国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

核桃腐爛病拮抗菌Pseudomonas chlororaphis的篩選、鑒定及其防病促生效果

2025-03-03 00:00:00劉志金單路路瑪麗艷姑麗·吐爾迪李彤康啟航張銳董寧陳小飛
果樹學(xué)報(bào) 2025年1期

摘 " "要:【目的】為有效控制核桃腐爛病的發(fā)生與發(fā)展,從新疆溫宿縣核桃園土壤中分離既對(duì)核桃腐爛病有很好防效,又對(duì)核桃種子萌芽具有促進(jìn)作用的拮抗細(xì)菌?!痉椒ā客ㄟ^稀釋涂布平板法進(jìn)行分離培養(yǎng)、平皿對(duì)峙篩選,通過形態(tài)學(xué)和分子生物學(xué)方法進(jìn)行鑒定,以及通過室內(nèi)離體枝條、盆栽和田間盆栽試驗(yàn)探究防病促生作用?!窘Y(jié)果】篩選出1株生防菌WS-04,通過形態(tài)學(xué)觀察、生理生化特性測(cè)定及分子鑒定,最終確定菌株WS-04為綠針假單胞菌Pseudomonas chlororaphis。研究發(fā)現(xiàn)WS-04能使病原菌菌絲發(fā)生斷裂和解體,使菌絲無法正常生長,對(duì)核桃腐爛病菌Cytospora chysosperma的抑菌效果達(dá)87.00%,其發(fā)酵液對(duì)核桃腐爛病的防效也達(dá)到84.96%,還具有一定的熱穩(wěn)定性。經(jīng)過拮抗菌株發(fā)酵濾液浸泡處理的核桃種子,萌芽率和發(fā)芽率與對(duì)照相比都有顯著提高(p<0.05),且有效地降低了壞種率。菌株發(fā)酵濾液能促進(jìn)核桃幼苗苗高、主根長、須根數(shù)、葉片面積和干質(zhì)量的顯著增加,其依次增加了25.40%、83.33%、48.02%、24.76%和98.40%?!窘Y(jié)論】從核桃園土壤中分離并篩選出一株具有廣譜抗菌且對(duì)核桃種子和幼苗具有促生作用的生防細(xì)菌。研究成果為核桃腐爛病的生物防治提供了新的菌株來源。

關(guān)鍵詞:核桃腐爛??;拮抗細(xì)菌;促生作用

中圖分類號(hào):S664.1;S436.64 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2025)01-0170-15

Screening and identification of antagonistic bacterium Pseudomonas chlororaphis for walnut rot disease and its effect on promoting germination of seeds and growth of seedlings in walnut

LIU Zhijin1, SHAN Lulu1, Maliyanguli·Tuerdi1, LI Tong1, KANG Qihang1, ZHANG Rui2, DONG Ning3, CHEN Xiaofei1*

(1College of Agriculture, Tarim University/Key Laboratory of Integrated Pest Management (IPM) of Xinjiang Production and Construction Corps in Southern Xinjiang, Alar 843300, Xinjiang, China; 2College of Horticulture and Forestry, Tarim University, Alar 843300, Xinjiang, China; 3Forestry and Grassland Work Station of Xinjiang Production and Construction Corps, Urumqi 830013, Xinjiang, China)

Abstract: 【Objective】 The study aimed to select indigenous bacterial strain that could control walnut rot and other fungal diseases and promote the germination of seeds and growth of seedlings of walnut. 【Methods】 Bacteria were isolated from the rhizosphere soil of walnut (Juglans regia L.) trees using confronting plate methods and streaked on agar to screen for antagonistic strains. The broad-spectrum antibacterial activity of the selected antagonistic strains against walnut rot disease was evaluated. The morphological characteristics, physicochemical properties, and molecular biological characters were employed to identify the screened strains. The thermal stability of the antagonistic strains was determined using mycelial growth assays under different temperature gradients. The inoculation experiments were conducted to ascertain the effects of the antagonistic strains on the walnut rot symptoms. The pot experiments in a controlled environment were carried out to analyze the impact of varying concentrations of fermented filtrate on the germination of walnut seeds and the rate of poor-quality seeds. The mature, unspoiled walnuts weighing approximately 12 grams each were selected as experimental materials and dried in the air naturally. The fermented filtrate of the antagonistic strain WS-04 was diluted by sterilized distilled water, and five concentrations (50, 150, 250, 350, and 450 mg·mL-1) were set for treatment. The sterilized distilled water was used as a control, and each concentration was applied to 20 seeds with three repeats for each experiment. Prior to soaking, the walnut shells were opened to ensure that the kernels would contact the fermented filtrate. After soaking for one day, the seeds were rinsed with clean water and placed in a humid germination box within an incubator at a constant temperature of 30 ℃ to promote germination. Daily observations were made during the course of seed germination, and any rotten or moldy seeds were promptly removed. The germinated seeds were transplanted into pots with a diameter of 20 cm, with two seeds planted per hole, covered with 1 cm of substrate (vermiculite: perlite: peat soil: soil in a volume ratio of 1∶1∶1∶1). The number of germinated seeds was recorded, and the rate of blanching was calculated. Following the emergence of two leaves, the germination rate and the rate of poor-quality seeds were calculated. Simultaneously, both indoor pot experiments and field pot experiments were conducted to study the effect of different concentrations of the fermented filtrate on the growth of walnut seedlings. The pretreatment of hulled walnut seeds for the experiment of promotion of growth on seedlings was as follows: the walnuts were gently split open to ensure the contact between the kernel and the fermented filtrate of the antagonistic bacteria. A concentration of 150 mg·mL-1 of the antagonistic culture was assigned to the experimental group, while the control group consisted of a medium without antagonistic culture; each group comprised 25 walnut seeds, with five repeats. After germination, the single well plates (32 wells, 6 cm × 4.5 cm) were used for the treatments, one seed per well. The seedling treatment in plates involved sowing in the wells and initiating irrigation with the antagonistic filtrate (experimental group received 150 mg·mL-1 of fermented filtrate), administering 50 mL every five days. After 20 days of growth, the seedlings from the well plates were transplanted outdoors. For the pot experiments, the walnut seedlings were transplanted into experimental plots (with a diameter of 40 cm), with each pot irrigated with 500 mL of fermented filtrate (once every ten days). After 90 days of transplanting, five plants were randomly selected to measure biological indicators, including dry weight, seedling height, main root length, and root count. 【Results】 A total of 157 bacterial strains were isolated from walnut rhizosphere soil, of which five strains were found to inhibit walnut rot disease, with strain WS-04 demonstrating an inhibition rate of 87.00%. The inhibition rates for Cytospora nivea, Valsa mali, Valsa ambiens, Cytospora chrysosperma, Cytospora leucostoma, Alternaria alternata, Verticillium dahliae, and Fusarium oxysporum were all above 70.00%. Through the morphological characteristics, physicochemical properties, and molecular biological confirmation, the strain WS-04 was ultimately identified as Pseudomonas chlororaphis. The antibacterial activity of C. chrysosperma was assessed using the mycelial growth rate method, revealing that WS-04 exhibited significant inhibitory effects on C. chrysosperma, with inhibition rates exceeding 80% as the concentration of fermented filtrate increased. At a concentration of 15%, the inhibition rate reached 93.65%. The thermal stability assays indicated that as the temperature increased, the inhibition rate of the WS-04 gradually declined; however, it remained above 85% against C. chrysosperma, indicating favorable thermal stability. The treatment at 95 ℃ for 30 minutes demonstrated that increased temperature progressively led to the loss of the activity of the fermented filtrate. The isolation protection tests suggested that the WS-04 would have good preventive effects on anti- walnut rot, with an average disease lesion area of 0.85 cm2 for treated samples compared with 6.32 cm2 for the control group, resulting in a control efficacy of 84.96%. The pot experiments revealed that the germination rate of the walnut seeds was improved with increase of the concentrations after treatments. At concentrations of 150 mg·mL-1 and 250 mg·mL-1, significant promotion of walnut seed germination was observed. The germination rate was notably higher in the treatment groups with concentrations of 250 mg·mL-1 > 150 mg·mL-1 > 350 mg·mL-1 > 50 mg·mL-1 > 450 mg·mL-1 compared with the control group (p < 0.05). As the concentration increased, the germination rate initially rose and then declined; within the range of 50 to 250 mg·mL-1, the germination rate of walnut seeds steadily increased, but when the concentration of the fermented filtrate exceeded 250 mg·mL-1, the germination rate began to decrease. At a concentration of 150 mg·mL-1, the percentage of the poor-quality seeds was the lowest, reaching 6.68%. When the concentration of the antagonistic bacteria exceeded 150 mg·mL-1, the rate of poor-quality seeds exhibited an upward trend; however, the rates of poor quality seeds of all concentrations remained significantly lower than those in the control group (p < 0.05). In the field experiments, we found that the WS-04 could promote the growth of walnut seedlings, increasing seedling height, root length, leaf area, and dry weight by 25.40%, 83.33%, 48.02%, 24.76%, and 98.40%, respectively. 【Conclusion】 A biocontrol bacterium with broad antibacterial spectrum and growth promotion effect on walnut seeds and seedlings was isolated and screened from the soil of walnut orchard. This would provide a novel strain source for the biological control of the walnut rot disease.

