国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

桃果實紅色形成的分子機(jī)制研究進(jìn)展

2025-03-03 00:00:00郭天發(fā)仇倩倩堵墨馬曉鋒吳翠云
果樹學(xué)報 2025年1期
關(guān)鍵詞:遺傳變異紅色

摘 " "要:中國是桃的原產(chǎn)地,有著豐富的桃種質(zhì)資源,尤其是果皮和果肉顏色類型多樣,為中國桃提供了優(yōu)異的種質(zhì)資源。桃果皮和果肉的紅色多少由花色苷含量決定,而花色苷的合成積累主要由遺傳因子決定,另一方面光照、溫度、激素及糖等因子也影響其合成??偨Y(jié)了前人在桃果皮和果肉紅色形成的遺傳變異、影響因素以及花色苷合成的分子調(diào)控機(jī)制等方面的研究進(jìn)展,以期為桃果實顏色性狀的精準(zhǔn)鑒定以及紅色桃種質(zhì)創(chuàng)新提供參考。

關(guān)鍵詞:桃;紅色;花色苷;遺傳變異;調(diào)控機(jī)制

中圖分類號:S662.1 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2025)01-0185-11

Research progress on the molecular mechanism of red color formation in peach fruit

GUO Tianfa1, 2, QIU Qianqian1, DU Mo3*, MA Xiaofeng3, WU Cuiyun1*

(1College of Horticulture and Forestry, Tarim University/The National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in South Xinjiang, Alar 843300, Xinjiang, China; 2Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China; 3Agricultural Development Service Center, Huishan District, Wuxi 214100, Jiangsu, China)

Abstract: The peach Prunus persica (Rosaceae) is an important deciduous fruit tree native to China, where many wild varieties provide excellent genetic resources for peach-breeding programs. Colors of these varieties vary widely including reds, yellows, greens, and whites. Of them, red color is generated mainly by accumulation of anthocyanin, a natural water-soluble pigment that occurs widely in plants. The color of anthocyanin varies depending on pH, temperature and other conditions. The pigment also has medicinal properties such as prevention of cardiovascular disease, relieving vision, and enhancing immunity. The greater the anthocyanin content, the deeper the red color. When the fruit is green, white or yellow, anthocyanin contents are low. The common anthocyanin pigments in peach are primarily cyanindin and elargonidin, and secondarily delphinidin, peonidin, petunidin, and malvidin. Anthocyanin synthesis is mainly affected by genetics, with PpMYB10.1 serving as the key transcription factor in peach. However, synthesis is also affected by light, temperature, hormones, sugar, and mineral elements. Anthocyanin plays an important role in people’s health, and studies on red color production in peach fruit benefits breeding programs. While China’s first early maturity and low-acid red-fleshed peach variety Jinling xuepan has taken China’s peach-breeding research to a new level. However, further enriching the diversity of peach fruit color should also be considered in breeding programs. In this paper, we review the studies on genetic variation and regulatory mechanisms related to formation of red color in peach pericarp and pulp to improve the identification of genotypes affecting peach fruit color, and innovation in peach-red-germplasm in breeding programs.

Key words: Peach; Red color; Anthocyanin; Genetic variation; Regulation mechanism

桃[Prunus persica (L.) Batsch]為薔薇科(Rosaceae)李屬(Prunus)桃亞屬(Persica)植物,原產(chǎn)于中國[1],有眾多野生資源、地方品種及育成品種[2-3]。據(jù)統(tǒng)計,2021年中國桃種植面積和產(chǎn)量為82.50萬hm2、1 601.65萬t,分別占全球比重的54.83%、64.08%。在品種結(jié)構(gòu)上,近年中國培育出“果個大、產(chǎn)量高、耐貯運(yùn)、風(fēng)味濃郁”等類型多樣的優(yōu)良品種,基本滿足了消費(fèi)者對桃果品的多樣性需求。根據(jù)著紅色部位,可分為果皮紅色與果肉紅色,二者均因積累花色苷而呈現(xiàn)不同程度的紅色[4]?;ㄉ帐侵参镏袕V泛存在的一類水溶性黃酮類色素,在不同pH、溫度等條件下,呈現(xiàn)出不同的顏色[5]。另外,花色苷還具有清除體內(nèi)自由基、預(yù)防心血管硬化、抗腫瘤等保健功效[6]。以此特點,紅肉桃被眾多消費(fèi)者所青睞,亦被越來越多的育種家作為重點選育對象。

花色苷合成通路上結(jié)構(gòu)基因或調(diào)控轉(zhuǎn)錄因子的變異直接決定了花色苷的積累。例如,PpMYB10.1啟動子上5243 bp轉(zhuǎn)座子插入導(dǎo)致桃果皮不能合成花色苷[7];PpBL啟動子上6688 bp轉(zhuǎn)座子是形成紅肉桃的關(guān)鍵[8]。另外,轉(zhuǎn)錄因子PpNAC1、PpSPL1、PpHYH和PpHY5可直接激活或作用于PpMYB10.1,進(jìn)而影響下游花色苷合成途徑結(jié)構(gòu)基因的表達(dá),促進(jìn)或抑制花色苷的合成[9-11]。環(huán)境因素如光照、溫度、激素等對花色苷合成同樣有較大影響。本文基于前人的報道,對桃果皮和果肉紅色形成的遺傳變異、變異前后作用機(jī)制差異以及環(huán)境因素影響的分子調(diào)控機(jī)制等進(jìn)行了總結(jié),為利用和開發(fā)分子標(biāo)記進(jìn)行桃親本選配和雜種后代的早期選擇提供幫助。

1 桃果實顏色多樣性及與花色苷含量的關(guān)系

桃亞屬在中國分布有6個種,包括普通桃[P. persica (L.) Batsch]、甘肅桃(P. kansuensis Rehd.)、山桃[P. davidiana (Carr.) Franch]、陜甘山桃(P. potanini Rehd.)、光核桃(P. mira Koehne)和新疆桃[P. ferganensis (Kost. et Kiab) Kov. et Kost][1]。其中,普通桃在中國被廣泛栽培,在果皮顏色和果肉顏色多樣性及遺傳變異方面存在較大差異[12]。在《桃種質(zhì)資源描述規(guī)范和數(shù)據(jù)標(biāo)準(zhǔn)》一書中,王力榮等[13]將果肉顏色分為紅肉、白肉、黃肉,根據(jù)花色苷含量分為多、中、少、無(圖1-A);將果皮底色分為乳白、綠、乳黃、黃等,根據(jù)著色面積分為多、中、少、無(圖1-B)。徐子媛[15]調(diào)查了73份桃種質(zhì)資源品質(zhì)性狀,發(fā)現(xiàn)果皮底色為乳白色的占比最高,為45.2%,果皮不同程度紅色的有66份,占90.4%,僅7份材料果皮不著紅色;果肉紅色的種質(zhì)資源有12份,占16.4%。這也從側(cè)面反映了中國桃種質(zhì)資源多樣性的豐富程度。

