中圖分類號(hào) R285;R965 文獻(xiàn)標(biāo)志碼 A 文章編號(hào) 1001-0408(2025)02-0245-06
DOI 10.6039/j.issn.1001-0408.2025.02.19
摘要 腦缺血再灌注損傷(CIRI)是缺血性腦卒中患者在血流恢復(fù)過(guò)程中可能出現(xiàn)的繼發(fā)性腦損傷。NOD 樣受體蛋白3(NLRP3)炎癥小體在CIRI 的發(fā)生發(fā)展中發(fā)揮著重要作用,調(diào)控NLRP3 炎癥小體活性可誘導(dǎo)細(xì)胞焦亡、引起神經(jīng)炎癥反應(yīng)、促進(jìn)巨噬細(xì)胞/小膠質(zhì)細(xì)胞極化、破壞血腦屏障、影響血管新生和神經(jīng)發(fā)生,從而影響CIRI。中藥在CIRI 治療中具有明顯優(yōu)勢(shì),本文從NLRP3 炎癥小體角度出發(fā),系統(tǒng)綜述了中藥對(duì)CIRI 的作用機(jī)制,發(fā)現(xiàn)多種中藥單體(如黃芩苷、遠(yuǎn)志皂苷F 等)以及中藥復(fù)方(如黃芪桂枝五物湯、益氣升清方等)均可通過(guò)抑制NLRP3 炎癥小體活性來(lái)減輕炎癥反應(yīng)和氧化應(yīng)激,改善神經(jīng)元損傷,進(jìn)而緩解CIRI。
關(guān)鍵詞 中藥;NLRP3 炎癥小體;腦缺血再灌注損傷;炎癥;氧化應(yīng)激
腦卒中是致死致殘的重大疾病,也是世界范圍內(nèi)的第二大死亡原因[1]。缺血性腦卒中占所有腦卒中的60%~80%,近年來(lái)我國(guó)缺血性腦卒中的發(fā)病率明顯上升,且發(fā)病呈年輕化趨勢(shì)[2]。目前,臨床針對(duì)腦卒中行之有效的血管再通治療主要包括溶栓治療和血管內(nèi)介入治療,早期恢復(fù)腦缺血區(qū)血流灌注以挽救缺血半暗帶腦組織為重中之重,但腦組織血流恢復(fù)后可能會(huì)引起繼發(fā)性腦損傷,即腦缺血再灌注損傷(cerebral ischemia reperfusioninjury,CIRI)[3―4]。CIRI 涉及多種復(fù)雜病變,包括炎癥反應(yīng)、氧化應(yīng)激、細(xì)胞自噬、細(xì)胞損傷、細(xì)胞死亡等[5]。NOD 樣受體蛋白3(NOD-like receptor protein 3,NLRP3)炎癥小體作為腦卒中后導(dǎo)致炎癥和神經(jīng)元損傷的關(guān)鍵介質(zhì),主要通過(guò)產(chǎn)生促炎因子和介導(dǎo)神經(jīng)細(xì)胞功能障礙來(lái)加重腦損傷[6]。因此,抑制NLRP3 炎癥小體活性可能是治療CIRI 的新手段。近年來(lái)中藥多途徑、多靶點(diǎn)治療CIRI 取得顯著成效,研究顯示,中藥單體及其活性成分、中藥復(fù)方均可通過(guò)調(diào)控NLRP3 炎癥小體而抑制炎癥反應(yīng)、減輕神經(jīng)細(xì)胞損傷、保護(hù)神經(jīng)功能[7―8]?;诖?,本文概述了NLRP3 炎癥小體在CIRI 發(fā)生發(fā)展中的作用,并對(duì)中藥調(diào)控NLRP3 炎癥小體干預(yù)CIRI 的研究進(jìn)展進(jìn)行綜述,以期為CIRI 的臨床治療提供參考。
1 NLRP3炎癥小體在CIRI發(fā)生發(fā)展中的作用
1.1 NLRP3 炎癥小體概述
CIRI 病理機(jī)制復(fù)雜,其中神經(jīng)炎癥反應(yīng)是CIRI 誘導(dǎo)致病級(jí)聯(lián)反應(yīng)的關(guān)鍵。NLRP3 炎癥小體是一種多蛋白復(fù)合物,在多種病原體相關(guān)分子模式和損傷相關(guān)分子模式誘導(dǎo)下可激活多種靶蛋白,如病原體相關(guān)分子模式可促進(jìn)NLRP3 炎癥小體的組裝并激活胱天蛋白酶1(caspase-1),從而催化前白細(xì)胞介素1β(pro-interleukin-1β,pro-IL-1β)轉(zhuǎn)化為IL-1β;損傷相關(guān)分子模式可激活Toll 樣受體(Toll-like receptors,TLRs)/核因子κB(nuclear factor-κB,NF-κB)信號(hào)通路,促進(jìn)NLRP3 炎癥小體和IL-18 蛋白表達(dá),還可通過(guò)調(diào)控上下游因子活性來(lái)促進(jìn)多種炎癥級(jí)聯(lián)反應(yīng),從而影響CIRI 的發(fā)生發(fā)展[9]。CIRI 發(fā)生后,NLRP3 炎癥小體被激活,可釋放出大量促炎因子引發(fā)神經(jīng)炎癥反應(yīng),從而活化巨噬細(xì)胞和小膠質(zhì)細(xì)胞,導(dǎo)致細(xì)胞焦亡和血腦屏障受損,進(jìn)而引發(fā)神經(jīng)功能障礙,加劇腦組織損傷[10]。
