraries derived from mice immunized
with heat-killed Xylella fastidiosa and the selection of MopBspecific
single-chain antibodies [J]. Appl. Environ. Microbiol.,
2012,78(8):2638-2647.
[56] KUNAMNENI A, OGAUGWU C, BRADFUTE S, et al ..
Ribosome display technology: applications in disease diagnosis
and control [J]. Antibodies (Basel),2020,9(3):28[2023-09-06].
https://doi.org/10.3390/antib9030028.
[57] LI R W, KANG G B, HU M, et al.. Ribosome display:a potent
display technology used for selecting and evolving specific binders
with desired properties [J]. Mol. Biotechnol., 2019,61(1):60-71.
[58] LAGOUTTE P. Ribosome display: evolution and acellular
selection of molecular libraries for high affinity binder
generation [J]. Med. Sci. (Paris), 2020,36(8-9): 717-724.
[59] CHANCE R, KANG A S. Eukaryotic ribosome display for
antibody discovery:a review [J]. Hum. Antibodies,2024,32(3):
107-120.
[60] KUNAMNENI A, CLARKE E C, YE C, et al .. Generation and
selection of a panel of pan-filovirus single-chain antibodies
using cell-free ribosome display [J]. Am. J. Trop. Med. Hyg.,
2019,101(1):198-206.
[61] KUNAMNENI A, YE C, BRADFUTE S B, et al .. Ribosome
display for the rapid generation of high-affinity Zikaneutralizing
single-chain antibodies [J/OL]. Front. Plant Sci.,
2018,13(11):e0205743 [2023-09-06]. https://doi.org/10.1371/
journal.pone.0205743.
[62] AHANGARZADEH S, BANDEHPOUR M, KAZEMI B.
Selection of single-chain variable fragments specific for
Mycobacterium tuberculosis ESAT-6 antigen using ribosome
display [J]. Iran. J. Basic Med. Sci., 2017,20(3):327-333.
[63] JIANG S B, HILLYER C, DU L Y. Neutralizing antibodies
against SARS-CoV-2 and other human coronaviruses [J].
Trends Immunol., 2020,41(5):355-359.
[64] BURTON D R, WEISS R A. AIDS/HIV. A boost for HIV
vaccine design [J]. Science, 2010, 329(5993): 770-773.
[65] HARA S,LIU M,WANG W,et al .. Stabilized ribosome display
for in vitro selection [J]. Meth. Mol. Biol., 2012,805:59-73.
[66] PEDRIOLI A, OXENIUS A. Single B cell technologies for
monoclonal antibody discovery [J]. Trends Immunol., 2021,42(12):
1143-1158.
[67] 遲象陽(yáng),于長(zhǎng)明,陳薇.單個(gè)B細(xì)胞抗體制備技術(shù)及應(yīng)用[J].
生物工程學(xué)報(bào),2012,28(6):651-660.
CHI X Y, YU C M, CHEN W. Single B cell monoclonal
antibody technologies and applications [J]. Chin. J.
Biotechnol., 2012,28(6):651-660.
[68] BUCHELI O T M, SIGVALDADóTTIR I, EYER K. Measuring
single-cell protein secretion in immunology: technologies,
advances, and applications [J]. Eur. J. immunol., 2021, 51(6):
1334-1347.
[69] GILBERT A E, KARAGIANNIS P, DODEV T, et al.. Monitoring
the systemic human memory B cell compartment of melanoma
patients for anti-tumor IgG antibodies [J/OL]. PLoS One, 2011,6(4):
e19330 [2023-09-06]. https://doi.org/10.1371/journal.pone.0019330.
[70] KüPPERS R, SCHNEIDER M, HANSMANN M L. Laserbased
microdissection of single cells from tissue sections and
PCR analysis of rearranged immunoglobulin genes from
isolated normal and malignant human B cells [J]. Meth. Mol.
Biol., 2013,971:49-63.
[71] GUO W, HU Y, QIAN J, et al.. Laser capture microdissection for
biomedical research: towards high-throughput, multi-omics, and
single-cell resolution [J]. J. Genet. Genom., 2023,50(9):641-651.
[72] WANG Z J, MERKENSCHLAGER J, CHEN S T, et al ..
Isolation of single HIV-1 Envelope specific B cells and
antibody cloning from immunized rhesus macaques [J/OL]. J.
Immunol. Meth., 2020, 478: 112734 [2023-09-06]. https://doi.
org/ 10.1016/j.jim.2019.112734.