為探究果實紅色與花色苷含量的關(guān)系,查閱了前人對桃果實花色苷含量測定的相關(guān)文獻(xiàn)。白肉桃果皮和果肉花色苷分布范圍在0.65~37.21 mg·100 g-1和0.07~25.20 mg·100 g-1,黃肉桃為0.61~32.33 mg·100 g-1和0.17~18.59 mg·100 g-1,而紅肉桃為1.04~113.11 mg·100 g-1和0.73~129.06 mg·100 g-1,值得注意的是紅肉桃中果皮和果肉總酚含量是白肉桃和黃肉桃的2~3倍[16-17]。丁體玉等[18]根據(jù)桃果肉著色面積和花色苷含量的動態(tài)變化,將紅肉桃分為兩類:(1)“成熟積累型”在果實成熟期果肉花色苷含量達(dá)到最大值(170~320 mg·kg-1);(2)“發(fā)育中期積累型”在盛花后70~80 d果肉花色苷含量達(dá)到峰值(150~800 mg·kg-1),隨著果實成熟花色苷含量逐漸下降。章秋平等[19]比較了12份不同果肉顏色品種中花色苷含量,紅肉桃品種花色苷平均含量顯著高于白肉和黃肉品種,紅肉桃中果肉花色苷含量1.249~19.503 mg·g-1,白肉桃中0.393~2.264 mg·g-1,黃肉桃中0.552~1.465 mg·g-1。而紅肉桃品種間花色苷含量也有很大差異,有的紅肉品種花色苷含量甚至顯著低于白肉品種,這可能是由于紅肉桃果肉中存在大量的多酚物質(zhì)從而干擾了花色苷含量的測定,而且花色苷含量與栽培環(huán)境、試驗取樣等也存在一定關(guān)系。

2 桃果實主要花色苷組分及合成途徑

花色苷是類黃酮物質(zhì)中含量和分布最為廣泛的一類色素物質(zhì),普遍存在于植物的花、果實、葉片等組織中[20],對植物器官的色澤、風(fēng)味和香氣等都有一定影響[21]。常見的花色苷有矢車菊色素(cyanindin,Cy)、天竺葵色素(pelargonidin,Pg)、飛燕草色素(delphinidin,Dp)、芍藥色素(peonidin,Pn)、牽牛色素(petunidin,Pt)和錦葵色素(malvidin,Mv)6種[22]。花色苷糖基化的糖分子也具有多樣性,多數(shù)為葡萄糖(glucose),少數(shù)為半乳糖、木糖、鼠李糖和阿拉伯糖,以及由這些單糖所構(gòu)成的二糖或者多糖[5]。不同色素結(jié)合糖基而形成不同的顏色,矢車菊色素和天竺葵色素呈紅色,飛燕草色素及甲基化的衍生物牽牛色素和錦葵色素呈現(xiàn)藍(lán)紫色。

花色苷在植物體內(nèi)的合成主要由一系列結(jié)構(gòu)基因(CHS、CHI、F3H、DFR、ANS、UFGT等)所調(diào)控,這些結(jié)構(gòu)基因通過編碼不同功能的酶來參與花色苷的合成,同時這些結(jié)構(gòu)基因受上游轉(zhuǎn)錄因子(PpMYB10.1、PpbHLH、PpWD40及PpBL等)的轉(zhuǎn)錄調(diào)控。苯丙氨酸是花色苷生物合成的直接前體物質(zhì),由苯丙氨酸到花色苷大致有3個階段。桃果實中花色苷的生物合成途徑已基本明晰[23-24],如圖2所示。第一階段:苯丙氨酸在苯丙氨酸解氨酶(PAL)催化作用下,形成肉桂酸;肉桂酸經(jīng)肉桂酸-4-羥化酶(C4H)和4-香豆酰-CoA連接酶(4CL)形成4-香豆酰-CoA;再經(jīng)查爾酮合成酶(CHS)催化合成黃色的查爾酮。第二階段:在查爾酮異構(gòu)酶(CHI)以查爾酮為底物,異構(gòu)化合成黃烷酮;在黃烷酮-3-羥化酶(F3H)催化下形成二氫山柰酚。第三階段:二氫山柰酚經(jīng)二氫黃酮醇-4-還原酶(DFR)合成無色花色苷;無色花色苷由花青素苷合成酶(ANS)催化形成彩色的花色苷;最后通過類黃酮-3-O-糖基轉(zhuǎn)移酶(UFGT)的作用,游離的有色花色苷形成能夠穩(wěn)定存在于植物中的花色苷,使植物呈現(xiàn)出鮮艷的顏色;花色苷在細(xì)胞質(zhì)中合成后,經(jīng)谷胱甘肽-S-轉(zhuǎn)移酶(GST)將其轉(zhuǎn)移運(yùn)輸?shù)揭号葜校腔ㄉ诊@色的關(guān)鍵代謝途徑;未修飾的花色苷由無色花色苷還原酶(LAR)或者花色苷還原酶(ANR)的作用產(chǎn)生。

3 桃果實紅色形成的遺傳變異及調(diào)控機(jī)制

3.1 桃果皮紅色形成的遺傳變異及調(diào)控機(jī)制

桃果皮顏色由底色和蓋色(或紅暈)共同決定,在果實成熟過程中,果皮底色由綠色轉(zhuǎn)為白色或黃色。在此階段,因不同品種基因型差異,果皮底色上有不同類型(斑點、條紋、紅暈)且深淺不同的紅色沉積[12]。研究表明,果皮紅暈由多個基因控制[25-27],但同時也取決于環(huán)境因素[28]。2003年,Beckman等[29]將整個果面紅色性狀描述為“全紅”,基因型為FR,果面無或極少紅色性狀被描述為“高亮”,基因型為frfr。2004年,Dirlewanger等[30]發(fā)現(xiàn),位于基因組第3連鎖群上的3個MYB10基因,PpMYB10.1(ppa026640m),PpMYB10.2(ppa016711m)和PpMYB10.3(ppa021385m)與顏色性狀的Anther color(Ag)標(biāo)記關(guān)聯(lián)。2005年,Beckman等[31]進(jìn)一步將果皮顏色描述為紅與非紅,紅色對非紅為顯性(H/h)。