1.2 NLRP3 炎癥小體與CIRI的關(guān)系
1.2.1 誘導(dǎo)細(xì)胞焦亡
細(xì)胞焦亡會(huì)放大炎癥反應(yīng)信號(hào),加重腦組織損傷,促進(jìn)CIRI 進(jìn)展。CIRI 可誘發(fā)體內(nèi)炎癥反應(yīng),促使NLRP3 炎癥小體觸發(fā)由消皮素D(gasdermin D,GSDMD)執(zhí)行的caspase-1 炎癥級(jí)聯(lián)反應(yīng),釋放炎癥因子,從而誘導(dǎo)細(xì)胞焦亡[11]。CIRI 發(fā)生后,NLRP3 炎癥小體首先在小膠質(zhì)細(xì)胞中表達(dá),繼而驅(qū)動(dòng)促炎過(guò)程并誘導(dǎo)細(xì)胞焦亡;此外,神經(jīng)元、星形膠質(zhì)細(xì)胞、內(nèi)皮細(xì)胞也可表達(dá)NLRP3 炎癥小體;在CIRI 晚期,NLRP3 炎癥小體主要聚集于神經(jīng)元,長(zhǎng)期腦內(nèi)缺血缺氧可促使神經(jīng)元發(fā)生焦亡,并釋放大量炎癥因子,最終加重CIRI[12―13]。
1.2.2 引起神經(jīng)炎癥反應(yīng)
神經(jīng)炎癥廣泛參與缺血性腦卒中的病理生理過(guò)程,NLRP3 炎癥小體可通過(guò)產(chǎn)生促炎因子或細(xì)胞毒性物質(zhì)來(lái)影響神經(jīng)功能[14]。在CIRI 早期,神經(jīng)元中的NLRP3炎癥小體會(huì)迅速誘導(dǎo)并驅(qū)動(dòng)炎癥反應(yīng),引發(fā)血管閉塞和再灌注期的炎癥級(jí)聯(lián)反應(yīng),導(dǎo)致神經(jīng)血管損傷、血腦屏障受損[15―16]。
1.2.3 促進(jìn)巨噬細(xì)胞/小膠質(zhì)細(xì)胞極化
巨噬細(xì)胞/小膠質(zhì)細(xì)胞極化在CIRI 致炎癥反應(yīng)的發(fā)生過(guò)程中具有重要作用,當(dāng)巨噬細(xì)胞/小膠質(zhì)細(xì)胞極化為M1 表型時(shí),其可過(guò)度表達(dá)炎癥因子等,從而導(dǎo)致神經(jīng)毒性;當(dāng)巨噬細(xì)胞/小膠質(zhì)細(xì)胞極化為M2 表型時(shí),其可釋放抗炎因子等,從而保護(hù)神經(jīng)功能;CIRI 發(fā)生時(shí),NLRP3炎癥小體可促進(jìn)巨噬細(xì)胞/小膠質(zhì)細(xì)胞發(fā)生M1 表型極化,釋放IL-1β、IL-18 等促炎因子,進(jìn)而加重腦損傷[17]。研究指出,CIRI 可通過(guò)TLR4/NF-κB 信號(hào)通路來(lái)誘導(dǎo)NLRP3 炎癥小體活化,介導(dǎo)巨噬細(xì)胞/小膠質(zhì)細(xì)胞發(fā)生M1 表型極化,增加促炎因子的分泌,從而加劇CIRI 炎癥反應(yīng)[18]。
1.2.4 破壞血腦屏障
保持血腦屏障的完整性對(duì)于維持正常的大腦活動(dòng)至關(guān)重要,而內(nèi)皮細(xì)胞在維持血腦屏障完整性方面起著重要作用。在CIRI 發(fā)生期間,小膠質(zhì)細(xì)胞中的NLRP3炎癥小體活化,可促進(jìn)鄰近神經(jīng)元和內(nèi)皮細(xì)胞中的NLRP3 炎癥小體活化,從而釋放促炎因子,破壞血腦屏障的完整性,增加血腦屏障的通透性[19]。此外,炎癥細(xì)胞可促進(jìn)基質(zhì)金屬蛋白酶的釋放,從而進(jìn)一步破壞血腦屏障并加重CIRI 引起的腦水腫[20]。研究表明,緊密連接蛋白與血腦屏障的完整性密切相關(guān),NLRP3 炎癥小體可降低緊密連接蛋白的表達(dá)并增加內(nèi)皮細(xì)胞的通透性,從而破壞血腦屏障的完整性,加重CIRI[21]。因此,抑制NLRP3 炎癥小體活性可改善缺血相關(guān)血腦屏障的滲透性和完整性。
1.2.5 影響血管新生和神經(jīng)發(fā)生
血管新生和神經(jīng)發(fā)生對(duì)大腦功能的恢復(fù)至關(guān)重要,血管新生可為神經(jīng)發(fā)生提供有利條件,兩者相互促進(jìn)以恢復(fù)大腦生理功能[22]。CIRI 可刺激NLRP3 炎癥小體活化,誘導(dǎo)IL-1β和caspase-1 產(chǎn)生,從而引發(fā)炎癥反應(yīng)和細(xì)胞焦亡,進(jìn)而加劇腦損傷并降低半影區(qū)微血管密度和腦血流量,抑制血管新生和神經(jīng)發(fā)生[23]。CIRI 發(fā)生后,海馬CA1 區(qū)中活性氧(reactive oxygen species,ROS)和線粒體過(guò)度積累,從而誘導(dǎo)NLRP3 炎癥小體活化,促進(jìn)裂解的IL-1β和鈣離子接頭蛋白1 表達(dá),并破壞小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞的超微結(jié)構(gòu),進(jìn)而影響神經(jīng)發(fā)生[24]。