[73] MIYAMOTO K, AOKI W, OHTANI Y, et al .. Peptide
barcoding for establishment of new types of genotypephenotype
linkages [J/OL]. PLoS One, 2019, 14(4): e0215993
[2023-09-06]. https://doi.org/10.1371/journal.pone.0215993.
[74] FEI C, NIE L, ZHANG J, et al .. Potential applications of
fluorescence-activated cell sorting (FACS) and droplet-based
microfluidics in promoting the discovery of specific antibodies
for characterizations of fish immune cells [J/OL]. Front.
Immunol., 2021,12:771231 [2023-09-06]. https://doi.org/10.3389/
fimmu.2021.771231.
[75] KISHI H, OZAWA T, HAMANA H, et al.. Isolation of antigenspecific,
antibody-secreting cells using a chip-based immunospot
array [J]. Meth. Mol. Biol., 2019,1904:147-162.
[76] YASEN A, AINI A, WANG H, et al .. Progress and applications
of single-cell sequencing techniques [J/OL]. Infect Genet.
Evol., 2020,80:104198 [2023-09-06]. https://doi.org/10.1016/j.
meegid.2020.104198.
[77] WANG S, WANG Z C, LI Y, et al .. Generation of wholeporcine
neutralizing antibodies of an alphacoronavirus by
single B cell antibody technology [J/OL].Antivir. Res., 2023,
220:105754 [2023-09-06].https://doi.org/10.1016/j.antiviral.2023.
105754.
[78] WRAMMERT J, KOUTSONANOS D, LI G M, et al .. Broadly
cross-reactive antibodies dominate the human B cell response
against 2009 pandemic H1N1 influenza virus infection [J].J.
Exp. Med., 2011,208(1):181-193.
[79] MORRISON S L, JOHNSON M J, HERZENBERG L A, et al..
Chimeric human antibody molecules: mouse antigen-binding
domains with human constant region domains [J]. Proc. Natl.
Acad Sci. USA,1984,81(21):6851-6855.
[80] VINCENT L, BOURNEAU-MARTIN D, MAURIER A, et al ..
Delayed thrombocytopenia following administration of abciximab:
Pharmacovigilance survey and literature review [J]. Therapies,
2021,76(6):687-693.
[81] GKLINOS P, PAPADOPOULOU M, STANULOVIC V, et al ..
Monoclonal antibodies as neurological therapeutics [J/OL].
Pharmaceuticals (Basel), 2021,14(2):92 [2023-09-06]. https://
doi.org/10.3390/ph14020092.
[82] ADEDOKUN O J, XU Z H, GASINK C, et al.. Pharmacokinetics
and exposure response relationships of ustekinumab in patients
with Crohn’s disease [J]. Gastroenterology, 2018,154(6):1660-1671.
[83] BRüGGEMANN M, OSBORN M J, MA B, et al .. Human
antibody production in transgenic animals [J]. Arch. Immunol.
Ther. Exp., 2015,63(2):101-108.
[84] RAYAPROLU V, FULTON B O, RAFIQUE A, et al .. Structure
of the Inmazeb cocktail and resistance to Ebola virus escape [J].
Cell Host Microbe, 2023,31(2):260-272.
[85] WANG Z, WANG G Q, LU H Q, et al .. Development of
therapeutic antibodies for the treatment of diseases [J/OL].
Mol. Biomed., 2022, 3(1): 35 [2023-09-06]. https://doi.org/
10.1186/s43556-022-00100-4.
[86] ROBERTS R W, SZOSTAK J W. RNA-peptide fusions for the
in vitro selection of peptides and proteins [J]. Proc. Natl. Acad.
Sci. USA, 1997,94(23):12297-12302.
[87] NEMOTO N, MIYAMOTO-SATO E, HUSIMI Y, et al .. In vitro
virus:bonding of mRNA bearing puromycin at the 3’-terminal
end to the C-terminal end of its encoded protein on the
ribosome in vitro [J]. FEBS Lett., 1997,414(2):405-408.
[88] PITT A, NIMS Z. Peptide display technologies [J]. Meth. Mol.
Biol., 2019,2001:285-298.
[89] PANTALEO G, CORREIA B, FENWICK C, et al .. Antibodies
to combat viral infections:development strategies and progress [J].
Nat. Rev. Drug Discov., 2022,21:676-696.
[90] LIBERTI R, COLABELLA C, ANZALONE L, et al ..
Expression of a recombinant ASFV P30 protein and production
of monoclonal antibodies [J]. Open Vet. J., 2023,13(3):358-364.