Key words: Walnut rot disease; Antagonistic bacteria; Promoting effect

核桃(Juglans regia L.)是胡桃科核桃屬的重要經(jīng)濟(jì)樹種,是世界四大干果之一,具有較高營養(yǎng)價(jià)值和藥用價(jià)值[1]。新疆是中國核桃種植第二大省份,2020年新疆種植面積已達(dá)到4.14×105 hm2,年產(chǎn)量達(dá)到1.15×106 t[2]。近年來隨著新疆核桃的大面積種植,核桃腐爛病大面積發(fā)生,嚴(yán)重制約核桃產(chǎn)業(yè)的健康發(fā)展[3-5]。目前生產(chǎn)上病害仍然以化學(xué)防治為主,但化學(xué)殺菌劑存在易污染環(huán)境、對(duì)人畜不安全、農(nóng)藥殘留等一系列問題[6-7]。因此,開發(fā)出高效的生防菌株替代化學(xué)藥劑防治核桃腐爛病,不僅可以有效控制病害的發(fā)生與發(fā)展,還可以有效規(guī)避化學(xué)防治帶來的系列問題。

土壤細(xì)菌是植物根際土壤微生態(tài)的優(yōu)勢(shì)種群之一,具有分布廣、數(shù)量多、營養(yǎng)要求簡(jiǎn)單、繁殖快、競(jìng)爭(zhēng)定殖力強(qiáng)等特點(diǎn)[8]。土壤細(xì)菌能產(chǎn)生吩嗪-1-羧酸(phenazine-1-carboxylic acid,PCA)、2,4-二乙?;g苯三酚、硝吡咯菌素(pyrrolnitrin,PRN)、藤黃綠膿菌素(pyoluterorin,PLT)、假單胞菌酸(pseudomonicacid)、氫氰酸和植物生長素吲哚乙酸(indole-3-aceticacid,IAA)等次生代謝產(chǎn)物,這些有機(jī)化合物不僅能增強(qiáng)植物抗病能力,而且還對(duì)植物生長發(fā)育產(chǎn)生積極影響[9-10]。目前對(duì)于核桃腐爛病的生物防治應(yīng)用較多的拮抗細(xì)菌主要有芽孢桿菌(Bacillus spp.),假單胞桿菌(Pseudomonas spp.)、土壤放射桿菌(Agrobacterium radiobacter)等。例如許多學(xué)者利用假單胞菌成功防治了小麥[11]、草莓[12]、小白菜[13]和番茄[14]等作物的部分侵染性病害,同時(shí)發(fā)現(xiàn)假單胞菌還能促進(jìn)作物的健康生長[15-16]。魏海雷等[17]在小麥全蝕病的土壤中分離得到一株熒光假單胞菌2P2 4,通過研究發(fā)現(xiàn)此熒光假單胞菌產(chǎn)生的多種抗菌物質(zhì)對(duì)枯黃萎病、全蝕病以及根腐病均有較好的生物防治效果。冉隆賢等[18]通過篩選發(fā)現(xiàn)3株假單胞桿菌及其缺失嗜鐵素對(duì)桉樹灰霉病具有較好的防治效果,且假單胞菌能否產(chǎn)生嗜鐵素直接影響桉樹灰霉病的發(fā)生與否。劉艷萍等[19]研究表明,惡臭假單胞菌A3產(chǎn)生的嗜鐵素可以顯著促進(jìn)黃瓜幼苗的生長。楊藝煒[20]研究發(fā)現(xiàn)綠針假單胞菌XF10能有效地抑制煙草黑脛病菌菌絲生長,且能夠抑制游動(dòng)孢子囊的產(chǎn)生和孢子的萌發(fā),盆栽防效超過70.00%。史娜艷[21]從核桃樹皮分離出一株枯草芽孢桿菌S23,該菌株可以使金黃殼囊孢菌絲發(fā)生皺縮、畸形甚至斷裂,從而抑制菌絲的生長。展麗然等[22]從土壤中篩選到一株放線菌Z-6,該菌株對(duì)腐爛病菌有較強(qiáng)拮抗作用,經(jīng)過鑒定該放線菌屬于鏈霉菌屬(Streptomyces)。

目前對(duì)核桃腐爛病的生物防治應(yīng)用較多的拮抗細(xì)菌主要有芽孢桿菌(Bacillus spp.)[23],但是利用綠針假單胞來防治核桃腐爛病還未見報(bào)道。如今核桃產(chǎn)業(yè)已成為新疆核桃種植區(qū)鞏固脫貧、促進(jìn)鄉(xiāng)村振興和增加農(nóng)民收入的重要支柱性產(chǎn)業(yè)。然而核桃腐爛病的發(fā)生與蔓延嚴(yán)重阻礙了核桃產(chǎn)業(yè)的健康發(fā)展。因此,從核桃園土壤中分離篩選活性高、對(duì)環(huán)境友好且能促進(jìn)壯苗培育的拮抗菌,對(duì)促進(jìn)新疆核桃產(chǎn)業(yè)的健康發(fā)展具有重要意義。

1 材料和方法

1.1 試驗(yàn)材料

1.1.1 土壤樣品 2023年5月從阿克蘇地區(qū)溫宿縣核桃林場(chǎng)采集試驗(yàn)土壤。果園核桃品種為溫185,樹齡30年,株行距為5 m×7 m。采樣時(shí)選取長勢(shì)均勻的核桃樹,按照5點(diǎn)采樣法采集核桃園土壤,在距離核桃樹主干1 m的地方去除0~5 cm表層土,用取土鉆采集5~20 cm的土壤,每個(gè)30年樹齡核桃園采集20份土壤樣品,共采集90份樣品。按照四分法收集土壤,將土壤過2 mm篩并將土樣裝入無菌袋中,于4 ℃冰箱保存?zhèn)溆谩?/p>

