国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

李PsNAC基因家族鑒定及其在空腔褐變果實中的表達(dá)模式分析

2025-03-03 00:00:00鄧紅紅彭超梁茜張子揚劉俊偉李斌奇魏鳴康王雪穎李劉敏陳發(fā)興
果樹學(xué)報 2025年1期

摘 " "要:【目的】NAC轉(zhuǎn)錄因子廣泛參與植物生長發(fā)育和應(yīng)對逆境脅迫過程,被認(rèn)為是植物次生細(xì)胞壁生物合成轉(zhuǎn)錄調(diào)控的一級開關(guān)。鑒定李PsNAC轉(zhuǎn)錄因子家族,探索其與皇冠李果實空腔褐變的關(guān)系?!痉椒ā坎捎蒙镄畔W(xué)方法,分析李PsNAC家族成員、理化性質(zhì)、系統(tǒng)發(fā)育和基因結(jié)構(gòu)等,并通過qRT-PCR技術(shù),分析PsNACs在空腔褐變皇冠李果實中的表達(dá)模式?!窘Y(jié)果】李PsNACs包含115個成員,不均勻地分布在8條染色體上,可分為17個亞族,與植物次生細(xì)胞壁合成相關(guān)的OsNAC003和OsNAC7亞族分別含6和10個PsNACs。PsNACs啟動子區(qū)域含有豐富的激素響應(yīng)元件和MYB結(jié)合位點。10個PsNACs在皇冠李空腔褐變果實中的表達(dá)量均高于非空腔褐變果實?!窘Y(jié)論】本結(jié)果為研究PsNAC家族成員與皇冠李果實空腔褐變的具體關(guān)聯(lián)性奠定了重要基礎(chǔ)。

關(guān)鍵詞:皇冠李;NAC轉(zhuǎn)錄因子;基因家族;空腔褐變;基因表達(dá)量

中圖分類號:S662.3 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2025)01-0048-15

Identification of plum PsNAC gene family and its expression patterns in development of fruit hollowness and browning

DENG Honghong, PENG Chao#, LIANG Xi, ZHANG Ziyang, LIU Junwei, LI Binqi, WEI Mingkang, WANG Xueying, LI Liumin, CHEN Faxing*

(College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China)

Abstract: 【Objective】 The NAC transcription factor family is one of the plant-specific transcription factor families and plays a pivotal role in plant growth and development and responses to biotic and abiotic stresses. Huangguan plum is a newly developed high-quality plum variety bred by our team specifically suited for cultivation in Fujian Province, China. Its fruit has the advantages of excellent taste, pleasant flavor, and rich nutrient profile. However, in our previous long-term observations, Huangguan plum has been found to be prone to fruit hollowness and browning (HB), characterized by rough and crystalline fruit pulp surfaces undergoing lignification and browning. We found that lignin biosynthesis and accumulation is one of the predominant biochemical responses to HB. The NAC transcription factor is recognized as the primary regulator in the transcriptional control of plant secondary wall synthesis. This study aims to characterize the PsNAC gene family members in plum and investigate their association with fruit HB in Huangguan plum. 【Methods】 The molecular weight, theoretical isoelectric point, and other physicochemical properties were predicted by the online tool ExPASy. The subcellular localization of PsNACs was predicted by the online software WoLF PSORT. The MEGA 11 software was used to construct a phylogenetic tree. The online tool Simple MEME Wrapper was used to analyze the motifs. The conserved motifs and gene structure maps were drawn by Tbtools. To analyze the cis-acting elements in the promoter region of PsNACs, the upstream 2000 bp promoter sequences were extracted from the genomic sequences and submitted to the Plant TBDB website for the identification of cis-elements in the promoter region. The analysis results were organized and displayed using Simple BioSequence Viewer. The expression of ten PsNACs in Huangguan fruit with and without HB was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). 【Results】 There are 115 PsNAC members identified in Prunus salicina Lindl., with protein sequences ranging from 182 to 861 amino acids, molecular weights from 20.98 to 95.97 ku, theoretical isoelectric points from 4.43 to 9.55, and the instability index from 27.84 (PsNAC60) to 61.36 (PsNAC087). The grand average of hydropathy values of PsNAC gene family members were negative, indicating that these proteins are hydrophilic in nature. Transmembrane structure analysis revealed that 94% of PsNAC gene family members do not possess a transmembrane domain. The subcellular localization prediction results showed that 91 PsNAC gene family members were located in the nucleus, and the rest were distributed in structures such as the cytoplasm, Golgi apparatus, peroxisome, cytoskeleton, mitochondria, chloroplasts, plasma membrane, and vacuole. Chromosomal localization analysis revealed uneven distribution across the plum’s eight chromosomes, with chromosomes 2 and 3 harboring the highest number counts (17.4%), followed by chromosome 5 (15.2%), and the fewest on chromosomes 6 and 7 (10 PsNACs each). Phylogenetic tree analysis between Arabidopsis thaliana and P. salicina Lindl. classified PsNAC genes into 17 subfamilies, with 6 and 10 members clustered in OsNAC003, and OsNAC7, respectively, which are associated with plant secondary wall biosynthesis. The number of coding sequence segments in PsNACs ranged from 1 to 8, with most containing 3 to 6 segments. Analysis of gene annotation files identified a total of 10 conserved motifs among PsNACs, with varying positions and frequencies. Motif 1, motif 2, motif 3, and motif 6 were found in the majority of PsNACs, typically located towards the N-terminus of the sequences. PsNAC members within the same subfamily exhibited similar motif distributions and gene structure characteristics including the CDS and UTR regions, suggesting potential functional similarity. Analysis of the 2000 bp upstream sequences from the transcription start site of PsNACs identified a total of 3069 cis-elements. The most significant core elements included phytohormone-responsive elements, MYB binding sites, low temperature responsiveness, drought-inducible elements, and light-responsive elements. Intraspecific synteny analysis revealed that the PsNAC gene family contained 13 pairs of duplicated genes within the plum genome. The relative expression levels of PsNAC26, PsNAC57, PsNAC77, and PsNAC95 were highest at the fruit expansion period and gradually decreased as fruit development progressed. Conversely, PsNAC54 and PsNAC74 exhibited their lowest expression levels at the fruit expansion period, and increased gradually with fruit development and ripening. The expression levels of PsNAC26, PsNAC57, PsNAC77, PsNAC95, PsNAC54, and PsNAC74 were higher in Huangguan fruit showing hollowness and browning compared to those without. 【Conclusion】 This study represents the first comprehensive analysis of the PsNAC gene family in plum, identifying and characterizing 115 members of the PsNAC gene family. We explored their physical and chemical properties, gene structures, chromosome locations, phylogenetic relationships, and subcellular localization characteristics. Furthermore, using qRT-PCR technology, we investigated the gene expression patterns of PsNAC gene family members in Huangguan fruit exhibiting HB and non-HB across various developmental stages. The findings of this study will serve as a crucial foundation for further exploration into the biological functions of PsNAC gene family and the molecular mechanism by which PsNAC gene family members regulate fruit HB in Huangguan plum.