對桃果皮花色苷合成通路研究發(fā)現(xiàn),PpMYB10.1和PpMYB10.3可調(diào)控花色苷合成通路上結(jié)構(gòu)基因的表達(dá),促進(jìn)花色苷積累,進(jìn)而使果皮呈紅色[23,32]。Tuan等[7]分析非紅品種Mochizuki中PpMYB10基因簇3個基因(PpMYB10.1、PpMYB10.2、PpMYB10.3)的表達(dá),表明桃果皮花色苷含量與PpMYB10.1表達(dá)量密切相關(guān),進(jìn)一步分析其序列發(fā)現(xiàn)PpMYB10.1啟動子-1173 nt處存在5243 bp的轉(zhuǎn)座子插入,導(dǎo)致PpMYB10.1喪失功能,下游結(jié)構(gòu)基因不能被激活轉(zhuǎn)錄,使得Mochizuki果皮不能合成積累花色苷(圖3-A)。對63份桃野生資源、地方品種和育成品種進(jìn)行PpMYB10.1啟動子上變異鑒定,發(fā)現(xiàn)育成品種表型和基因型完全吻合,而部分地方品種果皮顏色表型與基因型不匹配,猜測可能存在其他調(diào)控機(jī)制或變異,還有待繼續(xù)研究[33]。而PpMYB10.1啟動子上483 bp的缺失會增強(qiáng)其驅(qū)動活性,有利于PpMYB10.1對下游結(jié)構(gòu)基因的轉(zhuǎn)錄調(diào)控[18]。Zhao等[9]研究光照對桃果皮著色分子機(jī)制發(fā)現(xiàn),在光照條件下,光響應(yīng)基因PpHYH與伴侶蛋白PpBBX互作形成異源二聚體激活PpMYB10.1,促進(jìn)果皮著紅色;然而在黑暗條件下,光信號抑制因子PpCOP1在細(xì)胞核大量積累,引起PpHYH蛋白降解,導(dǎo)致花色苷積累受阻(圖3-B)。

另外,表觀遺傳修飾也能影響桃果實花色苷的合成。Zhu等[34]研究表明,當(dāng)貯藏溫度升高到16 ℃時,隨著DNA去甲基化程度增加,白肉桃果肉中會積累大量花色苷;Cheng等[35]研究發(fā)現(xiàn),桃果實花色苷合成與PpUGT78A1和PpUGT78A2糖基化有關(guān)。

3.2 桃果肉紅色形成的遺傳變異及調(diào)控機(jī)制

研究表明,桃紅肉性狀存在兩種類型,由多個基因或者QTL位點調(diào)控。第一種類型以加拿大紅肉品種Harrow Blood為代表,從硬核前期就開始大量積累花色苷,且葉片背面葉脈變紅[36]。Werner等[37]分析了Harrow Blood×Rutgers Red Leaf 2n的F2后代中果肉顏色分離情況,發(fā)現(xiàn)紅肉桃和普通桃的比例符合1∶3,提出紅肉性狀是由一個隱形基因bf控制;Gil等[38]進(jìn)一步將bf基因定位到第4連鎖群的頂端,但沒有候選基因被報道。章秋平[39]研究了2個雜交群體組合,發(fā)現(xiàn)后代果肉均為紅色,但紅色深淺不同,推斷紅肉性狀并非單一的隱性性狀,而是受多個基因控制的數(shù)量性狀。第二種是血桃類型,果實進(jìn)入成熟期果肉才開始積累花色苷而變紅,且葉脈不變紅。Shen等[40]對中國血桃品種五月鮮進(jìn)行研究,提出這類血桃是由一對顯性基因DBF控制的,利用SSR標(biāo)記將此位點定位到第5連鎖群的頂端。周暉[41]在大紅袍×曙光雜交群體中鑒定發(fā)現(xiàn),大紅袍血桃性狀為顯性遺傳,與Harrow Blood的隱性紅肉性狀不同。

Zhou等[11]在5號染色體上發(fā)現(xiàn)一個NAC家族轉(zhuǎn)錄因子,BLOOD(BL)與紅肉性狀密切相關(guān),PpBL與PpNAC1形成二聚體促進(jìn)PpMYB10.1表達(dá),進(jìn)而促進(jìn)果肉花色苷合成;同時鑒定到PpSPL1蛋白可以抑制PpBL-PpNAC1復(fù)合體活性,導(dǎo)致花色苷含量降低。Miyuki等[8]研究了日本紅肉品種Tenshin-suimitsuto的PpBL基因結(jié)構(gòu),發(fā)現(xiàn)該品種的PpBL啟動子上存在6688 bp的轉(zhuǎn)座子插入是果肉紅色的關(guān)鍵變異,同時PpBL表達(dá)與果肉紅色深淺不同有關(guān)。Wang等[42]對該轉(zhuǎn)座子blood-TE進(jìn)一步分析,發(fā)現(xiàn)白肉桃中PpWRKY70抑制了PpBL的轉(zhuǎn)錄活性;而紅肉桃中存在blood-TE的插入,導(dǎo)致PpWRKY70的抑制作用減弱,導(dǎo)致PpBL高表達(dá),進(jìn)而形成紅肉表型(圖4-A)。

另外,還有一種紅肉類型是近核處周圍果肉呈紅色(Cs)且伴有苦味,但目前尚未有關(guān)鍵遺傳變異的報道。Zhao等[43]通過比較轉(zhuǎn)錄組挖掘到調(diào)控桃近核處紅色性狀的光響應(yīng)基因PpHY5,在PpBBX10的協(xié)同下可促進(jìn)PpMYB10.1的轉(zhuǎn)錄激活。然而,靠近果核處果肉始終處于黑暗條件下,PpCOP1與PpHY5以及PpMYB10.1的相互作用并未導(dǎo)致靠近果核處果肉花色苷積累受阻,PpHY5和PpMYB10.1表達(dá)在近核處形成過程中反而上調(diào),猜測可能是上游存在未知的調(diào)節(jié)因子參與對PpCOP1功能的調(diào)節(jié)以及對PpHY5的轉(zhuǎn)錄調(diào)控(圖4-B)。