1.1.2 供試病原菌菌株 核桃腐爛病菌Cytospora chrysosperma和C. nivea、蘋果腐爛病菌Valsa mali、香梨腐爛病菌V. ambiens、沙棗腐爛病菌C. chrysosperma、杏樹腐爛病菌C. leucostoma、核桃褐斑病菌Alternaria alternata、棉花黃萎病菌Verticillium dahliae、棉花枯萎病菌Fusarium oxysporum,均由南疆有害生物綜合治理兵團(tuán)重點(diǎn)實(shí)驗(yàn)室提供。

1.1.3 培養(yǎng)基 NA培養(yǎng)基:牛肉膏3 g,氯化鈉5 g,蛋白胨10 g,瓊脂20 g,蒸餾水定容至1000 mL。LB液體培養(yǎng)基:蛋白胨10 g,酵母膏5 g,氯化鈉5 g,蒸餾水定容至1000 mL。PDA培養(yǎng)基:馬鈴薯去皮200 g,葡萄糖20 g,瓊脂粉20 g,蒸餾水定容至1000 mL。

1.2 試驗(yàn)方法

1.2.1 拮抗細(xì)菌的分離 稱取土壤樣品10.0 g放入裝有90 mL無菌水和玻璃珠的三角瓶中,于搖床上振蕩30 min后制得土壤樣品懸液,然后按比例制成10-2、10-3、10-4樣品稀釋液。分別吸取100 μL上述處理液于NA培養(yǎng)基上,通過稀釋涂布法分離菌株,30 ℃培養(yǎng)24 h,然后平板上劃線純化、培養(yǎng)并編號(hào),4 ℃存放。

1.2.2 拮抗細(xì)菌的篩選 采用平板對(duì)峙培養(yǎng)法。將保存的細(xì)菌活化培養(yǎng)后,十字交叉等距離(距離病原菌2.5 cm左右)劃線至已接種核桃樹腐爛病病原菌C. chrysosperma的PDA平板上[24],以只接病原菌為對(duì)照,每個(gè)處理3個(gè)重復(fù)。26 ℃恒溫培養(yǎng),待對(duì)照菌絲即將長滿時(shí),觀察菌落形態(tài)并且測(cè)量菌落直徑計(jì)算菌落生長抑菌率。

抑菌率/%=(對(duì)照平板菌落直徑-處理平板菌落直徑)/對(duì)照平板菌落直徑×100。

1.3 拮抗菌株的鑒定

1.3.1 拮抗菌株形態(tài)學(xué)特征和生理生化特性測(cè)定 將活化后的菌株WS-04劃線接種于NA固體培養(yǎng)基上,30 ℃培養(yǎng)24 h,觀察菌落顏色和形態(tài),并參考《伯杰細(xì)菌鑒定手冊(cè)》[25]和《常見細(xì)菌系統(tǒng)鑒定手冊(cè)》[26]測(cè)定生理生化指標(biāo)。

1.3.2 拮抗菌株分子生物學(xué)鑒定 拮抗細(xì)菌基因組DNA提取采用試劑盒(生工生物科技有限公司),采用細(xì)菌通用引物27F5'-AGAGTTTGATCCTGGCTCAG-3';1492R5'-GGTTACCTTGTTACGACTT-3'[27]擴(kuò)增16S rDNA;擴(kuò)增采用50 μL反應(yīng)體系,PCR反應(yīng)條件為95 ℃預(yù)變性3 min,95 ℃變性35 s,55 ℃退火35 s,72 ℃延伸2 min,35個(gè)循環(huán),72 ℃延伸10 min,擴(kuò)增產(chǎn)物用1%的瓊脂糖凝膠電泳,使用凝膠成像儀觀察結(jié)果,最后將檢測(cè)合格的擴(kuò)增產(chǎn)物送至上海生物工程股份有限公司測(cè)序。利用MEGA 11.0軟件采用鄰接法構(gòu)建基于16S基因的系統(tǒng)發(fā)育樹,明確拮抗菌株的分類地位。

1.4 拮抗菌株抑菌譜測(cè)定

采用平板對(duì)峙法對(duì)核桃樹腐爛病另一種病原菌C. nivea、蘋果腐爛病菌V. mali、香梨腐爛病菌V. ambiens、杏樹腐爛病菌C. leucoostoma、沙棗腐爛病菌C. chysosperma、核桃褐斑病菌A. alternata、棉花黃萎病菌V. dahliae、棉花枯萎病菌F. oxysporum開展抑菌率測(cè)定,方法參照1.2.2。

1.5 拮抗菌株生長曲線的測(cè)定

將拮抗菌株用接種環(huán)挑取放入盛有LB液體培養(yǎng)基的250 mL三角瓶中,30 ℃ 200 r·min-1控溫?fù)u床培養(yǎng),每2 h測(cè)量1次OD600,培養(yǎng)80 h,記錄數(shù)據(jù),繪制生長曲線。

1.6 不同濃度梯度發(fā)酵濾液對(duì)病原菌菌絲抑制率測(cè)定

菌懸液的制備:挑取拮抗菌單菌落接種于液體培養(yǎng)基中,30 ℃ 200 r·min-1培養(yǎng)2 d,獲得菌懸液。

發(fā)酵液的制備:取100 μL拮抗菌菌懸液于12 000 r·min-1室溫離心2 min,吸取上清液轉(zhuǎn)接于100 mL的液體培養(yǎng)基中,30 ℃ 200 r·min-1培養(yǎng)2 d后得到發(fā)酵液。

發(fā)酵濾液的制備:將發(fā)酵液4 ℃、12 000 r·min-1離心20 min后取上清液,用0.22 μm濾膜過濾器過濾獲得發(fā)酵濾液,將獲得的發(fā)酵濾液放置于4 ℃冰箱中備用。

將發(fā)酵濾液和融化好的PDA培養(yǎng)基混合,分別配置成發(fā)酵濾液含量為3%、6%、9%、12%、15%的培養(yǎng)基平板,中央接種一個(gè)培養(yǎng)3 d的C. chrysosperma菌餅(直徑5 mm),以不含發(fā)酵濾液的PDA培養(yǎng)基為對(duì)照組,每處理3次重復(fù),26 ℃培養(yǎng)3 d,采取菌絲生長速率法測(cè)定抑菌率。

1.7 拮抗菌株發(fā)酵濾液熱穩(wěn)定性測(cè)定

將5個(gè)裝有10 mL發(fā)酵濾液的離心管,分別置于55、65、75、85、95 ℃溫度條件下水浴30 min,將發(fā)酵濾液與融化冷卻至55 ℃的PDA培養(yǎng)基(1∶3)混合倒板,待培養(yǎng)基凝固后在平板中央放置病原菌菌餅,以沒有進(jìn)行溫度處理的發(fā)酵濾液和PDA培養(yǎng)基(1∶3)混合為陽性對(duì)照,以未加入發(fā)酵濾液的PDA培養(yǎng)基為空白對(duì)照,每個(gè)處理3次重復(fù),26 ℃黑暗培養(yǎng),直至空白對(duì)照組病原菌菌絲長滿平皿后,測(cè)量病原菌菌落直徑,并計(jì)算菌絲生長抑制率。

1.8 發(fā)酵液對(duì)C. chrysosperma菌絲生長的影響

取20 mL冷卻的PDA與5 mL發(fā)酵液混合后,在滅菌載玻片上倒上一層混合液,凝固后用滅菌刀片劃去寬約1 cm的培養(yǎng)基,挑取培養(yǎng)3 d的C. chrysosperma菌絲接種于截面,蓋上蓋玻片,然后置于濕潤的培養(yǎng)皿中26 ℃恒溫培養(yǎng)3 d,以不加發(fā)酵液的PDA為對(duì)照。顯微鏡下觀察菌絲形態(tài)變化。