2 中藥調(diào)控NLRP3 炎癥小體干預(yù)CIRI
2.1 中藥單體
2.1.1 黃酮類化合物
Zheng 等[25]采用大腦中動(dòng)脈閉塞/再灌注(middle cerebralartery occlusion-reperfusion,MCAO/R)法建立大鼠CIRI 模型,發(fā)現(xiàn)黃芩苷可通過(guò)抑制CIRI 大鼠腦組織中NLRP3 炎癥小體活性,下調(diào)凋亡相關(guān)斑點(diǎn)樣蛋白(apoptosis-associated speck-like protein containing aCARD,ASC)、caspase-1、IL-1β、IL-18 的表達(dá),促進(jìn)缺氧缺血區(qū)神經(jīng)元存活,從而改善CIRI 大鼠的神經(jīng)功能缺損。Guo 等[26]研究發(fā)現(xiàn),紅花黃色素可通過(guò)干預(yù)NLRP3炎癥小體上游激活因子NF-κB 的表達(dá),下調(diào)CIRI 大鼠血清中腫瘤壞死因子α(tumor necrosis factor- α,TNF-α)、IL-1β和IL-6 的表達(dá),并增強(qiáng)大腦皮層中微管相關(guān)蛋白2 的免疫活性,減輕炎癥和鐵蛋白沉積,從而改善CIRI。Yu 等[27]研究發(fā)現(xiàn),刺芒柄花素可通過(guò)抑制Janus激酶2/信號(hào)轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄活化因子3(Janus kinase 2/signal"transducer and activator of transcription 3,JAK2/STAT3)信號(hào)通路來(lái)降低CIRI 大鼠血漿中炎癥因子水平以及腦組織中磷酸化JAK2、磷酸化STAT3、NLRP3 蛋白表達(dá)水平,減輕炎癥反應(yīng)。補(bǔ)娟等[28]研究發(fā)現(xiàn),刺槐素可上調(diào)氧糖剝奪/復(fù)氧(oxygen-glucose deprivation/reoxygenation,OGD/R)誘導(dǎo)的小膠質(zhì)細(xì)胞中微管相關(guān)蛋白1 輕鏈3-Ⅱ和Beclin-1 蛋白的表達(dá),下調(diào)NLRP3、caspase-1和IL-1β蛋白的表達(dá),抑制ROS 的產(chǎn)生,表明刺槐素可通過(guò)下調(diào)ROS 的產(chǎn)生來(lái)抑制NLRP3 炎癥小體活性,減輕神經(jīng)炎癥,從而改善CIRI。
由此可知,黃芩苷、紅花黃色素、刺芒柄花素、刺槐素等黃酮類化合物可抑制NLRP3 炎癥小體活性,降低炎癥因子表達(dá),減輕神經(jīng)炎癥,從而改善CIRI。
2.1.2 皂苷類化合物
Chen 等[29]研究發(fā)現(xiàn),遠(yuǎn)志皂苷F可下調(diào)CIRI 大鼠腦組織中NLRP3、ASC、caspase-1、IL-1β、硫氧還蛋白互作蛋白(thioredoxin-interacting protein,TXNIP)、IL-18 的表達(dá),抑制神經(jīng)元細(xì)胞焦亡,降低ROS水平,表明遠(yuǎn)志皂苷F 可通過(guò)抑制TXNIP/NLRP3 信號(hào)通路來(lái)減輕炎癥反應(yīng)和氧化應(yīng)激,從而改善CIRI。Wang 等[30]研究發(fā)現(xiàn),黃芪甲苷Ⅳ可通過(guò)負(fù)調(diào)控核轉(zhuǎn)錄因子紅系2 相關(guān)因子2(nuclear factor-erythroid 2-related factor 2,Nrf2)/NLRP3/caspase-1/GSDMD信號(hào)通路來(lái)抑制細(xì)胞焦亡,改善CIRI大鼠的神經(jīng)損傷。
由此可知,遠(yuǎn)志皂苷F、黃芪甲苷等皂苷類化合物可通過(guò)抑制NLRP3 炎癥小體活性來(lái)抑制炎癥反應(yīng)和細(xì)胞焦亡,減輕氧化應(yīng)激,從而改善CIRI。
2.1.3 酚類化合物
