摘" " 要:【目的】探討生草覆蓋(GC)和稻草覆蓋(RSM)兩種不同覆蓋處理對蘋果園根際土壤理化性質和細菌群落結構的影響。【方法】選取經(jīng)GC和RSM處理的蘋果園根際土壤樣品,分析兩種覆蓋處理下土壤的理化性質、酶活性,采用16S rRNA高通量測序技術分析比較不同覆蓋處理土壤細菌群落的結構和功能,并通過LEfSe分析和隨機森林方法識別核心微生物組和特異性生物標記物,結合RDA冗余分析和Pearson分析探討關鍵微生物組豐度與土壤性質的相關性。【結果】GC處理顯著提高了土壤中的堿解氮含量和脲酶、堿性磷酸酶活性,而RSM處理則顯著提高了土壤含水量和速效鉀含量;兩種覆蓋處理蘋果園根際土壤中細菌的優(yōu)勢菌群類別在門和屬水平上總體相似,在豐富度上RSM高于GC。此外,識別出5個共有核心微生物組(RB41、MND1、Ralstonia等)及5個特異性生物標記物(Ellin6067、Sphingomonas、Nocardioides等),其豐度與土壤理化性質存在較強的相關性,其中堿解氮(AN)和速效鉀(AK)含量是影響細菌群落分布的主要土壤理化因子。【結論】GC和RSM兩種覆蓋模式下蘋果園根際土壤的理化性質存在顯著差異,從而導致細菌群落分布出現(xiàn)差異,RSM處理微生物豐富度高于GC處理,其中AN和AK是主要影響因子。研究結果為西南冷涼高地蘋果園的栽培模式優(yōu)化和土壤質量以及微生物功能提升提供了理論依據(jù)。
關鍵詞:蘋果園;土壤覆蓋;根際土壤;細菌群落;高通量測序
中圖分類號:S661.1 文獻標志碼:A 文章編號:1009-9980(2025)02-0322-14
Analysis of differences in physicochemical properties and bacterial community characteristics of rhizosphere soil in apple orchards under different cover treatments
HU Zhifang1, 3, CHENG Lijun2, 3#, LI Yunguo1, 3, HUANG Guoyan1, CAI Rongjing2, 3, MA Miandi1, MA Jing1, CHEN Chen1, YANG Yanqun1, LU Xingkai1*, QUAN Yong1, 3*
(1Apple Industry Development Center in Zhaotong, Zhaotong 657000, Yunnan, China; 2College of Agronomy and Life Sciences, Zhaotong University, Zhaotong 657000, Yunnan, China; 3Yunnan Provincial Department of Education Zhaotong Apple Industry Green Development Engineering Center, Zhaotong 657000, Yunnan, China)
Abstract: 【Objective】 Cover cropping is a widely adopted soil management technique used in fruit tree cultivation. By planting specific vegetation to cover the ground, this practice significantly influences nutrient cycling, microbial activity, and biodiversity within the soil ecosystem. Thus, cover cropping plays a critical role in maintaining soil health and enhancing fruit quality. This study explored the impact of the grass cover (GC) and rice straw mulch (RSM) on the physicochemical properties of rhizospheric soil and the structure of bacterial communities in apple orchards. 【Methods】 The soil samples were collected from the apple orchards subjected to both GC and RSM treatments. We compared the physicochemical properties of the soils under each treatment, focusing on key indicators such as alkaline nitrogen (AN), soil moisture (SM), available potassium (AK), soil organic matter (OM), effective phosphorus (AP), pH level, soil bulk density (SBD), and soil porosity (SP). Additionally, enzyme activities were measured, specifically for urease (UA) and alkaline phosphatase (APA). The structure and functionality of the bacterial communities were analyzed using the high-throughput sequencing of 16S rRNA. The core microbiomes and specific biomarkers were identified through LEfSe analysis and random forest methods. Moreover, the redundancy analysis (RDA) and Pearson correlation analysis were performed to explore the relationships between the key microbial abundances and soil physicochemical properties. 【Results】 The significant differences were observed in the physicochemical properties of the soil under different treatments. The GC treatment led to an increase in AN levels, while the RSM treatment enhanced SM and AK. However, no significant differences were detected between the two treatments concerning OM, AP, pH, SBD, and SP. Furthermore, the enzyme activities of UA and APA in the soil with GC treatment were significantly higher than those in the soil with RSM treatment (p < 0.05), with increases of 76.81% and 45.24%, respectively. Conversely, there were no significant differences (p > 0.05) in the sucrase activity (SA) and catalase activity (CA) between the two types of mulched soils. This suggested that the distinct mulching treatments would have contrasting effects on the soil enzyme activities, with UA and APA exhibiting greater sensitivity to these treatments. The hierarchical clustering analysis based on unweighted UniFrac distances revealed that inter-group differences among the soil samples from the different treatments were greater than intra-group differences. Following the two treatments, the rhizospheric bacterial communities in the apple orchards comprised 38 phyla, 100 classes, 254 orders, 417 families, and 777 genera. At the phylum level, Proteobacteria was the dominant phylum, accounting for 32.41% in the GC sample and 42.37% in the RSM sample. At the genus level, the dominant taxa in the soil with GC treatment were MND1 (5.41%), RB41 (5.07%), Ralstonia (4.62%), and Raoultella (3.42%). In the soil with RSM treatment, they were MND1 (9.10%), Ralstonia (7.11%), RB41 (2.00%), and Pseudarthrobacter (1.94%). Although the dominant bacterial groups at both the phylum and genus levels were largely similar between the soils treated with GC and RSM, the richness of the rhizospheric bacteria was considerably higher in the RSM sample. Moreover, the alpha diversity indices indicated greater bacterial diversity in the RSM soil, although the difference from the GC sample was not statistically significant. Through LEfSe analysis and random forest methods, we identified five core microbial taxa (RB41, MND1, Ralstonia, Raoultella, and Pseudarthrobacter), as well as five specific biomarkers (Ellin6067, Sphingomonas, Nocardioides, Subgroup 10, and RB41). The RDA and Pearson analyses revealed strong correlations between these microbial abundances and physicochemical soil properties, with AN and AK emerging as the primary factors that would influence the structure of the rhizosphere bacterial communities. 【Conclusion】 In this study, we discovered significant differences in the physicochemical properties of the rhizospheric soils with GC and RSM treatments in apple orchards. These disparities led to substantial variations in the bacterial community structure. Our findings indicated that GC enhanced the soil alkaline nitrogen content and enzymatic activities, while RSM improved the soil moisture and available potassium levels. The dominant bacterial phyla and genera remained broadly similar in the soils treated with the two treatments, but notable differences in relative abundance were observed, with RSM exhibiting higher bacterial richness than GC. There was a close correlation between the soil physicochemical properties and key bacterial abundances, with AN and AK acting as major influencing factors. Specifically, the bacterial community associated with RSM exhibited a significant positive association with AK levels, while that associated with GC correlated positively with AN expression. This research would provide a theoretical basis for optimizing cultivation practices and enhancing soil quality and microbial functionality in apple orchards located in the cool highland regions of Southwestern China.