4 桃果實紅色形成的影響因素及調(diào)控機(jī)制

花色苷含量還受外界環(huán)境影響其合成[44-45],比如光照、溫度、激素、糖以及礦質(zhì)元素等[46]。

4.1 光照

外部環(huán)境中尤其是光照對桃果實著色影響最大。光敏色素感應(yīng)到光信號后,提高了花色苷合成途徑相關(guān)酶的活性,促進(jìn)果實著色[47]。丁云龍等[48]對不同樹體部位桃果實著色差異研究,發(fā)現(xiàn)上部果實比中部、下部以及內(nèi)膛著色更深,其光照條件差異是主要因素。何平等[49]研究套袋對桃果實著色的影響,表明套袋果實果皮花色苷含量顯著下降,去袋后受光誘導(dǎo)花色苷迅速積累,且相關(guān)基因表達(dá)量迅速上升。不同光質(zhì)對桃果實著色的研究表明,紫外光、藍(lán)光明顯增加果皮花色苷含量[50-51],有利于著色。Zhao等[10]發(fā)現(xiàn)光形態(tài)轉(zhuǎn)錄因子PpHY5響應(yīng)UVA和UVB共同調(diào)節(jié)PpMYB10.1轉(zhuǎn)錄表達(dá),下游花色苷合成結(jié)構(gòu)基因表達(dá)量升高,促進(jìn)桃果皮著色,UVA和UVB同時處理著色更明顯。然而光照影響桃果肉花色苷合成的報道較少。Rumainum等[52]通過套袋對桃果皮和果肉花色苷積累的影響試驗表明,桃果肉花色苷積累不完全依賴于光照,即在黑暗條件下,果肉花色苷可以正常合成。綜上,光照可以提高相關(guān)酶活性或基因表達(dá)量,促進(jìn)花色苷合成,而這種作用只是在桃果皮上。

4.2 溫度

溫度對果實花色苷合成也具有重要影響。晝夜溫差大和夜間溫度低的地區(qū)果實著色更好,可能是由于低溫減弱了呼吸速率,促進(jìn)糖分積累,從而有利于花色苷積累[53]。Zhou等[54]研究表明,高溫和遮光處理顯著降低了桃紅色葉片中花色苷合成基因的表達(dá),導(dǎo)致花色苷積累減少。研究者提出,高溫條件下花色苷合成速率減慢,降解加快,其穩(wěn)定性差,降低了花色苷的積累,又稱“高溫褪色”反應(yīng)[55]。在蘋果[56]、葡萄[57]研究中表明,適當(dāng)?shù)蜏靥幚砜墒够ㄉ蘸铣上嚓P(guān)基因高表達(dá),促進(jìn)花色苷的積累。Yin等[58]研究表明,高海拔地區(qū)不同光質(zhì)和低溫有利于葡萄果皮花色苷合成。

4.3 激素

外源激素處理有利于果實著色。Zhang等[59]研究表明,乙烯通過抑制花色苷合成上游轉(zhuǎn)錄因子的活性,抑制桃果皮花色苷合成,而1-甲基環(huán)丙烯(1-MCP)有著與乙烯相反的作用。果實采后用不同激素處理研究表明,茉莉酸酯類、苯丙氨酸、L-谷氨酸和油菜素內(nèi)酯均可以增加桃果皮花色苷含量,促進(jìn)果實著色[60-62]。另外,在蘋果、梨、葡萄中,激素促進(jìn)或抑制花色苷合成的研究較為深入。例如,在蘋果中乙烯和茉莉酸通過MdERF1B-MdMYC2基因模塊協(xié)同正調(diào)控蘋果花色苷合成[63];Li等[64]鑒定發(fā)現(xiàn),乙烯和生長素響應(yīng)因子之間相互作用來調(diào)節(jié)蘋果果皮花青素積累。在梨中,乙烯單獨或者與茉莉酸共同作用,抑制梨果皮花色苷形成[65-66];乙烯通過PpERF9-PpTPL1共抑制復(fù)合體介導(dǎo)的組蛋白去乙?;?yīng)抑制PpRAP2.4和PpMYB114的表達(dá),從而抑制梨果皮花色苷合成的分子機(jī)制[67]。孫玉帥等[68]對葡萄外施ABA和乙烯的研究表明,ABA能通過VlMybA1直接調(diào)控著色,也可間接通過乙烯促進(jìn)VlMybA2的表達(dá)來調(diào)控葡萄著色。

4.4 糖、礦質(zhì)元素

Wang等[69]試驗表明,葡萄糖、蔗糖、果糖及山梨醇均能誘導(dǎo)桃果肉中花色苷的積累,且PpDFR及PpUFGT表達(dá)量顯著升高。Zhou等[70]用熱空氣和UV-C處理桃果實發(fā)現(xiàn),兩種處理通過調(diào)節(jié)蔗糖、蘋果酸和檸檬酸含量增強(qiáng)花色苷積累,同時上調(diào)了相關(guān)酶活性和基因表達(dá)。外源蔗糖處理顯著增加了桃果皮花色苷含量,促進(jìn)著色[71]。Maatallah等[72]研究N-P-K施肥對桃果實品質(zhì)的影響,認(rèn)為N和K在增加產(chǎn)量和品質(zhì)的同時,增加了花色苷含量進(jìn)而改善桃果實顏色。

5 展 望

桃基因組數(shù)據(jù)公布[73]和測序技術(shù)的進(jìn)步,直接加速了對目標(biāo)性狀候選基因的定位,實現(xiàn)了對表型性狀的精準(zhǔn)鑒定,為桃分子輔助育種和果樹遺傳改良奠定了良好的基礎(chǔ)[74]。分子標(biāo)記輔助育種主要有兩種方法:(1)在控制目的性狀的基因序列上開發(fā)分子標(biāo)記,直接完成表型鑒定;(2)首先鑒定親本基因型,在目標(biāo)性狀位點兩側(cè)開發(fā)分子標(biāo)記,進(jìn)而完成表型鑒定[75]。例如,桃果皮紅色與純色性狀,直接取決于PpMYB10.1啟動子上的等位變異,開發(fā)出分子標(biāo)記MYB10.1-1/MYB10.1-1(全紅)、MYB10.1-1/MYB10.1-2(半紅)以及MYB10.1-2/MYB10.1-2(純色),在苗期即可對果實顏色進(jìn)行鑒定[7]。另外中國特有的一些地方品種抗逆性強(qiáng),且果皮純色(綠色、淺黃、白色),分子標(biāo)記MYB10.1-2/MYB10.1-2并不能100%預(yù)測[33]。因此,找到新目的基因、新等位變異對目的基因的精準(zhǔn)鑒定,并開發(fā)出標(biāo)記被育種家所利用,是目前桃樹上快速從雜交后代中篩選符合育種目標(biāo)優(yōu)株的主要手段。