Luo 等[31]研究發(fā)現(xiàn),6-姜酚可明顯下調(diào)CIRI 大鼠腦組織中NLRP3、IL-1β和IL-18 蛋白的表達(dá),上調(diào)微管相關(guān)蛋白1 輕鏈3-Ⅱ和Beclin-1 蛋白的表達(dá),表明6-姜酚可通過(guò)誘導(dǎo)自噬來(lái)抑制NLRP3 炎癥小體活性,從而減輕CIRI。Ran 等[32]研究發(fā)現(xiàn),姜黃素可顯著降低小膠質(zhì)細(xì)胞中GSDMD、裂解的caspase-1、NLRP3、IL-1β、IL-18蛋白的表達(dá)水平,表明姜黃素可通過(guò)抑制NLRP3 信號(hào)通路來(lái)抑制細(xì)胞焦亡和炎癥反應(yīng),從而減輕CIRI。Xu等[33]研究發(fā)現(xiàn),補(bǔ)骨脂酚可降低CIRI 大鼠腦組織中NLRP3、ASC、IL-1β蛋白的表達(dá)水平,并可降低OGD/R誘導(dǎo)的小膠質(zhì)細(xì)胞中NLRP3 蛋白的表達(dá)水平,表明該成分可通過(guò)抑制NLRP3 炎癥小體活性來(lái)降低小膠質(zhì)細(xì)胞的活化程度,減輕炎癥反應(yīng),從而改善CIRI。El-Sayyad 等[34]研究發(fā)現(xiàn),芝麻酚可下調(diào)CIRI 大鼠腦組織中NF-κB、IL-1β蛋白表達(dá),降低B 細(xì)胞淋巴瘤2/B 細(xì)胞淋巴瘤2 相關(guān)X蛋白比值,下調(diào)NLRP3 的mRNA表達(dá),這表明芝麻酚可通過(guò)抑制炎癥反應(yīng)和細(xì)胞凋亡,從而減輕CIRI 大鼠的神經(jīng)元損傷。Liu 等[35]研究發(fā)現(xiàn),紅景天苷可抑制CIRI 大鼠小膠質(zhì)細(xì)胞中NLRP3 炎癥小體活化,降低小膠質(zhì)細(xì)胞中TNF-α、IL-6 和IL-8 蛋白表達(dá)水平,表明紅景天苷可通過(guò)抑制NLRP3 炎癥小體的激活來(lái)減輕CIRI。Li 等[36]研究發(fā)現(xiàn),連翹酯苷B可顯著升高CIRI大鼠血清中沉默信息調(diào)節(jié)因子1(silent information regulatorfactor 1,SIRT1)、超氧化物歧化酶和谷胱甘肽過(guò)氧化物酶的表達(dá),降低NLRP3 和IL-1β蛋白的表達(dá),減少大鼠缺血側(cè)海馬CA1 區(qū)的細(xì)胞焦亡,表明連翹酯苷B可通過(guò)抑制NLRP3 信號(hào)通路來(lái)發(fā)揮對(duì)CIRI 的神經(jīng)保護(hù)和抗炎、抗氧化作用。Zhang 等[37]研究發(fā)現(xiàn),丹參素鈉可下調(diào)CIRI 大鼠腦組織中IL-1β、IL-18 蛋白表達(dá),抑制NLRP3 炎癥小體激活,表明丹參素鈉可通過(guò)抑制NLRP3 炎癥小體活性而緩解CIRI。
由此可知,6-姜酚、姜黃素、補(bǔ)骨脂酚、芝麻酚、紅景天苷、連翹酯苷B、丹參素鈉等酚類化合物可通過(guò)抑制NLRP3 炎癥小體活性來(lái)減輕炎癥反應(yīng),從而改善CIRI。
2.1.4 萜類化合物
Chu 等[38]研究發(fā)現(xiàn),葫蘆素B可降低CIRI 大鼠腦組織中NLRP3、caspase-1、IL-1β、TNF-α、IL-6 蛋白表達(dá)水平和ROS 水平,表明葫蘆素B 可抑制NLRP3 炎癥小體介導(dǎo)的炎癥反應(yīng)和氧化應(yīng)激,縮小腦梗死體積并減少神經(jīng)元死亡,從而減輕CIRI。Jia 等[39]研究表明,冬凌草素可通過(guò)抑制BV2 小膠質(zhì)細(xì)胞中NLRP3 炎癥小體的激活來(lái)減少促炎因子的釋放,從而減輕CIRI。Dai 等[40]研究發(fā)現(xiàn),D- 香芹酮可降低CIRI 大鼠腦組織中NLRP3、caspase-1、ASC、TLR4 mRNA和蛋白的表達(dá)水平以及丙二醛和乙酰膽堿酯酶水平,升高超氧化物歧化酶水平,表明D-香芹酮可通過(guò)抑制TLR4/NLRP3 信號(hào)通路來(lái)發(fā)揮抗膽堿能、抗氧化應(yīng)激和抗神經(jīng)炎癥的作用,進(jìn)而改善CIRI。He 等[41]研究發(fā)現(xiàn),銀膠菊素可降低CIRI 大鼠腦組織中NLRP3、TLR4、血管內(nèi)皮生長(zhǎng)因子蛋白表達(dá),表明銀膠菊素可通過(guò)抑制TLR4/NLRP3 信號(hào)通路活性,從而緩解CIRI。
由此可知,葫蘆素B、冬凌草素、D-香芹酮、銀膠菊素等萜類化合物可通過(guò)抑制NLRP3 炎癥小體活性來(lái)抑制炎癥反應(yīng)和氧化應(yīng)激,從而減少神經(jīng)元死亡,進(jìn)而改善CIRI。
2.1.5 生物堿類化合物
Zhao等[42]研究發(fā)現(xiàn),千金藤素可明顯下調(diào)CIRI 小鼠腦組織中IL-1β、IL-18 蛋白表達(dá)水平以及花生四烯酸15-脂氧合酶、丙二醛水平,上調(diào)超氧化物歧化酶水平,表明千金藤素可通過(guò)抑制NLRP3 炎癥小體活性來(lái)減輕炎癥反應(yīng)和氧化應(yīng)激,從而改善CIRI。Wang 等[43]研究發(fā)現(xiàn),粉防己堿可下調(diào)CIRI 小鼠腦組織中NLRP3、SIRT1 蛋白表達(dá)水平,表明粉防己堿可通過(guò)抑制NLRP3炎癥小體活性來(lái)減輕小鼠CIRI。Li 等[44]研究發(fā)現(xiàn),荷葉堿可下調(diào)CIRI 大鼠腦組織中NF-κB 的磷酸化水平和NLRP3 蛋白的表達(dá)水平,降低大鼠血清中TNF-α和IL-6等炎癥因子水平,并改善大鼠認(rèn)知和運(yùn)動(dòng)功能障礙,從而減輕CIRI。