[91] MI S J, WANG L H, LI H W, et al .. Characterization of
monoclonal antibodies that specifically differentiate field
isolates from vaccine strains of classical swine fever virus [J/OL].
Front. Immunol., 2022,13:930631 [2023-09-06].https://doi.org/
10.3389/fimmu.2022.930631.
[92] ZHANG Z, ZHAI T, LI M, et al .. A broadly neutralizing
monoclonal antibody induces broad protection against
heterogeneous PRRSV strains in piglets [J/OL]. Vet. Res.,
2021, 52(1): 45 [2023-09-06]. https://doi.org/10.1186/s13567-
021-00914-0.
[93] JEONG S, AHN H J, MIN K J, et al ..P hage display screening
of bovine antibodies to foot-and-mouth disease virus and their
application in a competitive ELISA for serodiagnosis [J/OL].
Int. J. Mol. Sci., 2021,22(9):4328 [2023-09-06].https://doi.org/
10.3390/ijms22094328.
[94] CHEN C, HUA D P, SHI J X, et al .. Porcine immunoglobulin
fc fused P30/P54 protein of African swine fever virus
displaying on surface of S. cerevisiae elicit strong antibody
production in swine [J]. Virol. Sin., 2021,36(2):207-219.
[95] GRIMM S, YU F, NYGREN P ?. Ribosome display selection
of a murine IgG1 Fab binding affibody molecule allowing
species selective recovery of monoclonal antibodies [J]. Mol.
Biotechnol., 2011,48(3):263-276.
[96] ZHAO H, WANG G, DONG H, et al.. Identification of a linear B
cell epitope on p54 of African swine fever virus using nanobodies
as a novel tool [J/OL]. Microbiol. Spectr., 2023, 11(3): e0336222
[2023-09-06]. https://doi.org/10.1128/spectrum.03362-22.
[97] AMETRANO A, COSCIA M R. Production of a chimeric
mouse-fish monoclonal antibody by the CRISPR/Cas9
technology [J]. Meth. Mol. Biol., 2022,2498:337-350.
[98] CORREIA S, VENTURA S, PARKHOUSE R M. Identification
and utility of innate immune system evasion mechanisms of
ASFV [J]. Virus Res., 2013,173(1):87-100.
[99] MEI M, LI J, WANG S, et al .. Prompting fab yeast surface
display efficiency by ER retention and molecular chaperon
co-expression [J/OL]. Front. Bioeng. Biotechnol., 2019, 7: 362
[2023-09-06]. https://doi.org/10.3389/fbioe.2019.00362.
[100] RAVN U, GUENEAU F, BAERLOCHER L, et al .. Bypassing
in vitro screening: next generation sequencing
technologies applied to antibody display and in silico candidate
selection [J/OL]. Nucleic Acids Res., 2010,38(21):e193 [2023-
09-06].https://doi.org/ 10.1093/nar/gkq789.
[101] DUFNER P, JERMUTUS L, MINTER R R. Harnessing phage
and ribosome display for antibody optimization [J]. Trends
Biotechnol., 2006,24(11):523-529.
[102] JUMPER J, EVANS R, PRITZEL A, et al .. Highly accurate
protein structure prediction with AlphaFold [J]. Nature, 2021,
596:583-589.
[103] BAEK M, DIMAIO F, ANISHCHENKO I, et al .. Accurate
prediction of protein structures and interactions using a threetrack
neural network [J]. Science, 2021,373(6557):871-876.
[104] RUFFOLO J A, SULAM J, GRAY J J. Antibody structure
prediction using interpretable deep learning [J/OL]. Patterns,
2022, 3(2): 100406 [2023-09-06]. https://doi.org/10.1016/j.
patter. 2021.100406.
[105] LU Q, LI X, ZHAO J, et al .. Nanobodyhorseradish
peroxidase and -EGFP fusions as reagents to detect porcine
parvovirus in the immunoassays [J/OL]. J. Nanobiotechnol.,
2020,18(1):7 [2023-09-06]. https://doi.org/10-1186/S12951-
019-0568-x.
[106] MA Z Q, WANG T Y, LI Z W, et al .. A novel biotinylated
nanobody-based blocking ELISA for the rapid and sensitive
clinical detection of porcine epidemic diarrhea virus [J/OL].
J. Nanobiotechnol., 2019, 17(1): 96 [2023-09-06]. https://doi.
org/10.1186/s12951-019-0531-x.