Key words: Apple orchard; Soil mulching; Rhizosphere soil; Bacterial community; High-throughput sequencing
蘋果是世界上最重要的果樹之一,具有豐富的營養(yǎng)價值和廣泛的市場需求[1]。土壤覆蓋是果樹栽培中常用的土壤管理方式,對果樹生長和果實品質有重要影響[2],不僅可以改變土壤的溫度、濕度、光照、氣體交換等物理特性,還可以提高土壤的有機質含量、養(yǎng)分含量、pH、酶活性等化學屬性[3],從而影響根際土壤微生物的數(shù)量、結構和功能[4]。根際土壤是植物根系和土壤之間的關鍵交互界面,也是土壤微生物活動最頻繁的區(qū)域[5]。這些微生物在維持土壤肥力、促進植物生長、抑制土傳病害、調節(jié)土壤環(huán)境等方面扮演著重要角色[6]。果樹的健康生長、抗逆能力以及果實品質與土壤的理化性質和微生物群落結構密切相關[7]。因此,研究不同土壤覆蓋模式對蘋果根際土壤性質及細菌群落特征的影響,對揭示蘋果根際微生態(tài)過程的機制、優(yōu)化蘋果園管理措施,以及提升蘋果品質和栽培效益具有重要的理論和實踐意義。
目前,在冷涼高地蘋果園中常用的土壤覆蓋方式有生草覆蓋(GC)和稻草覆蓋(RSM)。GC通常被認為能夠提高土壤有機質含量和保水性,通過提升土壤中有機質含量,從而促進那些參與有機物分解和養(yǎng)分循環(huán)的有益微生物生長[8-9]。而RSM由于稻草秸稈分解速率較慢,不僅可以在較長時間內維持土壤結構和保持水分,還可以抑制雜草和減少水分蒸發(fā)[10]。同時由于稻草較高的碳氮比特性使得RSM更有利于適應低氮環(huán)境的微生物生長,從而在根際土壤形成一個與GC截然不同的微生物群落[11]。盡管如此,目前關于這兩種覆蓋模式對蘋果園根際土壤性質及細菌群落特征差異的研究較少,鑒于此,筆者在云南省昭通市昭陽區(qū)一個建園1年的蘋果園中開展田間試驗,對比研究不同覆蓋模式下的蘋果園根際土壤的理化性質、細菌群落組成和功能方面的差異,以期為蘋果園栽培技術的優(yōu)化提供科學依據(jù)。
1 材料和方法
1.1 試驗地概況
試驗地位于昭通市昭陽區(qū)永豐鎮(zhèn)元龍村田源農業(yè)科技有限公司基地,海拔1 946.4 m,全年日照時數(shù)1 782.54 h,年均降水量619.81 mm,年均氣溫12.27 ℃,日平均氣溫≥10 ℃有效積溫1 587.67 ℃,平均無霜期222.45 d?;赜?018年12月開始整地,2019年3月完成苗木定植,樹苗為1年生大苗,采用現(xiàn)代矮砧格架栽培,株行距1.5 m×4.0 m,起壟栽培,自由紡錘形樹形,供試砧穗組合為煙富3號/M9T337。試驗地土壤基礎肥力為有機質含量(w,后同)8.6 g·kg-1、有效磷含量11.6 mg·kg-1、堿解氮含量8 mg·kg-1、速效鉀含量104 mg·kg-1、pH 7.72。
1.2 試驗設計
試驗于2019—2020年進行,2019年4月在基地選取2 hm2地塊,均分,分別進行生草覆蓋(GC)和稻草覆蓋(RSM),每個處理設3個重復。GC處理(圖1-A)于2019年3月定植完成后撒播草種,草種在春季天氣回暖后陸續(xù)長出。RSM處理(圖1-B)于2019年4月下旬完成覆蓋,稻草編織成1.2 m×1 m長寬規(guī)格草席,草席沿樹行覆蓋整個壟面,壟底寬1.3 m,壟頂寬1 m,壟高約30 cm。兩種處理的田間栽培管理措施完全一致。
1.3 土壤樣品采集
于2020年10月25日(秋季施基肥前)進行土壤樣品采集,每個地塊隨機選取3個點,根際土壤采樣方法參考Riley和Barber的抖落法[12],樣品去除雜質后,將同一地塊的3個土樣按四分法混勻后分成兩份。一份存入無菌凍存管后,置于干冰中速凍并送樣,測定土壤細菌群落結構;另一份風干、研磨、過篩后用于測定土壤理化性質和酶活性。
1.4 樣品測定項目及方法
1.4.1 土壤理化指標和酶活性測定 土壤理化指標和酶活性測定由云南三標農林科技有限公司代理完成。參照鮑士旦[13]的方法測定土壤理化指標,包括土壤容重、比重、水分含量、pH及有機質、堿解氮、有效磷、速效鉀含量等。參照關松萌[14]的方法測定土壤蔗糖酶、脲酶、堿性磷酸酶、過氧化氫酶等的活性。
1.4.2 土壤細菌群落結構分析 土壤微生物群落結構的16S rRNA基因V4區(qū)域通過高通量擴增子測序進行分析,由成都羅寧生物科技有限公司代理完成。利用Zymo Research的D4301型試劑盒從土壤樣本中提取基因組DNA,然后通過0.8%的瓊脂糖電泳法驗證DNA的完整性。核酸濃度則通過Tecan F200設備進行測定。樣本中的16S rRNA V4區(qū)域使用Applied Biosystems? PCR System 9700進行PCR擴增,擴增使用具有條形碼的特異性引物515F(5'-GTGYCAGCMGCCGCGGTAA-3')和806R(5'-GGACTACHVGGGTWTCTAAT-3')。為確保可靠性,每個樣本進行3次PCR重復試驗,以獲取足夠的PCR產(chǎn)物,然后通過2%的瓊脂糖凝膠進行電泳檢測;使用Qubit@ 2.0 Fluorometer (Thermo Scientific)定量。構建相應的文庫,并采用PE250測序模式進行高通量測序。利用Barcode技術從原始讀取(raw reads)中分離出各個樣本的序列,并移除Barcode序列。然后通過QIIME軟件進行數(shù)據(jù)質量控制,篩選出高質量的有效數(shù)據(jù)。采用UPARSE算法,并設定97%的同一性閾值,對序列進行操作分類單元(OTU)聚類,選取每個OTU中出現(xiàn)頻次最高的序列作為該OTU的代表序列。最后進行OTU代表序列的功能注釋,以確定他們的分類地位[15]。