由此可知,千金藤素、粉防己堿、荷葉堿等生物堿類化合物可通過(guò)抑制NLRP3 炎癥小體活性來(lái)減輕炎癥反應(yīng)和氧化應(yīng)激,從而改善CIRI。
2.2 中藥復(fù)方及制劑
Ou 等[45]研究發(fā)現(xiàn),黃芪桂枝五物湯可下調(diào)CIRI 大鼠腦組織中NF-κB、NLRP3、ASC、caspase-1 等蛋白的磷酸化水平和丙二醛、谷胱甘肽等氧化應(yīng)激因子的表達(dá)水平,減輕炎癥反應(yīng)和氧化應(yīng)激;還可通過(guò)激活SIRT1/NF-κB/NLRP3 信號(hào)通路來(lái)調(diào)節(jié)小膠質(zhì)細(xì)胞的M2 型極化和突觸可塑性,從而改善CIRI。王月等[46]研究發(fā)現(xiàn),益氣升清方可下調(diào)CIRI 大鼠腦組織中IL-1β、IL-18、低氧誘導(dǎo)因子1α、NLRP3 蛋白表達(dá),表明益氣升清方可通過(guò)抑制低氧誘導(dǎo)因子1α/NLRP3 信號(hào)通路活性來(lái)改善CIRI。Cai 等[47]研究發(fā)現(xiàn),清達(dá)顆??山档虲IRI 大鼠血清和腦組織中TNF-α、IL-1β、IL-6 和單核細(xì)胞趨化蛋白1 的表達(dá)水平,下調(diào)CIRI 大鼠腦組織中TLR4、NLRP3 蛋白的表達(dá),另外還可抑制大鼠體內(nèi)巨噬細(xì)胞浸潤(rùn)和NF-κB核轉(zhuǎn)位,表明清達(dá)顆??赏ㄟ^(guò)抑制TLR4/NF-κB/NLRP3 信號(hào)通路活性來(lái)改善神經(jīng)功能,從而減輕CIRI 損傷。Zhu等[48]研究發(fā)現(xiàn),麝香通心滴丸可下調(diào)CIRI 小鼠腦組織中丙二醛、ROS表達(dá),降低腦微血管內(nèi)皮中TXNIP、NLRP3蛋白表達(dá),表明麝香通心滴丸可抑制TXNIP/NLRP3 信號(hào)通路活性,減輕氧化應(yīng)激和炎癥反應(yīng),改善腦微血管功能障礙,從而減輕CIRI 損傷。劉孟涵等[49]研究發(fā)現(xiàn),清腦滴丸可通過(guò)抑制CIRI 大鼠腦組織中NLRP3 炎癥小體活性來(lái)減輕炎癥反應(yīng),從而改善CIRI。方歡樂(lè)等[50]研究發(fā)現(xiàn),龍生蛭膠囊可下調(diào)CIRI 大鼠腦組織中TLR4mRNA 和蛋白表達(dá)以及NLRP3 蛋白表達(dá),抑制NF-κB蛋白磷酸化,表明龍生蛭膠囊可通過(guò)抑制TLR4/NF-κB/NLRP3 信號(hào)通路來(lái)減輕CIRI損傷。
由此可知,黃芪桂枝五物湯、益氣升清方、清達(dá)顆粒等中藥復(fù)方和制劑可通過(guò)抑制NLRP3 炎癥小體活性來(lái)抑制炎癥反應(yīng),減輕氧化應(yīng)激,改善腦血管障礙,從而改善CIRI。
3 結(jié)語(yǔ)
本文梳理近年來(lái)文獻(xiàn)發(fā)現(xiàn),中藥單體黃酮類(如黃芩苷、紅花黃色素、刺芒柄花素等)、皂苷類(如遠(yuǎn)志皂苷F、黃芪甲苷等)、酚類(如6-姜酚、姜黃素、補(bǔ)骨脂酚等)、萜類(如葫蘆素B、冬凌草素、D-香芹酮等)、生物堿類(如千金藤素、粉防己堿、荷葉堿等)及中藥復(fù)方(如黃芪桂枝五物湯、益氣升清方、清達(dá)顆粒等)可通過(guò)抑制NLRP3 炎癥小體活性來(lái)減輕炎癥反應(yīng)和氧化應(yīng)激,改善神經(jīng)元損傷,進(jìn)而緩解CIRI。
中藥調(diào)控NLRP3 炎癥小體干預(yù)CIRI 具有顯著優(yōu)勢(shì),但目前研究仍有不足。首先,NLRP3 炎癥小體的激活涉及多個(gè)信號(hào)通路,各信號(hào)通路間的相互作用復(fù)雜多樣,難以闡明其具體調(diào)控機(jī)制。其次,目前研究多集中在動(dòng)物實(shí)驗(yàn)或細(xì)胞實(shí)驗(yàn),且尚未進(jìn)行臨床大樣本驗(yàn)證,臨床用藥安全性及有效性仍缺乏證據(jù)支撐。基于以上問(wèn)題,今后應(yīng)開展大規(guī)模臨床試驗(yàn),將理論應(yīng)用于臨床實(shí)踐,從多維度、多層面挖掘中藥治療CIRI 的機(jī)制。
參考文獻(xiàn)
[ 1 ] SAINI V,GUADA L,YAVAGAL D R. Global epidemiology
of stroke and access to acute ischemic stroke interventions[
J]. Neurology,2021,97(20 Suppl. 2):S6-S16.