1.9 發(fā)酵液對(duì)離體枝條的保護(hù)作用

枝條處理:采集健康和粗細(xì)程度均一的2年生核桃枝條,剪成10~15 cm的枝段,在超凈工作臺(tái)用滅菌水沖洗干凈后,用0.6%次氯酸鈉溶液消毒15~20 min后,無菌水再次清洗3~4次,自然晾干。用水浴鍋融化的石蠟封住枝條兩端保濕,靜置晾干備用,整個(gè)過程均在無菌環(huán)境進(jìn)行。

將處理好的枝條用滅菌打孔器(孔徑5 mm)打孔,處理組織用滅菌刷子蘸取適量發(fā)酵液涂刷枝條5次,等整體晾干后在枝條已打好的孔徑處接種核桃樹腐爛病菌菌餅,每個(gè)枝條1個(gè)接種點(diǎn),每個(gè)處理設(shè)置3個(gè)重復(fù)(每重復(fù)為5個(gè)枝條),以LB液體培養(yǎng)基代替發(fā)酵液為對(duì)照,在26 ℃條件下保濕培養(yǎng)15 d后,觀察離體枝條腐爛病的發(fā)生情況,并測(cè)量病斑面積(游標(biāo)卡尺)。

病斑面積/cm2=1/4×π×長徑×短徑。

1.10 菌株WS-04發(fā)酵濾液對(duì)核桃種子和幼苗的促生作用

1.10.1 菌株WS-04對(duì)溫185核桃種子萌芽率、發(fā)芽率和壞種率的影響 選取種仁飽滿、無霉無蟲,且單果質(zhì)量≥12 g的干果作為試驗(yàn)材料,自然晾干。將拮抗菌株WS-04發(fā)酵濾液加入到滅菌蒸餾水,設(shè)置成5個(gè)質(zhì)量濃度(50、150、250、350、450 mg·mL-1),以滅菌蒸餾水處理為對(duì)照,一個(gè)質(zhì)量濃度處理20粒種子,3次重復(fù)。浸泡之前將核桃外殼開口,使其發(fā)酵濾液接觸核桃仁,浸泡1 d后用清水洗凈,放在濕潤的發(fā)芽盒內(nèi),置于30 ℃恒溫培養(yǎng)箱中催芽處理,每日觀察種子發(fā)芽情況,及時(shí)清除腐爛霉變種子。待種子發(fā)芽后,播種于花盆(20 cm×20 cm)中,每穴2粒種子,覆蓋l cm厚基質(zhì)(蛭石∶珍珠巖∶泥炭∶土壤體積比為1∶1∶1∶1)。統(tǒng)計(jì)種子萌動(dòng)情況,計(jì)算種子萌芽率,待種子長出2枚葉子后統(tǒng)計(jì)發(fā)芽率和壞種率。

種子萌芽率/%=(催芽后種子露白數(shù)/供試種子數(shù))×100;

發(fā)芽率/%=(發(fā)芽總粒數(shù)/供試種子數(shù))×100;

壞種率/%=(種子霉?fàn)€數(shù)/供試種子數(shù))×100。

1.10.2 菌株WS-04發(fā)酵濾液對(duì)核桃幼苗的促生作用 帶殼核桃種子的預(yù)處理:將帶殼核桃使用核桃夾輕輕裂開,避免核桃仁接觸不到拮抗菌發(fā)酵濾液。以150 mg·mL-1拮抗菌發(fā)酵濾液為試驗(yàn)組,以未添加拮抗菌發(fā)酵濾液的培養(yǎng)基為對(duì)照,25粒核桃種子為一個(gè)處理,5次重復(fù)。

浸種催芽處理:核桃種子用75%乙醇表面消毒30 s,無菌水漂洗3次。30 ℃溫水浸種4~5 h,種子于28 ℃催芽。種子發(fā)芽后,播種于穴盤(32孔,6 cm×4.5 cm)中,每穴1粒種子,覆蓋l cm厚基質(zhì)(蛭石∶珍珠巖∶泥炭∶土壤體積比為1∶1∶1∶1)。

促生苗處理:(1)穴盤苗處理。將催芽處理的核桃種子播種于穴盤,開始澆灌拮抗菌發(fā)酵濾液(試驗(yàn)組澆灌150 mg·mL-1發(fā)酵濾液,對(duì)照澆灌水),每次每穴澆灌50 mL、每5 d澆灌一次,待種子生長20 d后,將穴盤幼苗移栽至室外大田盆栽。

(2)盆栽苗處理。于2023年7月將穴盤盆栽核桃幼苗移栽到塔里木大學(xué)節(jié)水灌溉試驗(yàn)田(直徑為40 cm花盆),澆灌3次發(fā)酵濾液每次每盆500 mL(每10 d 1次),核桃幼苗移栽生長90 d后,于2023年9月隨機(jī)選擇5株幼苗測(cè)量干質(zhì)量、苗高、主根長、須根數(shù)等生物學(xué)指標(biāo)。拔出核桃幼苗時(shí)保證植株的完整性,對(duì)核桃幼苗的根系整理時(shí),用無菌水緩慢沖洗,確保根部的完整性。

1.11 數(shù)據(jù)處理

利用Excel和DPS軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)和分析,利用MEGA 11.0建立系統(tǒng)發(fā)育樹。

2 結(jié)果與分析

2.1 拮抗菌株分離和篩選

采用稀釋涂布平板法總共分離得到細(xì)菌157株,平皿對(duì)峙獲得5株對(duì)C. chysosperma有較強(qiáng)拮抗作用的菌株,其抑菌率超過70%(表1)。其中菌株WS-04對(duì)C. chysosperma抑制作用最強(qiáng)(圖1),抑制率達(dá)到87.00%。因此本研究中選定菌株WS-04進(jìn)一步開展后續(xù)研究。

2.2 拮抗菌株WS-04的鑒定

2.2.1 形態(tài)特征觀察 在LB固體培養(yǎng)基上培養(yǎng)24 h后可形成1.2 mm菌落,菌落橙色,圓形,表面凸起,光滑,較黏稠,易挑起,邊緣整齊,電鏡掃描菌體形態(tài)為桿狀(圖2)。生理生化測(cè)定結(jié)果表明,菌株可利用分解無機(jī)磷、蛋白酶、鐵載體、明膠、多糖、M.R、蔗糖、精氨酸、酯酶、氧化酶、檸檬酸鹽。最適生長鹽含量(w)為0%~6% NaCl,最適生長pH為7.0~7.5(表2)。

2.2.2 分子生物學(xué)鑒定 16S rRNA基因序列測(cè)序后提交GenBank獲得登錄號(hào)PP059680,同源性比對(duì)結(jié)果顯示菌株WS-04與綠針假單胞菌P. chlororaphis的同源率為99%。以Bacillus subtilis為外群構(gòu)建系統(tǒng)發(fā)育樹,菌株WS-04與綠針假單胞菌P. chlororaphis聚在同一分支(圖3),表明WS-04與P. chlororaphis的親緣關(guān)系最近,結(jié)合形態(tài)特征、生理生化特征和分子鑒定結(jié)果,最終將菌株WS-04鑒定為綠針假單胞菌P. chlororaphis。

2.3 拮抗菌株WS-04抑菌譜的測(cè)定

抑菌譜測(cè)定結(jié)果表明,拮抗菌株WS-04對(duì)8種供試病原菌的抑制率均高于75%(表3)。其中對(duì)C. nivea、V. mali、V. ambiens、V. dahliae、C. chrysosperma、A. alternata病原菌的抑制率超過80%,說明菌株WS-04具有較好廣譜拮抗效果(圖4)。