1.4.3 數(shù)據(jù)處理 利用軟件Microsoft Excel 2016、Graphpad prism 9和IBM SPSS Statistics 22.0對試驗數(shù)據(jù)進行初步處理、方差分析、Pearson相關性分析等;利用軟件CANOCO 5.0進行冗余分析(redundancy analysis,RDA);在生科云(https://www.bioincloud.tech)和Omicshare平臺(https://www.omicshare.com/tools)分別對土壤細菌數(shù)據(jù)進行韋恩圖分析(Venn diagram)、主成分分析、LEfSe分析和相關性分析。
2 結果與分析
2.1 土壤理化性質
不同覆蓋處理蘋果園土壤的理化性質見圖2。生草覆蓋(GC)處理土壤中堿解氮(AN)含量顯著高于稻草覆蓋(RSM);稻草覆蓋處理土壤含水量(SM)和速效鉀(AK)含量顯著高于生草覆蓋。兩種覆蓋處理對土壤有機質(OM)含量、有效磷(AP)含量、pH、土壤容重(SBD)和土壤孔隙度(SP)均無顯著影響。
2.2 土壤酶活性
土壤酶活性是指土壤中的酶對底物的催化作用,反映了土壤的生物活性和肥力水平[16]。不同覆蓋處理對土壤酶活性的影響見圖3。GC土壤中脲酶(UA)和堿性磷酸酶(APA)活性均顯著高于RSM土壤,分別顯著提高了76.81%和45.24%,而兩種不同覆蓋的土壤中,蔗糖酶(SA)和過氧化氫酶(CA)活性無顯著差異。表明不同覆蓋對土壤酶活性影響存在差異,其中脲酶和堿性磷酸酶表現(xiàn)較為敏感。
2.3 土壤細菌群落組成特征
利用高通量測序技術對RSM處理和GC處理的蘋果園根際土壤樣本中細菌16S rRNA V4區(qū)域進行了分析。在數(shù)據(jù)清洗和質量控制之后,獲得了18 122~34 142條用于研究分析的序列數(shù)據(jù)。通過聚類算法,在6個樣本中識別出13061個操作分類單元(OTUs)(表1),其中,RSM處理的土壤樣本的OTUs范圍為3416~4455,GC處理的土壤樣本的OTUs范圍為2784~4276?;谖醇訖郩niFrac距離的非度量多維尺度分析(NMDS)結果(圖4-A),清晰地區(qū)分了RSM和GC土壤處理下的細菌群落。使用未加權UniFrac距離進行的層次聚類(圖4-B)將兩種處理后土壤樣本的細菌群落分成兩個分支,表明土壤樣本組間差異大于組內差異。
兩種不同覆蓋處理后,蘋果園根際土壤細菌群落主要由38門、100綱、254目、417科和777屬組成。在GC處理的土壤樣本中,占優(yōu)勢地位的菌門包括變形菌門Proteobacteria(32.41%)、奇古菌門Thaumarchaeota(16.95%)、酸桿菌門Acidobacteria(15.55%)、綠彎菌門Chloroflexi(9.46%)、芽單胞菌門Gemmatimonadetes(7.81%)、擬桿菌門Bacteroidetes(4.68%)、放線菌門Actinobacteria(3.11%)及浮霉菌門Planctomycetes(2.70%)(圖5-A)。在屬級別上,GC土壤中的優(yōu)勢菌屬包括MND1(5.41%)、RB41(5.07%)、Ralstonia(4.62%)和Raoultella(3.42%)(圖5-B和5-E)。在RSM處理的土壤樣本中,優(yōu)勢菌門同樣以變形菌門Proteobacteria為主(42.37%),其次是酸桿菌門Acidobacteria(14.38%)、奇古菌門Thaumarchaeota(10.44%)、擬桿菌門Bacteroidetes(7.69%)、放線菌門Actinobacteria(7.26%)、綠彎菌門Chloroflexi(6.80%)、芽單胞菌門Gemmatimonadetes(4.61%)和浮霉菌門Planctomycetes(2.47%)(圖5-A);在屬級別上,RSM土壤的優(yōu)勢菌屬是MND1(9.10%)、Ralstonia(7.11%)、RB41(2.00%)和Pseudarthrobacter(1.94%)(圖5-B、D)。
圖5-C展示了在門水平上細菌群落的系統(tǒng)發(fā)育關系,其中圓形和三角形的大小反映了不同菌群的豐度。圖5-D~E分別展示了RSM和GC處理的土壤中豐度前十的菌屬及其所屬的菌門,結果表明,兩種不同覆蓋模式處理后,蘋果園土壤中細菌的優(yōu)勢菌群類別在門和屬水平上總體相似,但其豐度存在差異。