[ 2 ] MA Q F,LI R,WANG L J,et al. Temporal trend and attributable
risk factors of stroke burden in China,1990-
2019:an analysis for the global burden of disease study
2019[J]. Lancet Public Health,2021,6(12):e897-e906.
[ 3 ] MU Q C,YAO K,SYEDA M Z,et al. Ligustrazine
nanoparticle hitchhiking on neutrophils for enhanced
therapy of cerebral ischemia-reperfusion injury[J]. Adv
Sci,2023,10(19):e2301348.
[ 4 ] JOLUGBO P,ARI?NS R A S. Thrombus composition
and efficacy of thrombolysis and thrombectomy in acute
ischemic stroke[J]. Stroke,2021,52(3):1131-1142.
[ 5 ] ZHANG M,LIU Q,MENG H,et al. Ischemia-reperfusion
injury:molecular mechanisms and therapeutic targets[J].
Signal Transduct Target Ther,2024,9(1):12.
[ 6 ] XU Q X,ZHAO B,YE Y Z,et al. Relevant mediators
involved in and therapies targeting the inflammatory
response induced by activation of the NLRP3 inflammasome
in ischemic stroke[J]. J Neuroinflammation,
2021,18(1):123.
[ 7 ] LüNEMANN J D,MALHOTRA S,SHINOHARA M L,
et al. Targeting inflammasomes to treat neurological diseases[
J]. Ann Neurol,2021,90(2):177-188.
[ 8 ] PANBHARE K,PANDEY R,CHAUHAN C,et al. Role
of NLRP3 inflammasome in stroke pathobiology:current
therapeutic avenues and future perspective[J]. ACS Chem
Neurosci,2024,15(1):31-55.
[ 9 ] CHEN J Q,CHEN Z J. PtdIns4P on dispersed trans-Golgi
network mediates NLRP3 inflammasome activation[J].
Nature,2018,564(7734):71-76.
[10] HE W F,HU Z P,ZHONG Y J,et al. The potential of
NLRP3 inflammasome as a therapeutic target in neurological
diseases[J]. Mol Neurobiol,2023,60(5):2520-2538.
[11] ZHENG Y,XU X D,CHI F L,et al. Pyroptosis:a newly
discovered therapeutic target for ischemia-reperfusion injury[
J]. Biomolecules,2022,12(11):1625.
[12] GONG Z,PAN J R,SHEN Q Y,et al. Mitochondrial dysfunction
induces NLRP3 inflammasome activation during
cerebral ischemia/reperfusion injury[J]. J Neuroinflammation,
2018,15(1):242.
[13] MATA-MARTíNEZ E,DíAZ-MU?OZ M,VáZQUEZCUEVAS
F G. Glial cells and brain diseases:inflammasomes
as relevant pathological entities[J]. Front Cell Neurosci,
2022,16:929529.
[14] JAYARAJ R L,AZIMULLAH S,BEIRAM R,et al. Neuroinflammation:
friend and foe for ischemic stroke[J]. J
Neuroinflammation,2019,16(1):142.
[15] FRANKE M,BIEBER M,KRAFT P,et al. The NLRP3
inflammasome drives inflammation in ischemia/reperfusion
injury after transient middle cerebral artery occlusion
in mice[J]. Brain Behav Immun,2021,92:223-233.
[16] BELLUT M,BIEBER M,KRAFT P,et al. Delayed
NLRP3 inflammasome inhibition ameliorates subacute
stroke progression in mice[J]. J Neuroinflammation,2023,
20(1):4.
[17] LONG Y,LI X Q,DENG J,et al. Modulating the polarization
phenotype of microglia:a valuable strategy for central
nervous system diseases[J]. Ageing Res Rev,2024,
93:102160.