根據(jù)桃果肉顏色分為白肉、黃肉和紅肉。紅肉桃富含花色苷等抗氧化成分,有益于人體健康,但大多紅肉桃品種風(fēng)味偏酸且早熟,阻礙了紅肉桃的育種進(jìn)程和新品種推廣。由于桃尚未形成成熟的遺傳轉(zhuǎn)化體系,基因編輯技術(shù)尚不能被高效利用,所以分子標(biāo)記快速鑒定表型成為當(dāng)前育種中最直接有效的改良性狀的手段。例如,選擇高糖低酸且綜合性狀優(yōu)良的桃品種作為親本,與紅肉桃品種雜交獲得果肉性狀分離的群體,同時利用紅肉性狀分子標(biāo)記和酸味性狀分子標(biāo)記可快速篩選到低酸且紅肉的桃優(yōu)株,加快了育種進(jìn)程。中國早熟且風(fēng)味甜的紅肉蟠桃金陵血蟠品種[76]的選育,也標(biāo)志著中國桃育種工作在顏色多樣性方面邁向新的臺階。另外,桃近核處果肉紅色且伴有苦味受多個基因協(xié)同調(diào)控,不受光環(huán)境誘導(dǎo),存在的遺傳機(jī)制尚不清楚,可利用中國豐富的種質(zhì)資源優(yōu)勢,發(fā)掘候選基因以及可能存在的遺傳變異,解析果肉近核處泛紅的分子機(jī)制,開發(fā)分子標(biāo)記為桃育種服務(wù)。

參考文獻(xiàn) References:

[1] 汪祖華,莊恩及. 中國果樹志-桃卷[M]. 北京:中國林業(yè)出版社,2001.

WANG Zuhua,ZHUANG Enji. Chinese fruit tree:Peach[M]. Beijing:China Forestry Publishing House,2001.

[2] CAO K,LI Y,DENG C H,GARDINER S E,ZHU G R,F(xiàn)ANG W C,CHEN C W,WANG X W,WANG L R. Comparative population genomics identified genomic regions and candidate genes associated with fruit domestication traits in peach[J]. Plant Biotechnology Journal,2019,17(10):1954-1970.

[3] YU Y,F(xiàn)U J,XU Y G,ZHANG J W,REN F,ZHAO H W,TIAN S L,GUO W,TU X L,ZHAO J,JIANG D W,ZHAO J B,WU W Y,WANG G C,MA R C,JIANG Q,WEI J H,XIE H. Genome re-sequencing reveals the evolutionary history of peach fruit edibility[J]. Nature Communications,2018,9(1):5404.

[4] ZHOU H J,YU Z F,YE Z W. Key proteins associated to coloured compounds of peach peel using iTRAQ proteomic techniques during development and postharvest[J]. Scientia Horticulturae,2018,239:123-132.

[5] 孫建霞,張燕,胡小松,吳繼紅,廖小軍. 花色苷的結(jié)構(gòu)穩(wěn)定性與降解機(jī)制研究進(jìn)展[J]. 中國農(nóng)業(yè)科學(xué),2009,42(3):996-1008.

SUN Jianxia,ZHANG Yan,HU Xiaosong,WU Jihong,LIAO Xiaojun. Structural stability and degradation mechanisms of anthocyanins[J]. Scientia Agricultura Sinica,2009,42(3):996-1008.

[6] WANG J,MAZZA G. Inhibitory effects of anthocyanins and other phenolic compounds on nitric oxide production in LPS/IFN-gamma-activated RAW 264.7 macrophages[J]. Journal of Agricultural and Food Chemistry,2002,50(4):850-857.

[7] TUAN P A,BAI S L,YAEGAKI H,TAMURA T,HIHARA S,MORIGUCHI T,ODA K. The crucial role of PpMYB10.1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype[J]. BMC Plant Biology,2015,15:280.

[8] HARA-KITAGAWA M,UNOKI Y,HIHARA S,ODA K. Development of simple PCR-based DNA marker for the red-fleshed trait of a blood peach ‘Tenshin-suimitsuto’[J]. Molecular Breeding,2019,40(1):5.

[9] ZHAO L,SUN J L,CAI Y M,YANG Q R,ZHANG Y Q,OGUTU C O,LIU J J,ZHAO Y,WANG F R,HE H P,ZHENG B B,HAN Y P. PpHYH is responsible for light-induced anthocyanin accumulation in fruit peel of Prunus persica[J]. Tree Physiology,2022,42(8):1662-1677.

[10] ZHAO Y,MIN T,CHEN M J,WANG H X,ZHU C Q,JIN R,ALLAN A C,KUI L W,XU C J. The photomorphogenic transcription factor PpHY5 regulates anthocyanin accumulation in response to UVA and UVB irradiation[J]. Frontiers in Plant Science,2021,11:603178.

[11] ZHOU H,KUI L W,WANG H L,GU C,DARE A P,ESPLEY R V,HE H P,ALLAN A C,HAN Y P. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors[J]. Plant Journal,2015,82(1):105-121.

[12] 王力榮,朱更瑞,方偉超. 中國桃遺傳資源[M]. 北京:中國農(nóng)業(yè)出版社,2012.

WANG Lirong,ZHU Gengrui,F(xiàn)ANG Weichao. Peach genetic resource in China[M]. Beijing:China Agriculture Press,2012.

[13] 王力榮,朱更瑞. 桃種質(zhì)資源描述規(guī)范和數(shù)據(jù)標(biāo)準(zhǔn)[M]. 北京:中國農(nóng)業(yè)出版社,2005.

WANG Lirong,ZHU Gengrui. Descriptors and data standard for peach (Prunus persica L.)[M]. Beijing:China Agriculture Press,2005.

[14] 王蛟,曹珂,王玲玲,王力榮. PpMYB10.1啟動子483 bp缺失與紅肉桃果肉顏色形成關(guān)系的研究[J]. 植物遺傳資源學(xué)報,2023,24(3):758-766.

WANG Jiao,CAO Ke,WANG Lingling,WANG Lirong. Deciphering the genetic effect of a 483 bp deletion in the PpMYB10.1 promoter to determine intensities of the red-colored flesh peach[J]. Journal of Plant Genetic Resources,2023,24(3):758-766.

[15] 徐子媛. 73份桃種質(zhì)資源果實品質(zhì)評價研究[D]. 南京:南京農(nóng)業(yè)大學(xué),2021.

XU Ziyuan. Fruit quality evaluation of 73 peach germplasm resources[D]. Nanjing:Nanjing Agricultural University,2021.

[16] 沈志軍,馬瑞娟,俞明亮,許建蘭,蔡志翔,倪林箭,顏少賓. 桃三種肉色類型果實抗氧化因子的比較評價[J]. 中國農(nóng)業(yè)科學(xué),2012,45(11):2232-2241.

SHEN Zhijun,MA Ruijuan,YU Mingliang,XU Jianlan,CAI Zhixiang,NI Linjian,YAN Shaobin. Evaluation of antioxidant factors in peach with three types of flesh color[J]. Scientia Agricultura Sinica,2012,45(11):2232-2241.