Alpha多樣性作為評估特定區(qū)域或生態(tài)系統(tǒng)內物種豐富度的指標,通過Chao1豐富度估計量、香農-威納多樣性指數(shù)、辛普森多樣性指數(shù)和Faith’s Phylogenetic Diversity等指標來度量[17]。圖5-F顯示,盡管RSM處理的土壤表現(xiàn)出較高的細菌多樣性,但與GC處理相比,差異并不顯著。
通過OTU分析確定RSM和GC處理土壤的核心微生物組(屬水平)主要包括RB41、MND1、Ralstonia、Raoultella和Pseudarthrobacter。核心微生物組的豐度熱圖(圖5-G)顯示,RSM和GC處理土壤中MND1和RB41的豐度較高。
2.4 土壤細菌群落差異分析
LEfSe (linear discriminant analysis effect size) 分析能夠在分組內進行亞組間的比較,以識別在豐度上組間存在顯著差異的生物標志物[18]。圖6-A顯示了線性判別分析(LDA)得分超過2的前15個生物標志物。圖6-B描述了這些生物標志物按貢獻大小降序排列的情況。圖6-C顯示,當隨機森林分析使用1000棵樹作為參數(shù)設置時,可以達到最低的誤差率(誤差率=0)。通過結合這兩種分析方法,識別出5個能區(qū)別不同覆蓋處理的蘋果園土壤樣本的生物標志物。5個生物標志物(biomarkers)的豐度熱圖顯示(圖6-D),Ellin6067 (Nitrosomonadaceae)、Sphingomonas、Nocardioides、Subgroup 10 (Thermoanaerobaculaceae)在RSM樣本中豐度較高,RB41 (Pyrinomonadaceae)在GC樣本中豐度較高,這一結果與LDA得分值相符。在兩種不同覆蓋模式的土壤樣品中,共有的操作分類單元(OTUs)為2467個,RSM土壤樣品特有OTUs數(shù)量為6053個,GC土壤樣品特有的OTUs為4541個,表明RSM土壤的微生物豐度高于GC(圖6-E),與圖5-F的結果相符。
2.5 土壤微生物群落代謝特征分析
Tax4Fun工具被用于預測兩種覆蓋模式下蘋果園土壤細菌群落的代謝功能。該工具首先利用SILVA數(shù)據(jù)庫對16S rRNA基因測序數(shù)據(jù)執(zhí)行聚類及注釋,隨后應用BLASTN技術構建與KEGG數(shù)據(jù)庫中的原核生物分類的關聯(lián)矩陣;最終通過這些關聯(lián)分析預測微生物群落的功能。分析結果歸類于六大KEGG一級代謝通路,涵蓋環(huán)境信息處理、新陳代謝、細胞過程、遺傳信息處理、人類疾病以及生物體系統(tǒng)等領域(圖7-A),其中新陳代謝通路在所有通路中豐度最高,超過60%。共有37種KEGG二級代謝通路被注釋,對這些通路進行Wilcoxon秩和檢驗以評估不同覆蓋處理下土壤樣本間的豐度差異。圖7-B展示了基于組間差異的分析結果,特別是在新陳代謝通路中,氨基酸代謝(amino acid metabolism,ko00270)和碳水化合物代謝(carbohydrate metabolism,ko00051)在RSM和GC處理的土壤微生物樣本中相對豐度較高,均超過10%。此外,這些樣本在環(huán)境信息處理的信號轉導(signal transduction,ko02020)和膜運輸(membrane transport,ko02010)路徑中的相對豐度也較高,均超過8%。但兩種不同覆蓋處理的蘋果園土壤微生物樣本在注釋的免疫系統(tǒng)(immune system)、傳染?。╥nfectious diseases)、環(huán)境適應(environmental adaptation)的相對豐度呈顯著差異(p<0.05),且RSM處理的樣本中3條代謝通路相關基因的豐度均高于GC處理。
2.6 相關性分析
在兩種不同覆蓋模式的蘋果園土壤中,共發(fā)現(xiàn)3個差異顯著的理化指標和2個差異顯著的酶活性,基于土壤性質與細菌群落的相關性分析,將這些數(shù)據(jù)與9個土壤關鍵細菌群落的相對豐度進行相關性分析,以分析不同覆蓋模式對蘋果園土壤細菌群落組成特征差異的生態(tài)機制。初步通過CANOCO 5軟件進行了DCA(物種-樣本)分析,結果發(fā)現(xiàn)第一軸的梯度長度為1.42(小于4),因此選用RDA模型來篩選和分析數(shù)據(jù)。結果如圖8所示,RDA的前兩個軸解釋了細菌群落84.14%的變異,其中,第一排序軸的解釋變量為55.66%,第二排序軸的解釋變量為28.48%,表明環(huán)境因子在較大程度上可以解釋土壤細菌群落的差異,其中AN(r2 =0.893 0,p=0.047)和AK(r2 =0.858 0,p=0.049)對土壤細菌群落組成具有顯著影響。RSM組的土壤樣品性質與SM和AK呈正相關,與AN、APA和UA呈負相關,而GC組的土壤樣品特性與AN、APA和UA呈正相關,與SM和AK呈負相關。