Key words: Huangguan plum; NAC transcription factor; Gene family; Fruit hollowness and browning; Gene expression

轉(zhuǎn)錄因子是植物生長發(fā)育和外部(非)生物脅迫響應(yīng)的主要調(diào)控因子[1]。目前已知植物中存在的轉(zhuǎn)錄因子有58種,其中,NAC轉(zhuǎn)錄因子是超大轉(zhuǎn)錄因子家族之一,是植物特有的基因家族[2]。NAC這一命名源自矮牽牛(Petunia hybrida)的NAM(no apical meristem)基因、擬南芥(Arabipopsis thaliana)的ATAF1/ATAF2(actiation factor 1/2)基因和CUC2(cup-shaped cotyledon 2)基因的首字母[3]。NAC蛋白的N末端區(qū)域含有約150個高度保守氨基酸的NAC結(jié)構(gòu)域,負(fù)責(zé)DNA結(jié)合和二聚體形成,可分為A~E 5個亞結(jié)構(gòu),其中A、C和D高度保守,B和E較為多變。NAC蛋白的C端由一些簡單氨基酸重復(fù)序列構(gòu)成高度可變的調(diào)控區(qū)域(transcription regulation region,TRR),具有蛋白結(jié)合活性,能夠轉(zhuǎn)錄激活或者抑制[4]。

植物基因組中NAC轉(zhuǎn)錄因子成員眾多,目前已在多種植物鑒定出這一家族成員,包括模式植物擬南芥(Arabidopsis thaliana,117個)[5]和毛果楊(Populus trichocarpa,170個)[6]、作物水稻(Oryza sativa,151)[5]、玉米(Zea mays,148個)[7]和大豆(Glycine max,152個)[8]、蔬菜作物番茄(Solanum lycopersicum,93個)[9]、辣椒(Capsicum annuum,104個)[10]、大白菜(Brassica rapa L. ssp. pekinensis,188個)[11]和果樹作物蘋果(Malus domestica,180個)[12]、梨(Pyrus bretschneideri,185)[13]、火龍果(Hylocereus undatus,64個)[14]、菠蘿(Ananas comosus,73個)[15]、歐李(Cerasus humilis,76個)[16]。

研究表明,NAC轉(zhuǎn)錄因子廣泛參與植物多種生命代謝活動,包括在植物調(diào)控生長發(fā)育、響應(yīng)逆境脅迫[17-20]、花器官形成[21]、器官邊界和植物形態(tài)建成[22-23]、次生細(xì)胞壁形成與增厚[24-25]、芽和根尖分生組織形成[1,26]、側(cè)根發(fā)育[20,27]、纖維發(fā)育[24]、植株衰老調(diào)節(jié)[28]、果實生長發(fā)育[29]、果實風(fēng)味形成[30-31]、果實成熟[1,32]等方面發(fā)揮著重要作用。

皇冠李(Prunus salicina Lindl. var. cordata ‘Huangguan’)是筆者團(tuán)隊選育的一種適宜福建地區(qū)栽培的優(yōu)質(zhì)柰李新品種。該品種于2018年12月通過福建省林木良種審定,編號為閩S-SV-PS-2018?;使诶畹墓麑嵆术r亮的黃色,口味鮮甜,風(fēng)味濃郁,成熟期在5月底至6月初,是早熟柰李的優(yōu)新品種。然而,皇冠李是屬于典型的柰李類,存在的突出問題是果實內(nèi)部的核頂端常與果肉分離,形成蛀孔狀(似蟲蛀而非蟲蛀)的空腔(hollowness,or cavity)。筆者課題組前期的長期觀察發(fā)現(xiàn),這種現(xiàn)象使得空腔周圍的果肉表面變得粗糙呈結(jié)晶狀,同時出現(xiàn)木質(zhì)化(lignification)褐變(化)(browning),降低了果實內(nèi)在品質(zhì)與商品價值。這種空腔褐變特征,可能會讓消費者誤認(rèn)為是爛果,從而對產(chǎn)業(yè)造成嚴(yán)重的經(jīng)濟(jì)損失。

果肉組織的木質(zhì)化過程是木質(zhì)素積累的結(jié)果,受到木質(zhì)素生物合成和轉(zhuǎn)錄調(diào)控的相關(guān)基因調(diào)控[33-34]。木質(zhì)素生物合成是一個復(fù)雜的過程,其中轉(zhuǎn)錄因子如NAC、MYB、WRKY和bHLH等在調(diào)控木質(zhì)素生物合成中發(fā)揮著關(guān)鍵作用。在這些轉(zhuǎn)錄因子中,NAC和MYB被認(rèn)為是木質(zhì)素生物合成調(diào)控網(wǎng)絡(luò)的關(guān)鍵上游轉(zhuǎn)錄因子,擔(dān)任主調(diào)節(jié)開關(guān)角色[37]。NAC轉(zhuǎn)錄因子特別被視為植物次生壁生物合成轉(zhuǎn)錄調(diào)控的一級開關(guān)[35-37]。