2.4 拮抗菌株WS-04生長曲線的測(cè)定

菌株WS-04的生長曲線如圖5所示,在0~6 h菌株生長緩慢,進(jìn)入生長延滯期;6 h以后細(xì)菌快速生長,48 h達(dá)到生長高峰期,隨后進(jìn)入生長穩(wěn)定期;自58 h以后菌體數(shù)量逐漸減少進(jìn)入衰亡期。研究表明菌株在48~58 h菌懸液數(shù)量最多而且活性強(qiáng)。

2.5 不同濃度梯度發(fā)酵濾液對(duì)病原菌菌絲的抑制率

采用菌絲生長速率法測(cè)定不同濃度梯度發(fā)酵濾液對(duì)C. chrysosperma菌絲生長的抑菌率。結(jié)果表明不同濃度梯度發(fā)酵濾液對(duì)菌絲均具有較好抑制效果(圖6),且隨著濃度升高,其抑制效果越明顯,最高抑制率達(dá)到93.65%(表4)。

2.6 拮抗菌WS-04發(fā)酵濾液熱穩(wěn)定性測(cè)定

由圖7可知,菌株WS-04發(fā)酵濾液在不同水浴溫度處理后,其抑制率隨溫度升高而下降,但對(duì)C. chrysosperma的抑制率均在85%以上,表現(xiàn)出良好的熱穩(wěn)定性(圖7-A、B)。但是95 ℃處理30 min后,其抑制率明顯降低。綜上可知,拮抗菌WS-04發(fā)酵濾液經(jīng)溫度梯度處理以后,對(duì)C. chrysosperma的抑制率有一定的影響,說明溫度升高會(huì)導(dǎo)致發(fā)酵濾液中抑菌成分逐漸喪失活性。

2.7 拮抗菌WS-04發(fā)酵液對(duì)C. chrysosperma菌絲生長的影響

由圖8可以看出,C. chrysosperma的菌絲在混合培養(yǎng)基上生長3 d后,菌絲頂端膨大出現(xiàn)皺縮,局部菌絲彎曲變畸,菌絲出現(xiàn)嚴(yán)重消融的現(xiàn)象,菌絲無法正常生長(圖8-B、C、E);而對(duì)照組C. chrysosperma菌絲細(xì)長均勻且表面光滑,形態(tài)飽滿而完整,能正常生長(圖8-A、D)。

2.8 離體枝條保護(hù)試驗(yàn)

離體枝條保護(hù)試驗(yàn)表明(圖9),菌株WS-04對(duì)核桃腐爛病具有很好的預(yù)防效果,用菌株WS-04發(fā)酵液處理過的病斑平均面積為0.85 cm2(圖9-B),而對(duì)照病斑平均面積達(dá)到6.32 cm2(圖9-A),防治效果為84.96%(表5)。

2.9 拮抗菌株WS-04發(fā)酵濾液對(duì)核桃種子和幼苗的促生作用

2.9.1 拮抗菌株WS-04對(duì)核桃種子萌芽率、發(fā)芽率和壞種率的影響 由圖10-A可知,帶殼核桃種子在拮抗菌發(fā)酵濾液的處理下,隨著菌發(fā)酵濾液質(zhì)量濃度的增加,其萌芽率呈現(xiàn)先上升后下降的趨勢(shì),而且處理質(zhì)量濃度在150 mg·mL-1和250 mg·mL-1左右時(shí)能顯著提高核桃種子萌芽率。綠針假單胞菌WS-04不同質(zhì)量濃度發(fā)酵濾液處理后的種子萌芽情況為250 mg·mL-1>150 mg·mL-1>350 mg·mL-1>50 mg·mL-1>450 mg·mL-1,各處理均顯著高于對(duì)照(p<0.05)。因此綠針假單胞菌WS-04具有促進(jìn)核桃種子萌芽的作用。

由圖10-B可知,帶殼核桃種子在拮抗菌不同質(zhì)量濃度發(fā)酵濾液處理下,發(fā)芽率隨質(zhì)量濃度增加呈現(xiàn)先升后降的趨勢(shì)。綠針假單胞菌WS-04發(fā)酵濾液在50~150 mg·mL-1范圍內(nèi),核桃種子發(fā)芽率逐漸升高,當(dāng)發(fā)酵濾液質(zhì)量濃度超過250 mg·mL-1時(shí)其發(fā)芽率逐漸減弱。拮抗菌發(fā)酵濾液質(zhì)量濃度在150~250 mg·mL-1之間時(shí),對(duì)核桃種子發(fā)芽有著明顯促進(jìn)作用。由圖10-C可知,隨著發(fā)酵濾液質(zhì)量濃度增加,核桃種子壞種率呈現(xiàn)出先下降后略微升高的趨勢(shì)。綠針假單胞菌WS-04在質(zhì)量濃度為150 mg·mL-1時(shí)的壞種率最低為6.68%。當(dāng)拮抗菌發(fā)酵濾液質(zhì)量濃度大于150 mg·mL-1以后壞種率呈現(xiàn)上升趨勢(shì),但各質(zhì)量濃度處理后的壞種率均顯著低于對(duì)照(p<0.05)。

2.9.2 菌株WS-04發(fā)酵濾液對(duì)核桃幼苗的促生作用 由表6可知,用綠針假單胞菌WS-04處理后的核桃幼苗的平均生長指標(biāo)(圖11),其苗高為16.97 cm、主根長18.7 cm、須根數(shù)為12.33條、葉片面積為65.51 cm2、干質(zhì)量為3.73 g。而對(duì)照組核桃幼苗的苗高為13.53 cm,主根長為10.20 cm,須根數(shù)為8.33條,葉片面積為52.51 cm2,干質(zhì)量為2.33 g。與對(duì)照相比,其苗高、主根長、須根數(shù)、葉片面積和干質(zhì)量顯著增加,其依次增加了25.42%、83.33%、48.02%、24.76%和98.40%。

3 討 論

從核桃園土壤中分離篩選到一株對(duì)核桃腐爛病有較強(qiáng)拮抗作用,同時(shí)又能提高核桃萌芽率并降低壞種率的綠針假單胞菌WS-04,該菌株可使C. chrysosperma菌絲消融、萎縮、畸變,其抑制率達(dá)到87.00%,核桃離體枝條腐爛病防效亦達(dá)到84.96%。經(jīng)過綠針假單胞菌WS-04發(fā)酵濾液處理過的核桃種子,其萌芽率和發(fā)芽率明顯提高,同時(shí)壞種率也明顯下降。這是首次報(bào)道綠針假單胞菌在核桃上的應(yīng)用,但綠針假單胞菌的發(fā)酵條件、不同環(huán)境核桃園根際定殖能力以及防病促生的機(jī)制還有待進(jìn)一步深入研究。