Pearson相關性分析結果(圖9)與RDA結果相呼應,Nocardioides、MND1、Ellin6067和Subgroup 10豐度與AK和SM含量呈顯著正相關,其中Ellin6067和Subgroup 10豐度還與AN和APA含量呈顯著負相關;Sphingomonas豐度與AK含量呈顯著正相關;RB41豐度與AK和SM含量呈顯著負相關,與AN和APA含量呈顯著正相關。
3 討 論
筆者探討了GC和RSM處理對蘋果園根際土壤理化性質和細菌群落結構的影響。GC處理顯著提高了土壤中的AN含量和UA、APA活性,而RSM處理則顯著提高了SM和AK含量。兩種覆蓋方式下土壤細菌的優(yōu)勢菌群在分類學上相似,RSM處理下的微生物相對豐度高于GC處理。這一結論再次證實不同覆蓋方式會影響土壤理化性質,從而間接調控根際細菌群落的結構和功能。
3.1 不同覆蓋處理影響蘋果園根際土壤的理化性質
RSM處理顯著提高了土壤中SM和AK含量。由于稻草覆蓋后隔斷了土壤表面與大氣間直接的水分聯(lián)系,抑制了土壤中水分的蒸發(fā),因此提高了土壤含水量[19]。同時水稻秸稈中K含量較高,一般在1.5%~2.5%之間,而且其鉀素主要以交換態(tài)和水溶態(tài)存在,通過秸稈還田可以增加根際土壤的鉀素含量和供應量,從而提高植物的鉀素含量和鉀素利用效率[20]。GC處理的土壤AN含量及UA、APA酶活性較高,該研究結果與Li等 [21]的報道一致。果園生草后,一方面草本植物的根系可以增加土壤有機質的輸入,優(yōu)化土壤的團粒結構和增強其通透性,提高土壤微生物的活性和土壤中酶活性(如脲酶可以催化脲分解為氨和二氧化碳),從而提高土壤堿解氮的含量[22];另一方面草本植物根際固氮菌還可以與蘋果樹形成共生固氮的關系,利用空氣中的氮氣,為土壤提供氮源[23]。
3.2 不同覆蓋處理影響土壤細菌群落的組成和豐度
由于土壤細菌群落對土壤環(huán)境因素敏感,覆蓋作物可能通過改變土壤的理化性質來影響土壤細菌群落[24]。研究發(fā)現(xiàn)兩種覆蓋處理后,蘋果園根際土壤中細菌的優(yōu)勢菌群類別在門和屬水平上總體相似,細菌群落多樣性差異不顯著,但相對豐度存在顯著差異,該結果與Xie等[25]的研究一致。兩種不同覆蓋處理的土壤核心微生物組(屬水平)為RB41、MND1、Ralstonia、Raoultella、Pseudarthrobacter。LEfSe分析RSM和GC處理土壤細菌在豐度上有顯著差異的生物標志物有RB41、Ellin6067、Sphingomonas、Nocardioides、Subgroup 10。不同覆蓋物對土壤細菌的篩選作用也可能與土壤細菌的適應性、競爭力、協(xié)同性等因素有關[26]。RSM覆蓋土壤中Sphingomonas相對豐度較高可能是稻草攜帶所致,Sphingomonas可作為水稻的內生菌,提高水稻抗病性,通過分泌胞外信號小分子干擾病原菌的毒力因子生物合成通路[27]。同時,水稻秸稈覆蓋后土壤與空氣之間的通透性變弱,有利于厭氧細菌的生長,可能導致Subgroup 10的相對豐度提高,因為Subgroup 10是一種利用纖維素和木質素等多糖作為碳源的厭氧細菌[28]。
不同覆蓋影響土壤根際細菌的組成和豐度[29],導致土壤細菌的代謝功能產(chǎn)生差異[30]。RSM處理的土壤細菌群落在免疫系統(tǒng)、傳染病、環(huán)境適應等方面的功能基因豐度增加,可能是由于土壤中MND1和Raoultella的相對豐度較高。MND1和Raoultella可以分泌抗生素,抑制一些病原菌的生長,增強植物的抗病性,以及土壤細菌的抵抗力和適應性[31]。
3.3 不同覆蓋處理土壤細菌群落與土壤理化性質的相關性
土壤理化性質與土壤微生物群落結構和植物生長密切相關[24]。在本研究中,AN和AK含量是影響不同覆蓋處理土壤細菌群落結構的主要環(huán)境因子,RSM處理的土壤細菌群落與土壤AK含量呈顯著正相關,GC處理的土壤細菌群落與AN含量呈顯著正相關,這可能與不同處理土壤細菌群落中優(yōu)勢菌屬的特性有關。GC處理的土壤樣品中RB41相對豐度較高,RB41是一種常見的、豐富的土壤細菌,能夠利用土壤中的碳源和營養(yǎng)物質,參與土壤碳循環(huán),與布拉氏菌和鏈霉菌一起占了土壤中一半以上的碳利用量[32],RB41豐度與脲酶活性呈正相關,可能通過影響土壤碳循環(huán),從而間接提高土壤堿解氮的含量[33]。RSM處理的土壤樣品中MND1和Ellin6067的相對豐度較高,MND1可以利用水稻秸稈中的纖維素作為碳源進行發(fā)酵[34],而Ellin6067作為氨氧化細菌可以將氨氮轉化為亞硝酸鹽,參與土壤氮循環(huán),從而降低土壤堿解氮的含量[35]。因此,推測不同覆蓋處理后細菌群落的組成影響了土壤中AN的含量。
4 結 論
不同覆蓋處理對蘋果園根際土壤的理化性質和酶活性具有顯著影響,從而改變了土壤細菌群落的組成和功能。本研究結果表明,RSM處理土壤的SM和AK含量較高,而GC處理的土壤AN含量和UA、APA活性較高。RSM與GC處理的蘋果園土壤中根際細菌的優(yōu)勢菌群類別在門和屬水平上總體相似,但RSM處理的細菌豐度高于GC處理。RSM處理的土壤細菌群落與AK含量呈顯著正相關,GC處理的土壤細菌群落與AN含量呈顯著正相關。因此,在西南冷涼高地蘋果栽培過程中,可以根據(jù)土壤基礎肥力狀況合理選擇覆蓋方式,以調節(jié)根際土壤的理化性質和細菌群落結構,促進土壤健康和果樹生長。