本研究利用生物信息學(xué)手段,鑒定李PsNAC基因家族成員,并系統(tǒng)分析PsNAC家族基因的理化性質(zhì)、基因結(jié)構(gòu)、染色體定位、系統(tǒng)進(jìn)化、亞細(xì)胞定位等特征,采用qRT-PCR技術(shù)分析PsNAC家族基因在皇冠李不同發(fā)育時期的空腔褐變果和非空腔褐變果的基因表達(dá)模式。研究結(jié)果將為進(jìn)一步研究PsNAC家族基因的生物學(xué)功能、尋找可能參與木質(zhì)素合成調(diào)控柰李果實空腔褐變的PsNAC候選基因提供重要參考,并有望為未來制定柰李果實空腔褐變防控技術(shù)方案、品種改良和種質(zhì)創(chuàng)新提供重要依據(jù)。

1 材料和方法

1.1 基因家族成員鑒定、染色體定位和理化性質(zhì)分析

從Pfam數(shù)據(jù)庫(http://pfam.xfam.org/)下載NAC.hmm(PF01849)和NAM.hmm(PF02365)隱馬爾結(jié)構(gòu)域模型,利用TBtools軟件的Simple HMM search功能鑒定李NAC家族蛋白序列(E-value設(shè)定為1e-5)。利用NCBI在線CD-search工具,檢測候選蛋白序列的保守結(jié)構(gòu)域,剔除冗余和無效基因模型,最終獲得PsNAC基因家族成員及其序列信息。

基于三月李(P. salicina Lindl.)基因組注釋的GFF文件,采用TBtools對PsNAC基因家族成員進(jìn)行染色體定位分析,并根據(jù)它們在染色體上的位置順序進(jìn)行重命名。

利用ExPASy網(wǎng)站(https://web.expasy.org/protparam/)分析PsNAC家族成員的理化性質(zhì),包括等電點、分子質(zhì)量、不穩(wěn)定系數(shù)、氨基酸數(shù)目等。使用SignaIP4.1(https://services.healthtech.dtu.dk/services/SignalP-4.1/)預(yù)測這些PsNAC家族成員是否存在信號肽。采用TMHMM 2.0(https://dtu.biolib.com/DeepTMHMM)預(yù)測PsNAC家族成員的跨膜結(jié)構(gòu)、利用WoLF PSORT網(wǎng)站(https://www.genscript.com/wolf-psort.html)預(yù)測PsNAC家族成員的亞細(xì)胞定位。

1.2 基因家族成員多序列比對與系統(tǒng)進(jìn)化樹的構(gòu)建

從PlantTFDB(http://planttfdb.gao-lab.org/)獲取擬南芥NAC基因(125個)的蛋白序列,采用MEGA 11軟件的ClustalW進(jìn)行李和擬南芥NAC蛋白序列比對,去除差異較大的氨基酸序列。采用Neihgbor-Joining方法構(gòu)建系統(tǒng)進(jìn)化樹(Bootstrap設(shè)置為1000次)。利用iTOL網(wǎng)站(https://itol.embl.de/tree/)美化系統(tǒng)進(jìn)化樹。最后參考已知的擬南芥NAC基因家族分類信息,對構(gòu)建好的系統(tǒng)發(fā)育樹進(jìn)行亞族分類。

1.3 基因家族成員保守基序和基因結(jié)構(gòu)分析

根據(jù)亞族分類結(jié)果,利用TBtools的Simple MEME Wrapper功能對PsNAC家族的保守基序進(jìn)行分析,最大motif數(shù)設(shè)置為20,其他參數(shù)為默認(rèn)值。根據(jù)生成的XML文件和家族成員ID,使用TBtools將PsNAC亞族成員的保守基序進(jìn)行可視化繪制。根據(jù)三月李基因注釋文件,使用TBtools將PsNAC亞族成員的編碼區(qū)和非編碼區(qū)的基因結(jié)構(gòu)進(jìn)行可視化繪制。

1.4 基因家族成員的啟動子順式作用元件預(yù)測

根據(jù)三月李基因組文件和基因結(jié)構(gòu)注釋信息文件,使用TBtools篩選PsNAC家族成員基因轉(zhuǎn)錄起始位點上游2000 bp的序列,并將這些序列上傳到Plant TFDB網(wǎng)站,進(jìn)行啟動子區(qū)域順式作用元件的預(yù)測與分析。最后,通過TBtools的Simple BioSequence Viewer功能,將篩選出的啟動子順式作用元件數(shù)據(jù)進(jìn)行可視化展示。

1.5 基因家族成員共線性分析

從擬南芥基因組數(shù)據(jù)庫(http: //www. arabidopsis.org/)下載擬南芥基因組和基因注釋文件,從三月李基因組(https://www.rosaceae.org/Analysis/9450778)下載全基因組文件和注釋文件,利用MCScanX軟件對這2個物種進(jìn)行共線性比較。

1.6 PsNAC基因家族成員的表達(dá)模式分析

以皇冠李不同發(fā)育時期,包括膨大期、轉(zhuǎn)色期、成熟期和后熟期的果實作為試驗材料,采自福建省寧德市古田縣旸谷村李園(E 118°49′4″,N 26°39′3″,海拔280 m)。選取樹齡為5年,株行距3.5 m′4.0 m,生長一致、長勢良好,水肥管理水平一致的植株為采樣樹。采樣時,選擇樹體東、南、西、北四個方向高度一致、外圍花束狀果枝上果形均勻一致的果實,每3株樹的樣本作為1個生物學(xué)重復(fù),用冰盒放置帶回實驗室。用手術(shù)刀將果實切開,判斷是否為空腔褐變果實。