生物防治是實(shí)現(xiàn)植物病害綠色防控的有效手段,發(fā)掘?qū)Σ≡锞哂修卓棺饔玫挠幸嫖⑸锸菍?shí)施生物防治的前提[28]。很多具有拮抗作用的微生物產(chǎn)生的抗菌物質(zhì)對(duì)真菌菌絲形態(tài)有明顯破壞作用,如P. chlororaphis CY02處理水稻稻瘟病菌后,導(dǎo)致分生孢子干癟畸形,菌絲腫脹,隔膜不清晰[29]。Broadbent等[30]發(fā)現(xiàn)假單胞桿菌(Pseudomonas spp.)主要作用機(jī)制是菌株產(chǎn)生的抗菌素有溶解煙草黑脛病菌菌絲的功能。假紫色色桿菌的菌株發(fā)酵液處理紋枯菌菌絲后,菌絲變形扭曲,萎縮并局部腫脹[31]。綠針假單胞菌菌株SPS-41產(chǎn)生的揮發(fā)性氣體3-甲基-1-丁醇、2-甲基-1-丁醇和苯乙醇對(duì)甘薯黑斑病病菌有顯著的拮抗作用[32]。筆者在本研究中從核桃園土壤中分離到一株綠針假單胞菌WS-04,該菌株能夠使C. chrysosperma菌絲嚴(yán)重畸變甚至消融,表現(xiàn)出了很好的抑菌效果,核桃離體枝條腐爛病的防治效果也非常好,而且還具有一定的熱穩(wěn)定性,該菌株展現(xiàn)出了良好的生物防治前景。綠針假單胞菌WS-04發(fā)酵濾液經(jīng)5個(gè)溫度梯度處理30 min后,隨著溫度升高,對(duì)C. chrysosperma的抑制率有所下降,但是抑制率均在80%以上,表現(xiàn)出良好的熱穩(wěn)定性。史娜艷從核桃樹分離篩選的枯草芽孢桿菌不僅能有效防治真菌病害且還具有熱穩(wěn)定性。說明枯草芽孢桿菌和綠針假單胞菌具有相似的生理特性[21],但是筆者在本研究中發(fā)現(xiàn)假單胞菌會(huì)提前產(chǎn)生大量色素限制病原菌菌絲的生長[21]。李寶燕等[33]篩選獲得一株對(duì)果樹病害具有較好防治作用的綠針假單胞菌YTBTa14,菌株發(fā)酵濾液經(jīng)溫度梯度處理表現(xiàn)出較好的熱穩(wěn)定性,這與本研究結(jié)論一致。但是綠針假單胞菌與核桃腐爛病菌的作用方式與抑菌機(jī)制還不清楚,同時(shí)實(shí)驗(yàn)室條件下的抑菌試驗(yàn)和接種試驗(yàn),與大田環(huán)境完全不同,綠針假單胞菌能否在大田中發(fā)揮其穩(wěn)定的作用,也需要進(jìn)一步研究。

一些拮抗菌株在對(duì)病原物產(chǎn)生破壞作用的同時(shí),還能產(chǎn)生對(duì)植物起到很好促生作用的次生代謝產(chǎn)物。如番茄根際P. piscium不僅具有抑制尖孢鐮刀菌的能力,而且還有較強(qiáng)的溶磷作用,因此能有效促進(jìn)盆栽番茄苗的生長[34]。綠針假單胞菌能夠產(chǎn)生吩嗪化合物、鐵載體、揮發(fā)性物質(zhì)等,對(duì)番茄、玉米、小麥等多種農(nóng)作物具有促生的功能[35-37]。本研究中分離到的綠針假單胞菌,其發(fā)酵液能夠有效促進(jìn)核桃種子萌芽,同時(shí)還能大大降低壞種率,為核桃育好苗、培壯苗提供了優(yōu)異的生物制劑材料,而且菌株發(fā)酵濾液能促進(jìn)核桃幼苗苗高、主根長、須根數(shù)、葉片面積和干質(zhì)量顯著增加,依次增加了25.40%、83.33%、48.02%、24.76%和98.40%。王娟等[38]從小麥根際篩選的綠針假單胞菌P. chlororaphis HG28-5在盆栽防病試驗(yàn)中對(duì)辣椒疫病具有明顯的防治效果。秦娟娟等[39]研究發(fā)現(xiàn)熒光假單孢桿菌XG32,以卡拉膠和草炭為菌劑,處理組的辣椒苗在株高、根長、鮮質(zhì)量和干質(zhì)量等方面都有顯著提高。Wu等[40]從鐵皮石斛中提取的內(nèi)生細(xì)菌銅綠假單胞菌P. saponiphila,具有促進(jìn)辣椒幼苗生長的功能,以上研究結(jié)論與本研究結(jié)果一致。但是綠針假單胞菌促進(jìn)核桃種子萌發(fā)的原因是什么?其作用機(jī)制如何還有待進(jìn)一步深入研究。

4 結(jié) 論

從新疆阿克蘇地區(qū)30年樹齡核桃園土壤中分離并篩選出一株具有廣譜抗菌、熱穩(wěn)定性的生防細(xì)菌綠針假單胞菌。通過促生特性試驗(yàn),表明綠針假單胞菌(P. chlororaphis)發(fā)酵濾液不僅有效促進(jìn)核桃種子萌芽和發(fā)芽,同時(shí)還能促進(jìn)核桃幼苗的苗高、主根長、須根數(shù)、葉片面積和干質(zhì)量顯著增加。

參考文獻(xiàn)References:

[1] 郗榮庭,張毅萍. 中國果樹志-核桃卷[M]. 北京:中國林業(yè)出版社,1996:59-63.

QIE Rongting,ZHANG Yiping. Chinese fruit trees-walnut roll[M]. Beijing:China Forestry Publishing House,1996:59-63.

[2] 新疆維吾爾自治區(qū)統(tǒng)計(jì)局. 新疆統(tǒng)計(jì)年鑒[M].北京:中國統(tǒng)計(jì)出版社,2022:169-202.

Bureau of Statistics of Xinjiang Uygur Autonomous Region. Xinjiang statistical yearbook [M].Beijing:China Statistics Press,2022:169-202.

[3] 馬榮,王陽陽,劉曉琳,胡建新,吐爾孫江·買買提艾力. 新疆核桃樹腐爛病拮抗細(xì)菌的篩選及初步鑒定[J]. 新疆農(nóng)業(yè)科學(xué),2015,52(5):895-901.

MA Rong,WANG Yangyang,LIU Xiaolin,HU Jianxin,Tuersunjiang·Maimaitiaili. Isolation and identification of the antagonistic bacteria against walnut canker in Xinjiang[J]. Xinjiang Agricultural Sciences,2015,52(5):895-901.

[4] 馬瑜,柯楊,王琴,李勃,李毅. 核桃潰瘍病癥狀及其病原菌鑒定[J]. 果樹學(xué)報(bào),2014,31(3):443-447.

MA Yu,KE Yang,WANG Qin,LI Bo,LI Yi. A stem canker disease of walnut (Juglans regia) caused by Botryosphaeria dothidea[J]. Journal of Fruit Science,2014,31(3):443-447.

[5] 張海軍,陳春艷,謝映平,田忠科. 核桃腐爛病病原菌的分離與鑒定[J]. 中國植保導(dǎo)刊,2018,38(9):17-20.

ZHANG Haijun,CHEN Chunyan,XIE Yingping,TIAN Zhongke. Isolation and identification of pathogen of walnut rot disease[J]. China Plant Protection,2018,38(9):17-20.

[6] 郭靖,張王斌,張琦,唐俊煜,李亞鵬,郭眾仲. 五種殺菌劑對(duì)庫爾勒香梨腐爛病的防效[J]. 北方園藝,2014(11):103-105.

GUO Jing,ZHANG Wangbin,ZHANG Qi,TANG Junyu,LI Yapeng,GUO Zhongzhong. Control effect of five fungicides rot disease prevention on Korla pear[J]. Northern Horticulture,2014(11):103-105.

[7] 楊曉蕾,錢國良,范加勤,胡白石,劉鳳權(quán). 梨黑斑病菌拮抗細(xì)菌的篩選鑒定及其拮抗活性的研究[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2014,37(1):68-74.

YANG Xiaolei,QIAN Guoliang,F(xiàn)AN Jiaqin,HU Baishi,LIU Fengquan. Selection and identification of antagonist Alternaria alternate and initial analysis of its antipathogenic activity[J]. Journal of Nanjing Agricultural University,2014,37(1):68-74.