參考文獻References:
[1] OH S,AHN S,HAN H,KIM K,KIM S A,KIM D. Genetic linkage maps and QTLs associated with fruit skin color and acidity in apple (Malus × domestica)[J]. Horticulture,Environment,and Biotechnology,2023,64(2):299-310.
[2] 尹曉寧,劉興祿,董鐵,牛軍強,孫文泰,馬明. 蘋果園不同覆蓋材料對土壤與近地微域環(huán)境及樹體生長發(fā)育的影響[J]. 中國生態(tài)農業(yè)學報,2018,26(1):83-95.
YIN Xiaoning,LIU Xinglu,DONG Tie,NIU Junqiang,SUN Wentai,MA Ming. Effects of different mulching materials on soil and near-surface environment and of apple orchard tree growth[J]. Chinese Journal of Eco-Agriculture,2018,26(1):83-95.
[3] XIANG Y Z,CHANG S X,SHEN Y Y,CHEN G,LIU Y,YAO B,XUE J M,LI Y. Grass cover increases soil microbial abundance and diversity and extracellular enzyme activities in orchards:A synthesis across China[J]. Applied Soil Ecology,2023,182:104720.
[4] 劉子涵,黃方園,黎景來,張鵬,楊寶平,丁瑞霞,聶俊峰,賈志寬. 覆蓋模式對旱作農田土壤微生物多樣性及群落結構的影響[J]. 生態(tài)學報,2021,41(7):2750-2760.
LIU Zihan,HUANG Fangyuan,LI Jinglai,ZHANG Peng,YANG Baoping,DING Ruixia,NIE Junfeng,JIA Zhikuan. Effects of farmland mulching patterns on soil microbial diversity and community structure in dryland[J]. Acta Ecologica Sinica,2021,41(7):2750-2760.
[5] JR MCNEAR D H. The rhizosphere-roots,soil and everything in between[J]. Nature Education Knowledge,2013,4(3):1.
[6] WEI Z Y,ZENG Q C,TAN W F. Cover cropping impacts soil microbial communities and functions in mango orchards[J]. Agriculture,2021,11(4):343.
[7] LIU S P,WANG L X,CHANG L,KHAN I,NADEEM F,REHMAN A,SUO R. Evaluating the influence of straw mulching and intercropping on nitrogen uptake,crop growth,and yield performance in maize and soybean[J]. Frontiers in Plant Science,2023,14:1280382.
[8] 付學琴,陳登云,楊星鵬,甘燕云,黃文新. ‘南豐蜜橘’園生草對土壤團聚體養(yǎng)分和微生物特性及果實品質的影響[J]. 果樹學報,2020,37(11):1655-1666.
FU Xueqin,CHEN Dengyun,YANG Xingpeng,GAN Yanyun,HUANG Wenxin. Effects of grass cover in ‘Nanfeng’ tangerine orchard on nutrients and microbial characteristics in soil aggregates and fruit quality[J]. Journal of Fruit Science,2020,37(11):1655-1666.
[9] 王祖梅,楊茂進,楊雨珂,李曉非,黃炎和,林金石,蔣芳市,張越. 長期實施梯田和生草措施對紅壤坡地果園土壤養(yǎng)分的影響[J]. 土壤通報,2024,55(2):412-419.