采用qRT-PCR技術(shù)分析PsNAC家族基因的相對表達(dá)量。采用RNAprep Pure多糖多酚植物總RNA提取試劑盒(DP441,天根生化科技北京有限公司,北京)提取RNA,M5 Super plus qPCR RT kit with gDNA remover試劑盒(北京聚合美生物科技有限公司,北京)合成cDNA第一鏈。使用Primer Premier 5設(shè)計實時熒光定量引物,選用Actin為內(nèi)參基因(表1),引物由擎科偉業(yè)生物技術(shù)有限公司進(jìn)行合成。qRT-PCR反應(yīng)使用LightCycler 480 SYBR Green I Master試劑盒(Roche),通過2-??CT法計算基因的相對表達(dá)量。

2 結(jié)果與分析

2.1 PsNAC基因家族成員的鑒定及理化性質(zhì)特征

通過三月李NAC轉(zhuǎn)錄因子特異隱馬可夫模型文件的構(gòu)建及對三月李蛋白數(shù)據(jù)庫的二次搜索,共提取到117個PsNAC轉(zhuǎn)錄因子家族成員。經(jīng)過NCBI CD-search功能驗證蛋白序列的保守結(jié)構(gòu)域,剔除冗余和無效基因模型,最終獲得了115個PsNAC轉(zhuǎn)錄因子基因。根據(jù)其在染色體位置的排列順序,依次編號為PsNAC01~PsNAC115。

對PsNAC家族基因蛋白序列進(jìn)行基本理化性質(zhì)分析,如表2所示,PsNACs編碼蛋白質(zhì)的氨基酸序列長度范圍是182(PsNAC98)至861(PsNAC95)個,平均氨基酸數(shù)量366個。蛋白理論等電點值(pI)分布在4.43~9.55之間,其中86個為酸性蛋白,29個為堿性蛋白。相對分子質(zhì)量在20 980.52(PsNAC98)~95 967.63(PsNAC95)之間。不穩(wěn)定指數(shù)范圍在27.64(PsNAC60)~61.36(PsNAC093),其中,108個PsNAC家族成員不穩(wěn)定指數(shù)大于35,7個PsNAC家族成員不穩(wěn)定指數(shù)則小于35。PsNAC家族成員的GRAVY值均為負(fù)數(shù),說明這些PsNAC家族成員蛋白均為親水性蛋白。

跨膜結(jié)構(gòu)分析顯示,94%的PsNAC家族成員沒有跨膜結(jié)構(gòu)域,而PsNAC14、PsNAC80、PsNAC85、PsNAC95、PsNAC105和PsNAC107則各含有1個跨膜結(jié)構(gòu)域,僅PsNAC112具有3個跨膜結(jié)構(gòu)域。亞細(xì)胞定位的預(yù)測結(jié)果顯示,91個PsNAC家族成員位于細(xì)胞核,其余分布于細(xì)胞質(zhì)、高爾基體、過氧化物酶體、細(xì)胞骨架、線粒體、葉綠體、質(zhì)膜和液泡等結(jié)構(gòu)中。

2.2 PsNAC基因染色體定位

染色體定位結(jié)果(圖1)顯示,115個PsNAC基因不均勻地定位到8對染色體上,其中,第2號和3號染色體上分布的PsNAC家族成員最多(占17.4%),其次是第5號染色體上(占15.7%),第6號和7號染色體上分布的基因數(shù)量最少,僅含有10個PsNACs。

2.3 PsNAC多序列比對與系統(tǒng)發(fā)育樹構(gòu)建

利用擬南芥NAC基因序列作為對照,可將PsNACs分為17個亞族,不同亞族在功能和進(jìn)化關(guān)系上存在差異。OsNAC8和ANC063亞族不含PsNAC家族成員,其余亞族均含有數(shù)量不等的PsNAC家族成員。NAC-C和TIP亞族的PsNAC家族成員數(shù)量超過20個,其中NAC-C亞族包含PsNAC家族成員數(shù)量最多,為26個。OsNAC003亞族含6個PsNAC家族成員,分別是PsNAC22、PsNAC23、PsNAC54、PsNAC56、PsNAC57和PsNAC115;OsNAC7亞族含10個PsNAC家族成員,分別是PsNAC1、PsNAC51、PsNAC63、PsNAC64、PsNAC84、PsNAC86、PsNAC90、PsNAC93、PsNAC94和PsNAC114(圖2)。

2.4 PsNAC家族成員保守基序和基因結(jié)構(gòu)

PsNAC基因的CDS片段數(shù)量在1~8個不等,多數(shù)PsNAC基因具有3~6個CDS片段。基于基因注釋文件的分析,共識別出10個保守motifs,它們的分布位置和數(shù)量在PsNAC基因中并不完全一致。其中,motif 1、motif 2、motif 3和motif 6出現(xiàn)的次數(shù)最多,且通常是依次分布在N端。同一個亞族的PsNAC成員具有相似的motif分布和基因結(jié)構(gòu)(包括CDS和UTR區(qū)域),這說明每個亞族的PsNAC成員可能具有類似的功能。PsNAC33和PsNAC95所具有的motif數(shù)量最少,僅有3個(圖3)。

2.5 PsNAC家族成員啟動子順式作用元件

為便于預(yù)測PsNAC基因所具有的潛在功能,對PsNAC基因起始密碼子ATG上游2000 bp的序列進(jìn)行分析,共預(yù)測到3069個功能不同的順式作用元件(圖4)。其中,最主要的響應(yīng)元件是植物激素響應(yīng)元件,包括茉莉酸甲酯響應(yīng)元件(MeJA-responsive element,320個)、脫落酸響應(yīng)元件(abscisic acid-responsive element,296個)、赤霉素響應(yīng)元件(gibberellin-responsive element,127個)和生長素響應(yīng)元件(auxin-responsive element,78個)。此外,在非生物脅迫中,PsNAC家族還含有87、64和49個響應(yīng)元件,分別參與干旱誘導(dǎo)反應(yīng)的MYB結(jié)合位點(MYB binding site involved in drought-inducibility)、參與低溫(Cis-acting element involved in low-temperature responsiveness)和光(MYB binding site involved in light responsiveness)響應(yīng)。