[17] 王莉,殷益明,龐鈺潔,沈玉麗,賈惠娟. 早熟紅肉桃新品種庚村陽桃的選育[J]. 果樹學(xué)報,2022,39(6):1121-1124.

WANG Li,YIN Yiming,PANG Yujie,SHEN Yuli,JIA Huijuan. Gengcunyangtao,a new early ripening red-flesh peach cultivar[J]. Journal of Fruit Science,2022,39(6):1121-1124.

[18] 丁體玉,曹珂,方偉超,朱更瑞,陳昌文,王新衛(wèi),王力榮. 紅肉桃兩類花色素苷積累模式與相關(guān)基因表達(dá)差異[J]. 中國農(nóng)業(yè)科學(xué),2017,50(13):2553-2563.

DING Tiyu,CAO Ke,F(xiàn)ANG Weichao,ZHU Gengrui,CHEN Changwen,WANG Xinwei,WANG Lirong. The difference of anthocyanin accumulation pattern and related gene expression in two kinds of red flesh peach[J]. Scientia Agricultura Sinica,2017,50(13):2553-2563.

[18] 章秋平,李疆,王力榮,朱更瑞,方偉超,曹珂,陳昌文,馮義彬. 紅肉桃果實發(fā)育過程中色素和糖酸含量的變化[J]. 果樹學(xué)報,2008,25(3):312-315.

ZHANG Qiuping,LI Jiang,WANG Lirong,ZHU Gengrui,F(xiàn)ANG Weichao,CAO Ke,CHEN Changwen,F(xiàn)ENG Yibin. Study on the changes of contents of pigments,sugar and acid of Blood-flesh peach cultivar during fruit development[J]. Journal of Fruit Science,2008,25(3):312-315.

[20] VIZZOTTO M,CISNEROS-ZEVALLOS L,BYRNE D H,RAMMING D W,OKIE W R. Large variation found in the phytochemical and antioxidant activity of peach and plum germplasm[J]. Journal of the American Society for Horticultural Science,2007,132(3):334-340.

[21] KAYESH E,SHANGGUAN L F,KORIR N K,SUN X,BILKISH N,ZHANG Y P,HAN J,SONG C N,CHENG Z M,F(xiàn)ANG J G. Fruit skin color and the role of anthocyanin[J]. Acta Physiologiae Plantarum,2013,35(10):2879-2890.

[22] SAKATA K,SAITO N,HONDA T. Ab initio study of molecular structures and excited states in anthocyanidins[J]. Tetrahedron,2006,62(15):3721-3731.

[23] RAVAGLIA D,ESPLEY R V,HENRY-KIRK R A,ANDREOTTI C,ZIOSI V,HELLENS R P,COSTA G,ALLAN A C. Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors[J]. BMC Plant Biology,2013,13:68.

[24] CAO K,DING T Y,MAO D M,ZHU G R,F(xiàn)ANG W C,CHEN C W,WANG X W,WANG L R. Transcriptome analysis reveals novel genes involved in anthocyanin biosynthesis in the flesh of peach[J]. Plant Physiology and Biochemistry,2018,123:94-102.

[25] FRETT T J,REIGHARD G L,OKIE W R,GASIC K. Mapping quantitative trait loci associated with blush in peach [Prunus persica (L.) Batsch][J]. Tree Genetics amp; Genomes,2014,10(2):367-381.

[26] EDUARDO I,PACHECO I,CHIETERA G,BASSI D,POZZI C,VECCHIETTI A,ROSSINI L. QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect[J]. Tree Genetics amp; Genomes,2011,7(2):323-335.

[27] CANTíN C M,CRISOSTO C H,OGUNDIWIN E A,GRADZIEL T,TORRENTS J,MORENO M A,GOGORCENA Y. Chilling injury susceptibility in an intra-specific peach[Prunus persica (L.) Batsch] progeny[J]. Postharvest Biology and Technology,2010,58(2):79-87.

[28] LAYNE D R,JIANG Z W,RUSHING J W. Tree fruit reflective film improves red skin coloration and advances maturity in peach[J]. HortTechnology,2001,11(2):234-242.

[29] BECKMAN T G,SHERMAN W B. Probable qualitative inheritance of full red skin color in peach[J]. HortScience,2003,38(6):1184-1185.

[30] DIRLEWANGER E,GRAZIANO E,JOOBEUR T,GARRIGA-CALDERé F,COSSON P,HOWAD W,ARúS P. Comparative mapping and marker-assisted selection in Rosaceae fruit crops[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(26):9891-9896.

[31] BECKMAN T G,ALCAZAR J R,SHERMAN W B,WERNER D J. Evidence for qualitative suppression of red skin color in peach[J]. HortScience,2005,40(3):523-524.

[32] RAHIM M A,BUSATTO N,TRAINOTTI L. Regulation of anthocyanin biosynthesis in peach fruits[J]. Planta,2014,240(5):913-929.

[33] GUO T F,WANG J,LU X X,WU J L,WANG L R. The development of molecular markers for peach skin blush and their application in peach breeding practice[J]. Horticulturae,2023,9(8):887.

[34] ZHU Y C,ZHANG B,ALLAN A C,KUI L W,ZHAO Y,WANG K,CHEN K S,XU C J. DNA demethylation is involved in the regulation of temperature-dependent anthocyanin accumulation in peach[J]. Plant Journal,2020,102(5):965-976.

[35] CHENG J,WEI G C,ZHOU H,GU C,VIMOLMANGKANG S,LIAO L,HAN Y P. Unraveling the mechanism underlying the glycosylation and methylation of anthocyanins in peach[J]. Plant Physiology,2014,166(2):1044-1058.

[36] CHAPARRO J X,WERNER D J,WHETTEN R W,O’MALLEY D M. Inheritance,genetic interaction,and biochemical characterization of anthocyanin phenotypes in peach[J]. Journal of Heredity,1995,86(1):32-38.

[37] WERNER D J,CRELLER M A,CHAPARRO J X. Inheritance of the blood-flesh trait in peach[J]. HortScience,1998,33(7):1243-1246.

[38] GIL M I,TOMáS-BARBERáN F A,HESS-PIERCE B,KADER A A. Antioxidant capacities,phenolic compounds,carotenoids,and vitamin C contents of nectarine,peach,and plum cultivars from California[J]. Journal of Agricultural and Food Chemistry,2002,50(17):4976-4982.

[39] 章秋平. 紅肉桃果實發(fā)育期色素變化規(guī)律研究及其遺傳趨向分析與初步定位[D]. 烏魯木齊:新疆農(nóng)業(yè)大學(xué),2008.