WANG Zumei,YANG Maojin,YANG Yuke,LI Xiaofei,HUANG Yanhe,LIN Jinshi,JIANG Fangshi,ZHANG Yue. Effects of terrace and grass growing measures on soil nutrients of slope orchards in red soil hilly region[J]. Chinese Journal of Soil Science,2024,55(2):412-419.
[10] LI X S,QU C Y,LI Y N,LIANG Z Y,TIAN X H,SHI J L,NING P,WEI G H. Long-term effects of straw mulching coupled with N application on soil organic carbon sequestration and soil aggregation in a winter wheat monoculture system[J]. Agronomy Journal,2021,113(2):2118-2131.
[11] ZHU F N,LIN X X,GUAN S,DOU S. Deep incorporation of corn straw benefits soil organic carbon and microbial community composition in a black soil of Northeast China[J]. Soil Use and Management,2022,38(2):1266-1279.
[12] 戴雅婷,閆志堅,解繼紅,吳洪新,徐林波,侯向陽,高麗,崔艷偉. 基于高通量測序的兩種植被恢復類型根際土壤細菌多樣性研究[J]. 土壤學報,2017,54(3):735-748.
DAI Yating,YAN Zhijian,XIE Jihong,WU Hongxin,XU Linbo,HOU Xiangyang,GAO Li,CUI Yanwei. Soil bacteria diversity in rhizosphere under two types of vegetation restoration based on high throughput sequencing[J]. Acta Pedologica Sinica,2017,54(3):735-748.
[13] 鮑士旦. 土壤農化分析[M]. 3 版. 北京:中國農業(yè)出版社,2000.
BAO Shidan. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing:China Agriculture Press,2000.
[14] 關松蔭. 土壤酶及其研究法[M]. 北京:農業(yè)出版社,1986.
GUAN Songyin. Soil enzymes and their research methods[M]. Beijing:China Agriculture Press, 1986.
[15] 方遠鵬,王娜,白羽祥,王戈,徐照麗,鄧小鵬,杜宇,周鵬. 長期不同種植制度下植煙土壤細菌群落特征差異分析[J]. 中國農業(yè)大學學報,2023,28(7):20-34.
FANG Yuanpeng,WANG Na,BAI Yuxiang,WANG Ge,XU Zhaoli,DENG Xiaopeng,DU Yu,ZHOU Peng. Differences of soil bacterial community characteristics in tobacco field under different long-term cropping systems[J]. Journal of China Agricultural University,2023,28(7):20-34.
[16] 田玉莉,吳小蘋,陳欣佛,郭亞茹,李澤林,倪新華,張嘉濤,李會科. 黃土高原果園不同覆蓋模式對土壤酶活性的影響[J]. 草地學報,2022,30(10):2581-2589.
TIAN Yuli,WU Xiaoping,CHEN Xinfo,GUO Yaru,LI Zelin,NI Xinhua,ZHANG Jiatao,LI Huike. Effect of diversity mulching model on soil enzyme activities in the Loess Plateau orchard[J]. Acta Agrestia Sinica,2022,30(10):2581-2589.
[17] LANGILLE M G I,ZANEVELD J,CAPORASO J G,MCDONALD D,KNIGHTS D,REYES J A,CLEMENTE J C,BURKEPILE D E,VEGA THURBER R L,KNIGHT R,BEIKO R G,HUTTENHOWER C. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology,2013,31(9):814-821.
[18] 孫曉,林余霖,李葆莉,黃林芳. 干旱區(qū)沙生藥用植物鎖陽土壤微生物群落分析與功能預測[J]. 藥學學報,2020,55(6):1334-1344.
SUN Xiao,LIN Yulin,LI Baoli,HUANG Linfang. Analysis and function prediction of soil microbial communities of Cynomorium songaricum in two daodi-origins[J]. Acta Pharmaceutica Sinica,2020,55(6):1334-1344.
[19] ZHANG J X,DU L L,XING Z S,ZHANG R,LI F Q,ZHONG T,REN F F,YIN M,DING L,LIU X R. Effects of dual mulching with wheat straw and plastic film under three irrigation regimes on soil nutrients and growth of edible sunflower[J]. Agricultural Water Management,2023,288:108453.
[20] LI J F,LU J W,LI X K,REN T,CONG R H,ZHOU L. Dynamics of potassium release and adsorption on rice straw residue[J]. PLoS One,2014,9(2):e90440.
[21] LI T F,WANG Y Y,KAMRAN M,CHEN X Y,TAN H,LONG M X. Effects of grass inter-planting on soil nutrients,enzyme activity,and bacterial community diversity in an apple orchard[J]. Frontiers in Plant Science,2022,13:901143.
[22] FENG Z W,PAN C X,QIN Y Q,XIE X L,LIU X D,CHEN M,ZHANG W,ZHU H H,YAO Q. Natural grass coverage enriches arbuscular mycorrhizal fungal communities in subtropical citrus orchards through the regulation of Glomus on a regional scale[J]. Applied Soil Ecology,2024,195:105211.
[23] ABD-ALLA M H,AL-AMRI S M,EL-ENANY A W E. Enhancing Rhizobium–legume symbiosis and reducing nitrogen fertilizer use are potential options for mitigating climate change[J]. Agriculture,2023,13(11):2092.
[24] 孫文泰,楊陽,馬明,董鐵,尹曉寧,牛軍強. 覆膜對隴東旱地蘋果根際土壤化感物質積累與真菌群落特征的影響[J]. 果樹學報,2024,41(7):1342-1358.