2.6 PsNAC基因家族種內(nèi)共線性

為了鑒定PsNAC基因家族內(nèi)是否存在基因復(fù)制現(xiàn)象,通過MCScanX共線性分析,總共鑒定出16對片段重復(fù)基因復(fù)制事件(圖5,紅線相連的是基因復(fù)制事件的基因?qū)Γ沃貜?fù)是PsNAC基因家族進(jìn)化重要事件。其中,PsNAC37與PsNAC19、PsNAC29與PsNAC56、PsNAC28與PsNAC96、PsNAC26與PsNAC58、PsNAC96與PsNAC56、PsNAC80與PsNAC94、PsNAC93與PsNAC1、PsNAC94與PsNAC71發(fā)生的是兩兩基因片段復(fù)制,PsNAC97、PsNAC59與PsNAC58,PsNAC79、PsNAC94與PsNAC95,PsNAC29、PsNAC28與PsNAC96發(fā)生的是3個基因之間的基因片段復(fù)制。PsNAC13、PsNAC14、PsNAC113與PsNAC114發(fā)生的是4個基因之間的基因片段復(fù)制。根據(jù)片段重復(fù)的基因結(jié)構(gòu)分析和系統(tǒng)發(fā)育樹構(gòu)建,推測這些片段重復(fù)基因的功能可能存在相似性。

2.7 PsNAC基因家族在空腔褐變皇冠李果實中的表達(dá)模式分析

植物次生細(xì)胞壁加厚過程包含纖維素、半纖維素和木質(zhì)素的合成,同時結(jié)合PsNAC基因家族成員的順式作用元件預(yù)測結(jié)果,對10個PsNAC基因家族成員的基因表達(dá)量進(jìn)行了分析(圖6)。其中,PsNAC57、PsNAC54和PsNAC51既是OsNAC7和OsNAC003的亞族成員,又同時具有生長素和赤霉素響應(yīng)元件,在激素參與木質(zhì)素生物合成的轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò)中具有重要作用。PsNAC26、PsNAC57、PsNAC77和PsNAC95在果實膨大期的基因相對表達(dá)量最高,隨果實發(fā)育逐漸降低,在空腔褐變果實中的表達(dá)量高于非空腔褐變果。PsNAC54和PsNAC74在果實膨大期的表達(dá)量最低,隨果實發(fā)育逐漸上升,在空腔褐變果實中的表達(dá)量高于非空腔褐變果。PsNAC22和PsNAC23在果實膨大期基因相對表達(dá)量最高,隨果實發(fā)育呈現(xiàn)先下降后上升的趨勢。PsNAC51基因相對表達(dá)量隨果實發(fā)育呈現(xiàn)先下降后上升的波動變化,后熟期的相對表達(dá)量最低,而PsNAC107在各時期的相對表達(dá)量基本保持不變。

3 討 論

NAC轉(zhuǎn)錄因子家族是植物中最大的轉(zhuǎn)錄因子家族之一,在調(diào)節(jié)植物的生長發(fā)育、抵御病原菌、響應(yīng)非生物脅迫(如干旱、高鹽和低溫等)以及調(diào)控果實品質(zhì)等方面發(fā)揮著重要作用。盡管對NAC基因家族的鑒定和功能分類在多種植物中已有廣泛的研究,但NAC轉(zhuǎn)錄因子在李的系統(tǒng)性研究方面尚不充分。木質(zhì)素與果實品質(zhì)和風(fēng)味密切相關(guān),其過度積累可能導(dǎo)致園藝植物的果實口感變差、果肉變硬、風(fēng)味變淡、顏色變褐加深等,致使感官特性劣變、商品價值降低[38-39]。筆者課題組前期觀察發(fā)現(xiàn),皇冠李果實空腔褐變這一產(chǎn)業(yè)問題與木質(zhì)素密切相關(guān)。作為木質(zhì)素生物合成途徑的上游調(diào)控因子[35-37],NAC轉(zhuǎn)錄因子在木質(zhì)素生物合成的轉(zhuǎn)錄調(diào)控方面發(fā)揮關(guān)鍵作用。因此,對PsNAC轉(zhuǎn)錄因子進(jìn)行全面生物信息學(xué)鑒定和分析,有望為未來制定防控柰李果實空腔褐變的技術(shù)方案、品種改良和種質(zhì)創(chuàng)新提供重要參考。

筆者在本研究中鑒定到115個PsNAC轉(zhuǎn)錄因子成員,該數(shù)量多于番茄(93個)[9]、辣椒(104個)[10]、火龍果(64個)[14]、菠蘿(73個)[15]和歐李(76個)[16],但低于擬南芥(117個)[5]、毛果楊(170個)[6]、水稻(151個)[5]、玉米(148個)[7]、大豆(152個)[8]、大白菜(188個)[11]、蘋果(180個)[12]和梨(185個)[13]。與其他物種相比,李PsNAC基因家族成員數(shù)量存在一定的差異,顯示出明顯的物種間的差異性。

筆者在本研究中的蛋白理化性質(zhì)分析結(jié)果顯示,李PsNAC基因家族成員在氨基酸序列長度、相對分子質(zhì)量、等電點、CDS長度等存在明顯差異,表明了PsNAC基因家族成員在結(jié)構(gòu)和功能上的多樣性。盡管PsNAC蛋白呈現(xiàn)親水性特征,但其穩(wěn)定性存在較大變異,反映了它們在不同生物學(xué)環(huán)境中的適應(yīng)性和功能多樣性。亞細(xì)胞定位預(yù)測結(jié)果顯示,PsNAC家族成員主要定位于細(xì)胞核中,也有少數(shù)位于細(xì)胞質(zhì)、葉綠體、線粒體等中,說明李PsNAC轉(zhuǎn)錄因子可能在不同細(xì)胞部位發(fā)揮著多樣性的功能,從而為植物體的正常生命活動提供保障。

以擬南芥NAC基因序列作為對照,將PsNACs基因分為17個亞族。其中,6個PsNAC基因聚集在OsNAC003亞族,10個PsNACs聚集在OsNAC7亞族。前人研究表明,OsNAC003和OsNAC7亞族的大部分基因參與植物的次生細(xì)胞壁合成[40]。因此,推測聚類在這2個亞族的PsNACs可能具有相似的功能。OsNAC7亞族在NAC家族中被廣泛研究,包括SND1、NST1、URP7、BRN1/2、VND1-7基因,其主要功能集中在調(diào)控莖、根和花藥次生壁的形成,在木質(zhì)素調(diào)控植物生長發(fā)育和逆境脅迫中起重要作用[41-42]。