[107] DU T, ZHU G, WU X, et al .. Biotinylated single-domain
antibody-based blocking ELISA for detection of antibodies
against swine influenza virus [J]. Int. J. Nanomed., 2019,14:
9337-9349.
[108] ZHAO H J, REN J H, WU S Y, et al .. HRP-conjugatednanobody-
based cELISA for rapid and sensitive clinical
detection of ASFV antibodies [J]. Appl. Microbiol. Biotechnol.,
2022,106(11):4269-4285.
[109] MU Y, JIA C, ZHENG X, et al .. Correction to:a nanobodyhorseradish
peroxidase fusion protein-based competitive
ELISA for rapid detection of antibodies against porcine
circovirus type 2 [J/OL]. J. Nanobiotechnol., 2021,19(1):66
[2023-09-06]. https://doi.org/10.1186/s12951-021-00815-6.
[110] 樊杰. 豬傳染性胃腸炎病毒N蛋白納米抗體的制備和基于
納米抗體競(jìng)爭(zhēng)ELISA的建立[D]. 楊凌:西北農(nóng)林科技大學(xué),
2021.
FAN J. Preparation of nanobodies against transmissible
gastroenteritis virus N protein and development of the
nanobody-based competitive ELISA [D]. Yangling:Northwest
Aamp;F University, 2021.
[111] DUAN H, CHEN X, ZHAO J, et al .. Development of a
nanobody-based competitive enzyme-linked immunosorbent
assay for efficiently and specifically detecting antibodies
against genotype 2 porcine reproductive and respiratory
syndrome viruses [J/OL]. J. Clin. Microbiol., 2021, 59(12):
e0158021 [2023-09-06]. https://doi.org/10.1128/JCM.01580-21.
[112] JI P P, WANG K, ZHANG L, et al .. A new nanobody-enzyme
fusion protein-linked immunoassay for detecting antibodies
against influenza A virus in different species [J/OL]. J. Biol.
Chem., 2022, 298(12): 102709 [2023-09-06]. https://doi. org/
10.1016/j.jbc.2022.102709.
[113] SHENG Y M, WANG K, LU Q Z, et al .. Nanobodyhorseradish
peroxidase fusion protein as an ultrasensitive
probe to detect antibodies against Newcastle disease virus in
the immunoassay [J/OL]. J. Nanobiotechnol., 2019,17(1):35
[2023-09-06]. https://doi.org/10.1186/s12951-019-0468-0.
[114] 陳天祥.禽戊型肝炎病毒ORF2截短蛋白納米抗體的制備
和競(jìng)爭(zhēng)ELISA檢測(cè)方法的建立[D].楊凌:西北農(nóng)林科技大
學(xué),2021.
CHEN T X. Preparation of nanobodies against a truncated
protein of avian HEV ORF2 and development of a
competitive ELISA [D]. Yangling:Northwest Aamp;F University,
2021.
[115] SCULLY M, CATALAND S R, PEYVANDI F, et al..
Caplacizumab treatment for acquired thrombotic thrombocytopenic
Purpura [J]. N Engl J. Med., 2019,380(4):335-346.
[116] TAHAMTAN A, BESTEMAN S, SAMADIZADEH S, et al ..
Neutrophils in respiratory syncytial virus infection: from
harmful effects to therapeutic opportunities [J]. Br. J.
Pharmacol., 2021,178(3):515-530.
[117] SHI R, HONCZARENKO M, ZHANG S, et al ..
Pharmacokinetic, pharmacodynamic, and safety profile of a
novel anti-CD28 domain antibody antagonist in healthy
subjects [J]. J. Clin. Pharmacol., 2017,57(2):161-172.
[118] HUANG L, REEKMANS G, SAERENS D, et al.. Prostatespecific
antigen immunosensing based on mixed self-assembled
monolayers, camel antibodies and colloidal gold enhanced
sandwich assays [J]. Biosens. Bioelectron., 2005,21(3):483-490.
[119] GELKOP S, SOBARZO A, BRANGEL P, et al .. The
development and validation of a novel nanobody-based
competitive ELISA for the detection of foot and mouth disease
3ABC antibodies in cattle [J/OL]. Front. Vet. Sci., 2018,5:250
[2023-09-06]. https://doi.org/10.3389/fvets.2018.00250.
[120] MORALES-YANEZ F J, SARIEGO I, VINCKE C, et al .. An
innovative approach in the detection of Toxocara canis
excretory/secretory antigens using specific nanobodies [J].
Int. J. Parasitol., 2019,49(8):635-645.