[8] 嚴(yán)婉榮,趙廷昌,肖彤斌,肖敏,趙志祥,陳綿才. 生防細(xì)菌在植物病害防治中的應(yīng)用[J]. 基因組學(xué)與應(yīng)用生物學(xué),2013,32(4):533-539.

YAN Wanrong,ZHAO Tingchang,XIAO Tongbin,XIAO Min,ZHAO Zhixiang,CHEN Miancai. Applications of biocontrol bacteria in plant disease control[J]. Genomics and Applied Biology,2013,32(4):533-539.

[9] 張力群,張俊威. 假單胞菌產(chǎn)生的抗生素[J]. 中國生物防治學(xué)報(bào),2015,31(5):750-756.

ZHANG Liqun,ZHANG Junwei. Antibiotics produced by Pseudomonas spp.[J]. Chinese Journal of Biological Control,2015,31(5):750-756.

[10] YU Y Y,JIANG C H,WANG C,CHEN L J,LI H Y,XU Q,GUO J H. An improved strategy for stable biocontrol agents selecting to control rice sheath blight caused by Rhizoctonia solani[J]. Microbiological Research,2017,203:1-9.

[11] 李永斌,李云龍,關(guān)國華,陳三鳳. 植物根際促生菌的篩選、鑒定及其對(duì)小麥的減肥增產(chǎn)效果[J]. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2020,28(8):1471-1476.

LI Yongbin,LI Yunlong,GUAN Guohua,CHEN Sanfeng. Screening,identification of plant growth promoting rhizobacteria and its effect on reducing fertilization while increasing efficiency in wheat (Triticum aestivum)[J]. Journal of Agricultural Biotechnology,2020,28(8):1471-1476.

[12] 劉程程,王媛花,張?chǎng)╂?,?chǔ)西平,明亮. 草莓炭疽病拮抗菌SKL108的分離、鑒定及拮抗活性[J]. 江蘇農(nóng)業(yè)科學(xué),2020,48(10):125-130.

LIU Chengcheng,WANG Yuanhua,ZHANG Wenting,CHU Xiping,MING Liang. Screening,identification and evaluation of antagonistic bacteria SKL108 against strawberry anthracnose[J]. Jiangsu Agricultural Sciences,2020,48(10):125-130.

[13] 李靜,馮淑杰,肖晶,陳維信,劉愛媛. 小白菜內(nèi)生假單胞菌XBC-PS的生防作用[J]. 中國蔬菜,2007(5):21-23.

LI Jing,F(xiàn)ENG Shujie,XIAO Jing,CHEN Weixin,LIU Aiyuan. The biological control effect of endophytic Pseudomonas XBC-PS from pakchoi[J]. China Vegetables,2007(5):21-23.

[14] 胡菁. 惡臭假單胞菌A1在番茄青枯病生物防治中的應(yīng)用[D]. 福州:福建農(nóng)林大學(xué),2017.

HU Jing. Application of Pseudomonas putida A1 in biological control of bacterial wilt disease[D]. Fuzhou:Fujian Agriculture and Forestry University,2017.

[15] 張偉瓊,聶明,肖明. 熒光假單胞菌生防機(jī)理的研究進(jìn)展[J]. 生物學(xué)雜志,2007,24(3):9-11.

ZHANG Weiqiong,NIE Ming,XIAO Ming. Advances in biocontrol mechanism of Pseudomonas fluorescens[J]. Journal of Biology,2007,24(3):9-11.

[16] ILHAN K,KARABULUT O A. Efficacy and population monitoring of bacterial antagonists for gray mold (Botrytis cinerea Pers. ex. Fr.) infecting strawberries[J]. BioControl,2013,58(4):457-470.

[17] 魏海雷,張力群. 熒光假單胞桿菌2P24中生防相關(guān)調(diào)控基因gacS的克隆和功能分析[J]. 微生物學(xué)報(bào),2005,45(3):368-372.

WEI Hailei,ZHANG Liqun. Cloning and functional characterization of the gacS gene of the biocontrol strain Pseuodomonas fluorescens 2P24[J]. Acta Microbiologica Sinica,2005,45(3):368-372.

[18] 冉隆賢,向妙蓮,周斌,AHMBAKKER P. 熒光假單胞桿菌的嗜鐵素是控制桉樹灰霉病的主要因子[J]. 植物病理學(xué)報(bào),2005,35(1):6-12.

RAN Longxian,XIANG Miaolian,ZHOU Bin,AHMBAKKER P. Siderophores are the main determinants of fluorescent Pseudomonas strains in suppression of grey mould in Eucalyptus urophylla[J]. Acta Phytopathologica Sinica,2005,35(1):6-12.

[19] 劉艷萍,滕松山,趙蕾. 高產(chǎn)嗜鐵素惡臭假單胞菌A3菌株的鑒定及其對(duì)黃瓜的促生作用[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2011,17(6):1507-1514.

LIU Yanping,TENG Songshan,ZHAO Lei. Identification of a siderophore-producing bacterium Pseudomonas putida A3 and its growth-promoting effects on cucumber seedlings[J]. Plant Nutrition and Fertilizer Science,2011,17(6):1507-1514.

[20] 楊藝煒. 綠針假單胞菌XF10對(duì)煙草黑脛病菌的拮抗作用研究[D]. 北京:中國農(nóng)業(yè)科學(xué)院,2018.

YANG Yiwei. Antagonic effect of Pseudomonas chlororaphis XF10 on Phytophthora parasitica var. nicotianae[D]. Beijing:Chinese Academy of Agricultural Sciences,2018.

[21] 史娜艷. 阿克蘇地區(qū)核桃樹腐爛病優(yōu)勢(shì)致病菌群分析及其生防菌篩選[D]. 阿拉爾:塔里木大學(xué),2023.

SHI Nayan. Analysis of dominant pathogen community causing walnut canker disease and screening of biocontrol bacteria in Aksu[D]. Alar:Tarim University,2023.

[22] 展麗然,張克誠,冉隆賢,石義萍. 蘋果腐爛病菌拮抗放線菌的分離與鑒定[J]. 河北林果研究,2008,23(2):182-186.

ZHAN Liran,ZHANG Kecheng,RAN Longxian,SHI Yiping. Isolation and identification of the antagonistic actinomycetes against Valsa mali[J]. Hebei Journal of Forestry and Orchard Research,2008,23(2):182-186.

[23] 程亮,游春平,肖愛萍. 拮抗細(xì)菌的研究進(jìn)展[J]. 江西農(nóng)業(yè)大學(xué)學(xué)報(bào),2003,25(5):732-737.

CHENG Liang,YOU Chunping,XIAO Aiping. Advance in the study on antagonistic bacteria[J]. Acta Agriculturae Universitis Jiangxiensis,2003,25(5):732-737.

[24] 李燕,歐婷,焦文蓮,張克瑤,劉曉姣,謝潔. 桑樹內(nèi)生枯草芽孢桿菌的分離鑒定及其對(duì)桑椹菌核病的生防機(jī)理[J]. 微生物學(xué)報(bào),2024,64(9):3253-3268.

LI Yan,OU Ting,JIAO Wenlian,ZHANG Keyao,LIU Xiaojiao,XIE Jie. Isolation and identification of an endophytic Bacillus subtilis from mulberry and preliminary exploration of its biocontrol mechanisms against mulberry fruit sclerotiniose[J]. Acta Microbiologica Sinica,2024,64(9):3253-3268.

[25] 布坎南,吉本斯. 伯杰細(xì)菌鑒定手冊(cè)[M]. 中國科學(xué)院微生物研究所《伯杰細(xì)菌鑒定手冊(cè)》翻譯組,譯. 8版. 北京:科學(xué)出版社,1984.