啟動子順式作用元件的預(yù)測可以為進(jìn)一步研究基因的轉(zhuǎn)錄調(diào)控機制和潛在功能提供理論依據(jù)[43]。本研究中啟動子順式作用元件分析結(jié)果表明,PsNACs含大量與激素相關(guān)元件的成員,推測這些成員在激素調(diào)控木質(zhì)素生物合成的轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò)中發(fā)揮重要作用。研究表明,NAC轉(zhuǎn)錄因子在植物次生細(xì)胞壁合成的轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò)起關(guān)鍵作用,是該復(fù)雜調(diào)控網(wǎng)絡(luò)的主要開關(guān)。枇杷EjNAC1通過反式激活木質(zhì)素合成相關(guān)基因EjPAL1和Ej4CL1的啟動子,使其表達(dá)上調(diào),從而導(dǎo)致果實木質(zhì)素積累,呈現(xiàn)出明顯的木質(zhì)化特征[33]。Ge等[34]發(fā)現(xiàn),EjNAC3蛋白能直接結(jié)合并激活木質(zhì)素合成結(jié)構(gòu)基因EjCAD-like的啟動子,參與調(diào)控枇杷果實木質(zhì)化過程。三紅蜜柚CgNAC043能激活下游轉(zhuǎn)錄因子CgMYB46和木質(zhì)素合成基因CgC3H和CgCCoAOMT1的啟動子,共同參與蜜柚汁胞木質(zhì)素合成的轉(zhuǎn)錄調(diào)控[44]。冬棗MYB激活子(LOC107425254)和抑制子(LOC107415078)通過調(diào)節(jié)F5H和CCR參木質(zhì)素生物合成,而NAC轉(zhuǎn)錄因子(LOC107435239)則促進(jìn)F5H的表達(dá),從而正向調(diào)控木質(zhì)素的積累[45]。石榴NAC類蛋白PgSND1-like能結(jié)合木質(zhì)素合成酶基因啟動子特異元件,提高PAL、4CL、F4H、CCR和CAD表達(dá)水平,從而調(diào)控石榴籽粒的硬度[46]。

筆者在本研究中結(jié)合PsNAC基因家族成員順式作用元件預(yù)測,共鑒定到10個PsNAC基因家族成員,其中PsNAC57、PsNAC54和PsNAC51既是OsNAC7和OsNAC003的亞族成員,又同時具有生長素和赤霉素響應(yīng)元件。因此,這3個基因在激素參與木質(zhì)素生物合成的轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò)中至關(guān)重要。PsNAC26、PsNAC57、PsNAC77和PsNAC95在果實膨大期表達(dá)量最高,隨果實發(fā)育逐漸降低,在空腔褐變果中的表達(dá)量高于非空腔褐變果,推測這些家族成員可能負(fù)向調(diào)控木質(zhì)素生物合成。PsNAC54和PsNAC74在果實膨大期的表達(dá)量最低,隨果實發(fā)育逐漸上升,在空腔褐變果中的表達(dá)量高于非空腔褐變果,PsNAC54和PsNAC74可能正向調(diào)控木質(zhì)素生物合成。本研究為后續(xù)研究皇冠李空腔褐變的分子機制提供了重要靶標(biāo)。

4 結(jié) 論

首次鑒定并分析了115個李PsNAC基因家族成員,分析了PsNAC家族基因的理化性質(zhì)、基因結(jié)構(gòu)、染色體定位、系統(tǒng)進(jìn)化、亞細(xì)胞定位等特征,采用qRT-PCR技術(shù)分析PsNAC家族基因在皇冠李不同發(fā)育時期的空腔褐變果和非空腔褐變果的基因表達(dá)模式。研究結(jié)果將為進(jìn)一步研究PsNAC家族基因的生物學(xué)功能、PsNAC家族成員與皇冠李果實空腔褐變的具體關(guān)聯(lián)性奠定了重要基礎(chǔ)。

參考文獻(xiàn)References:

[1] LIU G S,LI H L,GRIERSON D,F(xiàn)U D Q. NAC transcription factor family regulation of fruit ripening and quality:A review[J]. Cells,2022,11(3):525.

[2] SINGH S,KOYAMA H,BHATI K K,ALOK A. The biotechnological importance of the plant-specific NAC transcription factor family in crop improvement[J]. Journal of Plant Research,2021,134(3):475-495.

[3] AIDA M,ISHIDA T,F(xiàn)UKAKI H,F(xiàn)UJISAWA H,TASAKA M. Genes involved in organ separation in Arabidopsis:An analysis of the cup-shaped Cotyledon mutant[J]. The Plant Cell,1997,9(6):841-857.

[4] PURANIK S,SAHU P P,SRIVASTAVA P S,PRASAD M. NAC proteins:Regulation and role in stress tolerance[J]. Trends in Plant Science,2012,17(6):369-381.

[5] NURUZZAMAN M,MANIMEKALAI R,SHARONI A M,SATOH K,KONDOH H,OOKA H,KIKUCHI S. Genome-wide analysis of NAC transcription factor family in rice[J]. Gene,2010,465(1/2):30-44.

[6] MENG L,CHEN S Y,LI D W,HUANG M R,ZHU S. Genome-wide characterization and evolutionary expansion of poplar NAC transcription factors and their tissue-specific expression profiles under drought[J]. International Journal of Molecular Sciences,2022,24(1):253.

[7] PENG X J,ZHAO Y,LI X M,WU M,CHAI W B,SHENG L,WANG Y,DONG Q,JIANG H Y,CHENG B J. Genomewide identification,classification and analysis of NAC type gene family in maize[J]. Journal of Genetics,2015,94(3):377-390.