[18] YE Y Z,JIN T,ZHANG X,et al. Meisoindigo protects
against focal cerebral ischemia-reperfusion injury by inhibiting
NLRP3 inflammasome activation and regulating
microglia/macrophage polarization via TLR4/NF- κB signaling
pathway[J]. Front Cell Neurosci,2019,13:553.
[19] PAN J R,PENG J L,LI X P,et al. Transmission of
NLRP3-IL-1β signals in cerebral ischemia and reperfusion
injury:from microglia to adjacent neuron and endothelial
cells via IL-1β/IL-1R1/TRAF6[J]. Mol Neurobiol,
2023,60(5):2749-2766.
[20] YANG Y,ROSENBERG G A. Matrix metalloproteinases
as therapeutic targets for stroke[J]. Brain Res,2015,1623:
30-38.
[21] YANG F,WANG Z Y,WEI X B,et al. NLRP3 deficiency
ameliorates neurovascular damage in experimental ischemic
stroke[J]. J Cereb Blood Flow Metab,2014,34(4):
660-667.
[22] HOFFMANN C J,HARMS U,REX A,et al. Vascular signal
transducer and activator of transcription-3 promotes
angiogenesis and neuroplasticity long-term after stroke[J].
Circulation,2015,131(20):1772-1782.
[23] LI Y P,LIANG W Y,GUO C J,et al. Renshen shouwu
extract enhances neurogenesis and angiogenesis via inhibition
of TLR4/NF-κB/NLRP3 signaling pathway following
ischemic stroke in rats[J]. J Ethnopharmacol,2020,253:
112616.
[24] GUO S H,WANG R M,HU J W,et al. Photobiomodulation
promotes hippocampal CA1 NSC differentiation toward
neurons and facilitates cognitive function recovery
involving NLRP3 inflammasome mitigation following
global cerebral ischemia[J]. Front Cell Neurosci,2021,
15:731855.
[25] ZHENG W X,HE W Q,ZHANG Q R,et al. Baicalin inhibits
NLRP3 inflammasome activity via the AMPK signaling
pathway to alleviate cerebral ischemia-reperfusion
injury[J]. Inflammation,2021,44(5):2091-2105.
[26] GUO H H,ZHU L L,TANG P P,et al. Carthamin yellow
improves cerebral ischemia-reperfusion injury by attenuating
inflammation and ferroptosis in rats[J]. Int J Mol
Med,2021,47(4):52.
[27] YU L,ZHANG Y Y,CHEN Q Q,et al. Formononetin protects
against inflammation associated with cerebral
ischemia-reperfusion injury in rats by targeting the JAK2/
STAT3 signaling pathway[J]. Biomedecine Pharmacother,
2022,149:112836.
[28] 補(bǔ)娟,紀(jì)國(guó)慶,葉勒丹·馬漢,等. 刺槐素通過(guò)自噬調(diào)控
ROS/NLRP3 信號(hào)通路對(duì)腦缺血再灌注損傷發(fā)揮保護(hù)作
用[J]. 中風(fēng)與神經(jīng)疾病雜志,2023,40(2):99-102.
BU J,JI G Q,Yeledan·Mahan,et al. Acacetin protects
against cerebral ischemia-reperfusion injury by regulating
ROS/NLRP3 signaling pathway via autophagy[J]. J Apoplexy
Nerv Dis,2023,40(2):99-102.
[29] CHEN Y,LI H Z,YANG Y,et al. Polygalasaponin F ameliorates
middle cerebral artery occlusion-induced focal
ischemia/reperfusion injury in rats through inhibiting
TXNIP/NLRP3 signaling pathway[J]. J Neuroimmunol,
2024,387:578281.
[30] WANG L L,LIU C W,WANG L L,et al. Astragaloside
Ⅳ mitigates cerebral ischaemia-reperfusion injury via inhibition
of P62/Keap1/Nrf2 pathway-mediated ferroptosis
[J]. Eur J Pharmacol,2023,944:175516.
[31] LUO J,CHEN J L,YANG C H,et al. 6-gingerol protects
against cerebral ischemia/reperfusion injury by inhibiting
NLRP3 inflammasome and apoptosis via TRPV1/FAF1
complex dissociation-mediated autophagy[J]. Int Immunopharmacol,
2021,100:108146.
[32] RAN Y Y,SU W,GAO F H,et al. Curcumin ameliorates
white matter injury after ischemic stroke by inhibiting microglia/
macrophage pyroptosis through NF-κB suppression
and NLRP3 inflammasome inhibition[J]. Oxid Med
Cell Longev,2021,2021:1552127.
[33] XU Y W,GAO X M,WANG L,et al. Bakuchiol ameliorates
cerebral ischemia-reperfusion injury by modulating
NLRP3 inflammasome and Nrf2 signaling[J]. Respir
Physiol Neurobiol,2021,292:103707.
[34] EL-SAYYAD S M,EL-ELLA D M A,HAFEZ M M,et al.
Sesamol defends neuronal damage following cerebral ischemia/
reperfusion:a crosstalk of autophagy and Notch1/
NLRP3 inflammasome signaling[J]. Inflammopharmacology,
2024,32(1):629-642.
[35] LIU J,MA W,ZANG C H,et al. Salidroside inhibits
NLRP3 inflammasome activation and apoptosis in microglia
induced by cerebral ischemia/reperfusion injury by inhibiting
the TLR4/NF-κB signaling pathway[J]. Ann
Transl Med,2021,9(22):1694.