ZHANG Qiuping. Study on content changes of pigments during fruit development in blood-flesh peach and its heredity and preliminary QTLs analysis[D]. Urumqi:Xinjiang Agricultural University,2008.

[40] SHEN Z J,CONFOLENT C,LAMBERT P,PO?SSEL J L,QUILOT-TURION B,YU M L,MA R J,PASCAL T. Characterization and genetic mapping of a new blood-flesh trait controlled by the single dominant locus DBF in peach[J]. Tree Genetics amp; Genomes,2013,9(6):1435-1446.

[41] 周暉. 桃花青苷著色及原花青素合成的調(diào)控機(jī)制研究[D]. 北京:中國科學(xué)院大學(xué),2015.

ZHOU Hui. Mechanisms underlying the regulation of anthocyanin coloration and proanthocyanidin synthesis in peach[D]. Beijing:University of Chinese Academy of Sciences,2015.

[42] WANG J,CAO K,LI Y,WU J L,LI W Q,WANG Q,ZHU G R,F(xiàn)ANG W C,CHEN C W,WANG X W,DONG W X,LIU W S,WANG L R. Genome variation and LTR-RT analyses of an ancient peach Landrace reveal mechanism of blood-flesh fruit color formation and fruit maturity date advancement[J]. Horticulture Research,2023,11(1):uhad265.

[43] ZHAO L,ZHANG Y Q,SUN J L,YANG Q R,CAI Y M,ZHAO C P,WANG F R,HE H P,HAN Y P. PpHY5 is involved in anthocyanin coloration in the peach flesh surrounding the stone[J]. Plant Journal,2023,114(4):951-964.

[44] TIAN Y Y,WANG H Y,SUN P,F(xiàn)AN Y G,QIAO M M,ZHANG L X,ZHANG Z Q. Response of leaf color and the expression of photoreceptor genes of Camellia sinensis cv. Huangjinya to different light quality conditions[J]. Scientia Horticulturae,2019,251:225-232.

[45] LADO J,ALóS E,MANZI M,CRONJE P J R,GóMEZ-CADENAS A,RODRIGO M J,ZACARíAS L. Light regulation of carotenoid biosynthesis in the peel of mandarin and sweet orange fruits[J]. Frontiers in Plant Science,2019,10:1288.

[46] 周丹蓉,方智振,葉新福,潘少霖,廖汝玉,姜翠翠,王小安. 李果中花色素苷研究進(jìn)展[J]. 東南園藝,2015,3(3):43-46.

ZHOU Danrong,F(xiàn)ANG Zhizhen,YE Xinfu,PAN Shaolin,LIAO Ruyu,JIANG Cuicui,WANG Xiaoan. Research progress of anthocyanin in plum[J]. Southeast Horticulture,2015,3(3):43-46.

[47] GALV?O V C,F(xiàn)ANKHAUSER C. Sensing the light environment in plants:Photoreceptors and early signaling steps[J]. Current Opinion in Neurobiology,2015,34:46-53.

[48] 丁云龍,張斌斌,嚴(yán)娟,馬瑞娟,姜衛(wèi)兵. 桃樹體不同部位果實著色差異及其與環(huán)境因子的關(guān)系研究[J]. 西北植物學(xué)報,2019,39(4):660-668.

DING Yunlong,ZHANG Binbin,YAN Juan,MA Ruijuan,JIANG Weibing. Study on difference of peach fruit coloring and relationship with environmental factors in different tree canopy position[J]. Acta Botanica Boreali-Occidentalia Sinica,2019,39(4):660-668.

[49] 何平,李林光,王海波,常源升. 套袋對‘秋雪’桃果實品質(zhì)及花青素合成相關(guān)基因表達(dá)的影響[J]. 植物生理學(xué)報,2018,54(2):273-281.

HE Ping,LI Linguang,WANG Haibo,CHANG Yuansheng. Effect of bagging on fruit quality and anthocyanin synthesis-related gene expression of ‘Qiuxue’ peach[J]. Plant Physiology Journal,2018,54(2):273-281.

[50] 池銘,孫麗娟,馬立杰,趙婧,周宏勝,凌軍,羅淑芬,李國鋒,李鵬霞,張映曈. 不同光質(zhì)處理對采后桃果皮色澤及花色苷代謝的影響[J]. 食品科學(xué),2023,44(3):209-217.

CHI Ming,SUN Lijuan,MA Lijie,ZHAO Jing,ZHOU Hongsheng,LING Jun,LUO Shufen,LI Guofeng,LI Pengxia,ZHANG Yingtong. Effects of different light qualities on color development and anthocyanin metabolism of peach skin during postharvest storage[J]. Food Science,2023,44(3):209-217.

[51] 鄭曉翠,劉鳳之,王海波,王孝娣. 不同光質(zhì)補(bǔ)光對設(shè)施內(nèi)桃果實品質(zhì)及葉片質(zhì)量的影響[J]. 西北植物學(xué)報,2023,43(6):979-987.

ZHENG Xiaocui,LIU Fengzhi,WANG Haibo,WANG Xiaodi. Effects of different supplemental light on fruit and leaf quality of peach in the facility[J]. Acta Botanica Boreali-Occidentalia Sinica,2023,43(6):979-987.

[52] RUMAINUM I M,WORARAD K,YAMAKI Y,YAMANE K. Effects of developmental stages,light,and an auxin polar transport inhibitor on the skin and flesh pigmentation of red-fleshed peach fruit[J]. The Horticulture Journal,2016,85(2):141-147.

[53] 俞明亮. 蘋果花青苷色素的形成[J]. 北方果樹,1992(4):34-36.

YU Mingliang. Formation of apple anthocyanin[J]. Northern Fruits,1992(4):34-36.

[54] ZHOU Y,GUO D,LI J,CHENG J,ZHOU H,GU C,GARDINER S,HAN Y P. Coordinated regulation of anthocyanin biosynthesis through photorespiration and temperature in peach (Prunus persica f. atropurpurea)[J]. Tree Genetics amp; Genomes,2013,9(1):265-278.

[55] MORI K,SUGAYA S,GEMMA H. Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition[J]. Scientia Horticulturae,2005,105(3):319-330.

[56] BAN Y,HONDA C,HATSUYAMA Y,IGARASHI M,BESSHO H,MORIGUCHI T. Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin[J]. Plant amp; Cell Physiology,2007,48(7):958-970.

[57] YAMANE T,JEONG S T,GOTO-YAMAMOTO N,KOSHITA Y,KOBAYASHI S. Effects of temperature on anthocyanin biosynthesis in grape berry skins[J]. American Journal of Enology and Viticulture,2006,57(1):54-59.