[8] LE D T,NISHIYAMA R,WATANABE Y,MOCHIDA K,YAMAGUCHI-SHINOZAKI K,SHINOZAKI K,TRAN L S P. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress[J]. DNA Research,2011,18(4):263-276.

[9] JIN J F,WANG Z Q,HE Q Y,WANG J Y,LI P F,XU J M,ZHENG S J,F(xiàn)AN W,YANG J L. Genome-wide identification and expression analysis of the NAC transcription factor family in tomato (Solanum lycopersicum) during aluminum stress[J]. BMC Genomics,2020,21(1):288.

[10] DIAO W P,SNYDER J C,WANG S B,LIU J B,PAN B G,GUO G J,GE W,DAWOOD M H S A. Genome-wide analyses of the NAC transcription factor gene family in pepper (Capsicum annuum L.):Chromosome location,phylogeny,structure,expression patterns,Cis-elements in the promoter,and interaction network[J]. International Journal of Molecular Sciences,2018,19(4):1028.

[11] MA J,WANG F,LI M Y,JIANG Q,TAN G F,XIONG A S. Genome wide analysis of the NAC transcription factor family in Chinese cabbage to elucidate responses to temperature stress[J]. Scientia Horticulturae,2014,165:82-90.

[12] SU H Y,ZHANG S Z,YUAN X W,CHEN C T,WANG X F,HAO Y J. Genome-wide analysis and identification of stress-responsive genes of the NAM–ATAF1 2–CUC2 transcription factor family in apple[J]. Plant Physiology and Biochemistry,2013,71:11-21.

[13] AHMAD M,YAN X H,LI J Z,YANG Q S,JAMIL W,TENG Y W,BAI S L. Genome wide identification and predicted functional analyses of NAC transcription factors in Asian pears[J]. BMC Plant Biology,2018,18(1):214.

[14] HU X L,XIE F F,LIANG W W,LIANG Y H,ZHANG Z K,ZHAO J T,HU G B,QIN Y H. HuNAC20 and HuNAC25,two novel NAC genes from pitaya,confer cold tolerance in transgenic Arabidopsis[J]. International Journal of Molecular Sciences,2022,23(4):2189.

[15] HE Q,LIU Y H,ZHANG M,BAI M Y,PRIYADARSHANI S V G N,CHAI M N,CHEN F Q,HUANG Y M,LIU L P,CAI H Y,QIN Y. Genome-wide identification and expression analysis of the NAC transcription factor family in pineapple[J]. Tropical Plant Biology,2019,12(4):255-267.

[16] 張忠鑫,郭夕雯,汪澤文,王鵬飛,張建成,杜俊杰,穆霄鵬. 歐李NAC基因家族的鑒定及表達(dá)分析[J]. 果樹學(xué)報,2023,40(2):206-222.

ZHANG Zhongxin,GUO Xiwen,WANG Zewen,WANG Pengfei,ZHANG Jiancheng,DU Junjie,MU Xiaopeng. Identification and expression analysis of NAC gene family in Cerasus humilis[J]. Journal of Fruit Science,2023,40(2):206-222.

[17] NURUZZAMAN M,SHARONI A M,KIKUCHI S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants[J]. Frontiers in Microbiology,2013,4:248.

[18] HOU X M,ZHANG H F,LIU S Y,WANG X K,ZHANG Y M,MENG Y C,LUO D,CHEN R G. The NAC transcription factor CaNAC064 is a regulator of cold stress tolerance in peppers[J]. Plant Science,2020,291:110346.

[19] XU Y,LI P F,MA F N,HUANG D M,XING W T,WU B,SUN P G,XU B Q,SONG S. Characterization of the NAC transcription factor in passion fruit (Passiflora edulis) and functional identification of PeNAC-19 in cold stress[J]. Plants,2023,12(6):1393.

[20] HE X J,MU R L,CAO W H,ZHANG Z G,ZHANG J S,CHEN S Y. AtNAC2,a transcription factor downstream of ethylene and auxin signaling pathways,is involved in salt stress response and lateral root development[J]. Plant Journal,2005,44(6):903-916.

[21] SABLOWSKI R W M,MEYEROWITZ E M. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA[J]. Cell,1998,92(1):93-103.

[22] BERGER Y,HARPAZ-SAAD S,BRAND A,MELNIK H,SIRDING N,ALVAREZ J P,ZINDER M,SAMACH A,ESHED Y,ORI N. The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves[J]. Development,2009,136(5):823-832.

[23] KATO H,MOTOMURA T,KOMEDA Y,SAITO T,KATO A. Overexpression of the NAC transcription factor family gene ANAC036 results in a dwarf phenotype in Arabidopsis thaliana[J]. Journal of Plant Physiology,2010,167(7):571-577.

[24] KO J H,YANG S H,PARK A H,LEROUXEL O,HAN K H. ANAC012,a member of the plant-specific NAC transcription factor family,negatively regulates xylary fiber development in Arabidopsis thaliana[J]. Plant Journal,2007,50(6):1035-1048.

[25] NAKANO Y,YAMAGUCHI M,ENDO H,REJAB N A,OHTANI M. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants[J]. Frontiers in Plant Science,2015,6:288.

[26] SOUER E,VAN HOUWELINGEN A,KLOOS D,MOL J,KOES R. The No apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries[J]. Cell,1996,85(2):159-170.

[27] XIE Q,F(xiàn)RUGIS G,COLGAN D,CHUA N H. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development[J]. Genes amp; Development,2000,14(23):3024-3036.

[28] PODZIMSKA-SROKA D,O’SHEA C,GREGERSEN P L,SKRIVER K. NAC transcription factors in senescence:From molecular structure to function in crops[J]. Plants,2015,4(3):412-448.

[29] FORLANI S,MIZZOTTI C,MASIERO S. The NAC side of the fruit:Tuning of fruit development and maturation[J]. BMC Plant Biology,2021,21(1):238.