SUN Wentai,YANG Yang,MA Ming,DONG Tie,YIN Xiao-ning,NIU Junqiang. Effects of film mulching on allelopathic material accumulation and fungal community characteristics in rhizosphere soil of apple in Longdong dryland[J]. Journal of Fruit Science,2024,41(7):1342-1358.
[25] XIE B,CHEN Y H,CHENG C G,MA R P,ZHAO D Y,LI Z,LI Y Q,AN X H,YANG X Z. Long-term soil management practices influence the rhizosphere microbial community structure and bacterial function of hilly apple orchard soil[J]. Applied Soil Ecology,2022,180:104627.
[26] ZHANG S N,WANG Y,SUN L T,QIU C,DING Y Q,GU H L,WANG L J,WANG Z S,DING Z T. Organic mulching positively regulates the soil microbial communities and ecosystem functions in tea plantation[J]. BMC Microbiology,2020,20(1):103.
[27] MATSUMOTO H,F(xiàn)AN X Y,WANG Y,KUSSTATSCHER P,DUAN J,WU S L,CHEN S L,QIAO K,WANG Y L,MA B,ZHU G N,HASHIDOKO Y,BERG G,CERNAVA T,WANG M C. Bacterial seed endophyte shapes disease resistance in rice[J]. Nature Plants,2021,7(1):60-72.
[28] 張思瑩,陳彥,劉志華,趙志敏. 生物煉制過程中木質素高值轉化研究進展[J]. 生物工程學報,2021,37(9):3108-3128.
ZHANG Siying,CHEN Yan,LIU Zhihua,ZHAO Zhimin. Advances in lignin valorization from a biorefinery concept[J]. Chinese Journal of Biotechnology,2021,37(9):3108-3128.
[29] CALDERóN F J,NIELSEN D,ACOSTA-MARTíNEZ V,VIGIL M F,LYON D. Cover crop and irrigation effects on soil microbial communities and enzymes in semiarid agroecosystems of the central great plains of North America[J]. Pedosphere,2016,26(2):192-205.
[30] 姜小鳳,郭鳳霞,陳垣,郭建國,劉曉峰. 種植模式對當歸根際細菌群落多樣性及代謝通路的影響[J]. 應用生態(tài)學報,2021,32(12):4254-4262.
JIANG Xiaofeng,GUO Fengxia,CHEN Yuan,GUO Jianguo,LIU Xiaofeng. Effect of cropping patterns onbacterial community diversity and metabolic function in rhizosphere soil of Angelica sinensis[J]. Chinese Journal of Applied Ecology,2021,32(12):4254-4262.
[31] YUAN J,ZHAO J,WEN T,ZHAO M L,LI R,GOOSSENS P,HUANG Q W,BAI Y,VIVANCO J M,KOWALCHUK G A,BERENDSEN R L,SHEN Q R. Root exudates drive the soil-borne legacy of aboveground pathogen infection[J]. Microbiome,2018,6(1):156.
[32] STONE B W,LI J H,KOCH B J,BLAZEWICZ S J,DIJKSTRA P,HAYER M,HOFMOCKEL K S,LIU X J A,MAU R L,MORRISSEY E M,PETT-RIDGE J,SCHWARTZ E,HUNGATE B A. Nutrients cause consolidation of soil carbon flux to small proportion of bacterial community[J]. Nature Communications,2021,12(1):3381.
[33] 劉威,陳小龍,趙園園,王德勛,謝天琪,呂建國,金東峰,史宏志. 有機肥施用對植煙土壤氮素礦化及土壤酶和微生物群落的影響[J]. 土壤,2023,55(5):1025-1034.
LIU Wei,CHEN Xiaolong,ZHAO Yuanyuan,WANG Dexun,XIE Tianqi,Lü Jianguo,JIN Dongfeng,SHI Hongzhi. Effects of organic fertilizers on nitrogen mineralization,soil enzyme activities and microbial communities in tobacco-planting soil[J]. Soils,2023,55(5):1025-1034.
[34] ZHU G B,WANG X M,WANG S Y,YU L B,ARMANBEK G,YU J,JIANG L P,YUAN D D,GUO Z R,ZHANG H R,ZHENG L,SCHWARK L,JETTEN M S M,YADAV A K,ZHU Y G. Towards a more labor-saving way in microbial ammonium oxidation:A review on complete ammonia oxidization (comammox)[J]. Science of the Total Environment,2022,829:154590.
[35] 劉蘭,明語真,呂愛萍,焦建宇,李文均. 厭氧氨氧化細菌的研究進展[J]. 微生物學報,2021,61(4):969-986.
LIU Lan,MING Yuzhen,Lü Aiping,JIAO Jianyu,LI Wenjun. Recent advance on the anaerobic ammonium oxidation bacteria[J]. Acta Microbiologica Sinica,2021,61(4):969-986.
收稿日期:2024-10-09 接受日期:2024-11-10
基金項目:云南省科技廳“云南省昭陽區(qū)蘋果產(chǎn)業(yè)科技特派團”(NO.202104BI090028);云南省教育廳昭通蘋果產(chǎn)業(yè)綠色發(fā)展工程研究中心建設項目(云教發(fā)﹝2024〕5號)
作者簡介:胡志芳,女,高級農藝師,研究方向為果樹生態(tài)栽培技術。E-mail:609526074@qq.com。#為共同第一作者。
*通信作者Author for correspondence. E-mail:857095036@qq.com;E-mail:563197296@qq.com