[36] LI Q Y,ZHANG C Y,SUN X,et al. Forsythoside B alleviates
cerebral ischemia-reperfusion injury via inhibiting
NLRP3 inflammasome mediated by SIRT1 activation[J].
PLoS One,2024,19(6):e0305541.
[37] ZHANG X L,YANG Q Y,ZHANG R F,et al. Sodium
danshensu ameliorates cerebral ischemia/reperfusion injury
by inhibiting CLIC4/NLRP3 inflammasome-mediated
endothelial cell pyroptosis[J]. Biofactors,2024,50(1):
74-88.
[38] CHU X L,ZHANG L,ZHOU Y J,et al. Cucurbitacin B
alleviates cerebral ischemia/reperfusion injury by inhibiting
NLRP3 inflammasome-mediated inflammation and
reducing oxidative stress[J]. Biosci Biotechnol Biochem,
2022:zbac065.
[39] JIA Y J,TONG Y,MIN L Q,et al. Protective effects of
oridonin against cerebral ischemia/reperfusion injury by
inhibiting the NLRP3 inflammasome activation[J]. Tissue
Cell,2021,71:101514.
[40] DAI M Y,WU L X,YU K Q,et al. D-Carvone inhibit
cerebral ischemia/reperfusion induced inflammatory response
TLR4/NLRP3 signaling pathway[J]. Biomed Pharmacother,
2020,132:110870.
[41] HE J G,WU H T,ZHOU Y Y,et al. Tomentosin inhibit
cerebral ischemia/reperfusion induced inflammatory response
via TLR4/NLRP3 signalling pathway:in vivo and
in vitro studies[J]. Biomed Pharmacother,2020,131:
110697.
[42] ZHAO J,PIAO X Y,WU Y,et al. Cepharanthine attenuates
cerebral ischemia/reperfusion injury by reducing
NLRP3 inflammasome-induced inflammation and oxidative
stress via inhibiting 12/15-LOX signaling[J]. Biomedecine
Pharmacother,2020,127:110151.
[43] WANG J,GUO M,MA R J,et al. Tetrandrine alleviates
cerebral ischemia/reperfusion injury by suppressing
NLRP3 inflammasome activation via Sirt-1[J]. PeerJ,
2020,8:e9042.
[44] LI J H,DONG S Z,QUAN S L,et al. Nuciferine reduces
inflammation induced by cerebral ischemia-reperfusion injury
through the PI3K/Akt/NF-κB pathway[J]. Phytomedicine,
2024,125:155312.
[45] OU Z J,ZHAO M,XU Y,et al. Huangqi guizhi wuwu decoction
promotes M2 microglia polarization and synaptic
plasticity via Sirt1/NF-κB/NLRP3 pathway in MCAO rats
[J]. Aging,2023,15(19):10031-10056.
[46] 王月,權(quán)興苗,王玉,等. 益氣升清方調(diào)節(jié)HIF-1α/NLRP3
信號(hào)通路對(duì)缺血性腦卒中大鼠神經(jīng)元焦亡的影響[J]. 天
津醫(yī)藥,2024,52(4):350-355.
WANG Y,QUAN X M,WANG Y,et al. Influence of Yiqi
shengqing recipe on neuron pyroptosis in ischemic stroke
rats by regulating HIF-1α/NLRP3 signal pathway[J]. Tianjin
Med J,2024,52(4):350-355.
[47] CAI Q Y,ZHAO C Y,XU Y Y,et al. Qingda granule alleviates
cerebral ischemia/reperfusion injury by inhibiting
TLR4/NF- κB/NLRP3 signaling in microglia[J]. J Ethnopharmacol,
2024,324:117712.
[48] ZHU L,YANG Y M,HUANG Y,et al. Shexiang tongxin
dropping pills protect against ischemic stroke-induced cerebral
microvascular dysfunction via suppressing TXNIP/
NLRP3 signaling pathway[J]. J Ethnopharmacol,2024,
322:117567.
[49] 劉孟涵,吳藝帆,劉云婷,等. 清腦滴丸通過(guò)調(diào)控miR-
223-3p 抑制NLRP3 炎癥小體信號(hào)通路對(duì)急性腦缺血/再
灌注損傷大鼠的抗炎作用機(jī)制[J]. 中國(guó)病理生理雜志,
2023,39(11):1947-1955.
LIU M H,WU Y F,LIU Y T,et al. Anti-inflammatory
mechanism of Qingnao dripping pills in rats with acute cerebral
ischemia-reperfusion injury via miR-223-3pmediated
NLRP3 inflammasome signaling pathway[J].
Chin J Pathophysiol,2023,39(11):1947-1955.
[50] 方歡樂(lè),李曉明,周亞明,等. 龍生蛭膠囊保護(hù)腦缺血再
灌注損傷大鼠的作用及機(jī)制研究[J]. 中國(guó)藥房,2024,35
(7):813-818.
FANG H L,LI X M,ZHOU Y M,et al. Protective effect
and mechanism of Longshengzhi capsules on cerebral
ischemia-reperfusion injury in rats[J]. China Pharm,2024,
35(7):813-818.
(收稿日期:2024-06-25 修回日期:2024-11-04)
(編輯:唐曉蓮)