[30] CAO X M,WEI C Y,DUAN W Y,GAO Y,KUANG J F,LIU M C,CHEN K S,KLEE H,ZHANG B. Transcriptional and epigenetic analysis reveals that NAC transcription factors regulate fruit flavor ester biosynthesis[J]. Plant Journal,2021,106(3):785-800.

[31] FU B L,WANG W Q,LI X,QI T H,SHEN Q F,LI K F,LIU X F,LI S J,ALLAN A C,YIN X R. A dramatic decline in fruit citrate induced by mutagenesis of a NAC transcription factor,AcNAC1[J]. Plant Biotechnology Journal,2023,21(8):1695-1706.

[32] 卓茂根,王惠聰. NAC轉(zhuǎn)錄因子在果實成熟中的調(diào)控作用[J]. 果樹學(xué)報,2023,40(7):1455-1470.

ZHUO Maogen,WANG Huicong. The roles of NAC transcription factors in regulating fruit ripening[J]. Journal of Fruit Science,2023,40(7):1455-1470.

[33] XU Q,WANG W Q,ZENG J K,ZHANG J,GRIERSON D,LI X,YIN X R,CHEN K S. A NAC transcription factor,EjNAC1,affects lignification of loquat fruit by regulating lignin[J]. Postharvest Biology and Technology,2015,102:25-31.

[34] GE H,ZHANG J,ZHANG Y J,LI X,YIN X R,GRIERSON D,CHEN K S. EjNAC3 transcriptionally regulates chilling-induced lignification of loquat fruit via physical interaction with an atypical CAD-like gene[J]. Journal of Experimental Botany,2017,68(18):5129-5136.

[35] 郭光艷,柏峰,劉偉,秘彩莉. 轉(zhuǎn)錄因子對木質(zhì)素生物合成調(diào)控的研究進(jìn)展[J]. 中國農(nóng)業(yè)科學(xué),2015,48(7):1277-1287.

GUO Guangyan,BAI Feng,LIU Wei,BI Caili. Advances in research of the regulation of transcription factors of lignin biosynthesis[J]. Scientia Agricultura Sinica,2015,48(7):1277-1287.

[36] 張雨,趙明潔,張蔚. 植物次生細(xì)胞壁生物合成的轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò)[J]. 植物學(xué)報,2020,55(3):351-368.

ZHANG Yu,ZHAO Mingjie,ZHANG Wei. Transcriptional regulatory network of secondary cell wall biosynthesis in plants[J]. Chinese Bulletin of Botany,2020,55(3):351-368.

[37] 陳倩,游雙梅,邢樂華,徐凡,羅明,郭啟高. 果樹NAC轉(zhuǎn)錄因子的研究進(jìn)展[J]. 分子植物育種,2021,19(19):6396-6405.

CHEN Qian,YOU Shuangmei,XING Lehua,XU Fan,LUO Ming,GUO Qigao. Research progress of NAC transcription factors in fruit trees[J]. Molecular Plant Breeding,2021,19(19):6396-6405.

[38] 薛維文,周顯芳,張昭其,方方. 果蔬采后木質(zhì)素積累及其調(diào)控對品質(zhì)的影響研究進(jìn)展[J]. 園藝學(xué)報,2022,49(9):2023-2036.

XUE Weiwen,ZHOU Xianfang,ZHANG Zhaoqi,F(xiàn)ANG Fang. Advances in lignin accumulation and its regulation on the quality of postharvest fruit and vegetables[J]. Acta Horticulturae Sinica,2022,49(9):2023-2036.

[39] SHI Y N,LI B J,SU G Q,ZHANG M X,GRIERSON D,CHEN K S. Transcriptional regulation of fleshy fruit texture[J]. Journal of Integrative Plant Biology,2022,64(9):1649-1672.

[40] HUSSEY S G,MIZRACHI E,SPOKEVICIUS A V,BOSSINGER G,BERGER D K,MYBURG A A. SND2 a NAC transcription factor gene,regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus[J]. BMC Plant Biology,2011,11:173.

[41] MITSUDA N,SEKI M,SHINOZAKI K,OHME-TAKAGI M. The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence[J]. The Plant Cell,2005,17(11):2993-3006.

[42] ZHONG R Q,DEMURA T,YE Z H. SND1,a NAC domain transcription factor,is a key regulator of secondary wall synthesis in fibers of Arabidopsis[J]. The Plant Cell,2006,18(11):3158-3170.

[43] HERNANDEZ-GARCIA C M,F(xiàn)INER J J. Identification and validation of promoters and Cis-acting regulatory elements[J]. Plant Science,2014,217:109-119.

[44] LI X T,WANG N Y,SHE W Q,GUO Z X,PAN H L,YU Y,YE J W,PAN D M,PAN T F. Identification and functional analysis of the CgNAC043 gene involved in lignin synthesis from Citrus grandis ‘San Hong’[J]. Plants,2022,11(3):403.

[45] ZHANG Q,WANG L H,WANG Z T,ZHANG R T,LIU P,LIU M J,LIU Z G,ZHAO Z H,WANG L L,CHEN X,XU H F. The regulation of cell wall lignification and lignin biosynthesis during pigmentation of winter jujube[J]. Horticulture Research,2021,8(1):238.

[46] XIA X C,LI H X,CAO D,LUO X,YANG X W,CHEN L N,LIU B B,WANG Q,JING D,CAO S Y. Characterization of a NAC transcription factor involved in the regulation of pomegranate seed hardness (Punica granatum L.)[J]. Plant Physiology and Biochemistry,2019,139:379-388.

枣阳市| 洛南县| 山东| 瑞昌市| 湟中县| 镇康县| 城口县| 盱眙县| 新宾| 营口市| 宣汉县| 昌江| 苍南县| 赣州市| 吉首市| 阳山县| 和平县| 双桥区| 西吉县| 甘德县| 马关县| 故城县| 聂拉木县| 兴文县| 遂昌县| 嘉义市| 岑溪市| 丽水市| 太保市| 民县| 延寿县| 张掖市| 抚顺县| 正阳县| 高雄市| 额济纳旗| 金堂县| 嘉定区| 万全县| 布拖县| 德州市|