Buchanan R E,GIBBONS N E.. Bergey’s manual of determinative bacteriology[M]. Institute of Microbiology, Chinese Academy of Sciences Bergey’s manual of determinative bacteriology. 8th ed. Beijing:Science Press,1984.

[26] 東秀珠,蔡妙英. 常見細(xì)菌系統(tǒng)鑒定手冊(cè)[M]. 北京:科學(xué)出版社,2001:349-398.

DONG Xiuzhu,CAI Miaoying. Common bacterial identifcation system manual[M]. Beijing:Science Press,2001:349-398.

[27] SELIGER H,GELFAND D H,SINSKY J J,WHITE T J. PCR Protocols:A guide to methods and applications[M]. San Diego,CA:Academic Press,1990:335-335.

[28] 卯婷婷,陶剛,趙興麗,王琦,李世東. 4種微生物菌劑對(duì)辣椒主要病害的生物防治作用[J]. 中國生物防治學(xué)報(bào),2020,36(2):258-264.

MAO Tingting,TAO Gang,ZHAO Xingli,WANG Qi,LI Shidong. Biological control of four kinds of microbial preparations against main diseases of pepper[J]. Chinese Journal of Biological Control,2020,36(2):258-264.

[29] 張望月,高健,張超,張友明,胡勝標(biāo),李嵐嵐,孫運(yùn)軍,丁學(xué)知,夏立秋. 五種假單胞菌的分離鑒定及其生物活性[J]. 微生物學(xué)報(bào),2013,53(9):957-965.

ZHANG Wangyue,GAO Jian,ZHANG Chao,ZHANG Youming,HU Shengbiao,LI Lanlan,SUN Yunjun,DING Xuezhi,XIA Liqiu. Isolation,identification and characterization of five Pseudomonas strains[J]. Acta Microbiologica Sinica,2013,53(9):957-965.

[30] BROADBENT P,BAKER K F,WATERWORTH Y. Bacteria and actinomycetes antagonistic to fungal root pathogens in Australian soils[J]. Australian Journal of Biological Sciences,1971,24(5):925-944.

[31] 謝宗華,高健,王金宇,彭喜旭,唐新科,王海華. 一株水稻紋枯菌拮抗細(xì)菌的分離與鑒定[J]. 微生物學(xué)通報(bào),2012,39(4):477-485.

XIE Zonghua,GAO Jian,WANG Jinyu,PENG Xixu,TANG Xinke,WANG Haihua. Isolation and identification of an antagonistic bacterium against Rhizoctonia solani,the causing agent of rice sheath blight[J]. Microbiology China,2012,39(4):477-485.

[32] ZHANG Y,LI T J,LIU Y F,LI X Y,ZHANG C M,F(xiàn)ENG Z Z,PENG X,LI Z Y,QIN S,XING K. Volatile organic compounds produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 as biological fumigants to control Ceratocystis fimbriata in postharvest sweet potatoes[J]. Journal of Agricultural and Food Chemistry,2019,67(13):3702-3710.

[33] 李寶燕,王英姿,王培松. 一種具有廣譜抗菌活性的綠針假單胞菌及其應(yīng)用:CN107099474B[P]. 2019-12-31.

LI Baoyan,WANG Yingzi,WANG Peisong. A Pseudomonas viridans with broad-spectrum antimicrobial activity and its application:CN107099474B[P]. 2019-12-31.

[34] 李鳳. 番茄根際微生物組分析及防病促生菌的篩選[D]. 濟(jì)南:齊魯工業(yè)大學(xué),2022.

LI Feng. Analysis of tomato rhizosphere microbiome and screening of functional bacteria for disease control and growth promotion[D]. Jinan:Qilu University of Technology,2022.

[35] 王婧,方蕊,蔣秋悅,肖明. 載體和保護(hù)劑對(duì)橘黃假單胞菌JD37微生物肥料活性的影響[J]. 上海師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,41(2):179-185.

WANG Jing,F(xiàn)ANG Rui,JIANG Qiuyue,XIAO Ming. Effects of carrier and protective agent on the biological activities of Pseudomonas aurantiaca JD37 strain microbial fertilizer[J]. Journal of Shanghai Normal University (Natural Sciences),2012,41(2):179-185.

[36] GAO X Y,LIU Y,MIAO L L,LI E W,SUN G X,LIU Y,LIU Z P. Characterization and mechanism of anti-Aeromonas salmonicida activity of a marine probiotic strain,Bacillus velezensis V4[J]. Applied Microbiology and Biotechnology,2017,101(9):3759-3768.

[37] ZHANG Y,LI T J,XU M J,GUO J H,ZHANG C M,F(xiàn)ENG Z Z,PENG X,LI Z Y,XING K,QIN S. Antifungal effect of volatile organic compounds produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 on oxidative stress and mitochondrial dysfunction of Ceratocystis fimbriata[J]. Pesticide Biochemistry and Physiology,2021,173:104777.

[38] 王娟,劉東平,丁方麗,李嫚,張忠良,史洪中,申順善. 綠針假單胞菌HG28-5對(duì)辣椒生長及根際土壤微生態(tài)的影響[C]//河南省植物保護(hù)學(xué)會(huì)第十一次會(huì)員代表大會(huì)暨學(xué)術(shù)討論會(huì)、河南省昆蟲學(xué)會(huì)第十次會(huì)員代表大會(huì)暨學(xué)術(shù)討論會(huì)、河南省植物病理學(xué)會(huì)第五次會(huì)員代表大會(huì)暨學(xué)術(shù)討論會(huì)論文集. 許昌,2017:21.

WANG Juan,LIU Dongping,DING Fangli,LI Man,ZHANG Zhongliang,SHI Hongzhong,SHEN Shunshan. Effect of Pseudomonas verinens HG 28-5 on pepper growth and soil microgrowth in the rhizosphere[C]//The 11th Member Congress and Academic Symposium of Henan Society of Plant Protection,The 10th Member Congress and Academic Symposium of Henan Society of Entomological,Proceedings of the fifth Member Congress and Academic Symposium of Henan Society of Plant Pathology. Xuchang,2017:21.

[39] 秦娟娟,閆淑珍,劉佳. 植物內(nèi)生細(xì)菌固體菌劑對(duì)辣椒的促生和防病作用[J]. 植物保護(hù)學(xué)報(bào),2010,37(4):325-330.

QIN Juanjuan,YAN Shuzhen,LIU Jia. The growth-promotion on pepper and control of Phytophthora capsici by endophytic bacterium agents[J]. Journal of Plant Protection,2010,37(4):325-330.

[40] WU L Q,SHANG H Z,WANG Q,GU H K,LIU G J,YANG S L. Isolation and characterization of antagonistic endophytes from Dendrobium candidum Wall ex Lindl. ,and the biofertilizing potential of a novel Pseudomonas saponiphila strain[J]. Applied Soil Ecology,2016,105:101-108.

苍溪县| 怀安县| 株洲市| 来宾市| 湖州市| 元朗区| 绍兴县| 梅州市| 南投县| 永泰县| 夏河县| 若羌县| 建德市| 昆山市| 慈溪市| 孙吴县| 阜平县| 台南县| 水富县| 太康县| 奉化市| 鄂伦春自治旗| 龙岩市| 扎鲁特旗| 江华| 新余市| 嘉黎县| 卢湾区| 武功县| 齐齐哈尔市| 马公市| 日照市| 南涧| 东海县| 临高县| 洞头县| 郓城县| 新野县| 泰州市| 双鸭山市| 张家口市|