[58] YIN H N,WANG Z X,WANG L,CAO J H,WANG J K,XI Z M. Effects of mesoclimate and microclimate variations mediated by high altitude and row orientation on sucrose metabolism and anthocyanin synthesis in grape berries[J]. Horticultural Plant Journal,2024,10(3):713-731.

[59] ZHANG Y T,LING J,ZHOU H S,TIAN M Y,HUANG W,LUO S F,HU H L,LI P X. 1-Methylcyclopropene counteracts ethylene inhibition of anthocyanin accumulation in peach skin after harvest[J]. Postharvest Biology and Technology,2022,183:111737.

[60] 馬立杰,邵小達(dá),趙晟,潘泓,趙婧,張映曈,凌軍,李鵬霞,黃雯,周宏勝. 采后苯丙氨酸處理對‘湖景蜜露’桃果皮色澤的影響[J]. 食品與發(fā)酵工業(yè),2023,49(18):195-201.

MA Lijie,SHAO Xiaoda,ZHAO Sheng,PAN Hong,ZHAO Jing,ZHANG Yingtong,LING Jun,LI Pengxia,HUANG Wen,ZHOU Hongsheng. Effects of postharvest phenylalanine treatment on peel coloration of ‘Hujingmilu’ peach[J]. Food and Fermentation Industries,2023,49(18):195-201.

[61] 尚娟娥. 不同品種桃(Prunus persica L.)果實發(fā)育過程中品質(zhì)變化和花色苷代謝及外源物質(zhì)調(diào)控研究[D]. 福州:福建農(nóng)林大學(xué),2023.

SHANG Juan’e. Changes in fruit quality,anthocyanin metabolism and regulation of exogenous substances during fruit development of different varieties of peach (Prunus persica L.)[D]. Fuzhou:Fujian Agriculture and Forestry University,2023.

[62] 何平,李林光,王海波,常源升. 茉莉酸酯類對秋甜桃果實著色及品質(zhì)的影響[J]. 分子植物育種,2019,17(7):2371-2378.

HE Ping,LI Linguang,WANG Haibo,CHANG Yuansheng. Effects of jasmonates on coloration and quality of Qiutian peach[J]. Molecular Plant Breeding,2019,17(7):2371-2378.

[63] WANG S,LI L X,F(xiàn)ANG Y,LI D,MAO Z L,ZHU Z H,CHEN X S,F(xiàn)ENG S Q. MdERF1B-MdMYC2 module integrates ethylene and jasmonic acid to regulate the biosynthesis of anthocyanin in apple[J]. Horticulture Research,2022,9:uhac142.

[64] LI H L,LIU Z Y,WANG X N,HAN Y P,YOU C X,AN J P. E3 ubiquitin ligases SINA4 and SINA11 regulate anthocyanin biosynthesis by targeting the IAA29-ARF5-1-ERF3 module in apple[J]. Plant,Cell amp; Environment,2023,46(12):3902-3918.

[65] NI J B,PREMATHILAKE A T,GAO Y H,YU W J,TAO R Y,TENG Y W,BAI S L. Ethylene-activated PpERF105 induces the expression of the repressor-type R2R3-MYB gene PpMYB140 to inhibit anthocyanin biosynthesis in red pear fruit[J]. Plant Journal,2021,105(1):167-181.

[66] NI J B,ZHAO Y,TAO R Y,YIN L,GAO L,STRID ?,QIAN M J,LI J C,LI Y J,SHEN J Q,TENG Y W,BAI S L. Ethylene mediates the branching of the jasmonate-induced flavonoid biosynthesis pathway by suppressing anthocyanin biosynthesis in red Chinese pear fruits[J]. Plant Biotechnology Journal,2020,18(5):1223-1240.

[67] NI J B,WANG S M,YU W J,LIAO Y F,PAN C,ZHANG M M,TAO R Y,WEI J,GAO Y H,WANG D S,BAI S L,TENG Y W. The ethylene-responsive transcription factor PpERF9 represses PpRAP2.4 and PpMYB114 via histone deacetylation to inhibit anthocyanin biosynthesis in pear[J]. The Plant Cell,2023,35(6):2271-2292.

[68] 孫玉帥,王菲,管雪強(qiáng),郗慧茹,姚玉新. ABA和乙烯互作調(diào)控葡萄VlMybA1和VlMybA2表達(dá)并促進(jìn)果皮著色[J]. 園藝學(xué)報,2023,50(11):2323-2336.

SUN Yushuai,WANG Fei,GUAN Xueqiang,CHI Huiru,YAO Yuxin. ABA and ethylene enhance the expression VlMybA1 and VlMybA2 and promote pigmentation in the berry skin via their interaction[J]. Acta Horticulturae Sinica,2023,50(11):2323-2336.

[69] WANG J,CAO K,WANG L R,DONG W X,ZHANG X,LIU W S. Two MYB and three bHLH family genes participate in anthocyanin accumulation in the flesh of peach fruit treated with glucose,sucrose,sorbitol,and fructose in vitro[J]. Plants,2022,11(4):507.

[70] ZHOU D D,LI R,ZHANG H,CHEN S X,TU K. Hot air and UV-C treatments promote anthocyanin accumulation in peach fruit through their regulations of sugars and organic acids[J]. Food Chemistry,2020,309:125726.

[71] 田夢瑤,周宏勝,唐婷婷,張映曈,凌軍,羅淑芬,李鵬霞. 外源蔗糖處理對采后桃果皮色澤形成的影響[J]. 食品科學(xué),2022,43(1):177-183.

TIAN Mengyao,ZHOU Hongsheng,TANG Tingting,ZHANG Yingtong,LING Jun,LUO Shufen,LI Pengxia. Effect of exogenous sucrose treatment on the peel coloration in postharvest peaches[J]. Food Science,2022,43(1):177-183.

[72] MAATALLAH S,GUIZANI M,ELLOUMI O,MONTEVECCHI G,ANTONELLI A,GHRAB M,DABBOU S. Yield and biochemical fruit quality of irrigated peach cultivars subjected to conventional farmer’s fertilization practices in warm production area[J]. Journal of Food Composition and Analysis,2024,129:106121.

[73] INITIATIVE I P G,VERDE I,ABBOTT A G,SCALABRIN S,JUNG S,SHU S Q,MARRONI F,ZHEBENTYAYEVA T,DETTORI M T,GRIMWOOD J,CATTONARO F,ZUCCOLO A,ROSSINI L,JENKINS J,VENDRAMIN E,MEISEL L A,DECROOCQ V,SOSINSKI B,PROCHNIK S,MITROS T,POLICRITI A,CIPRIANI G,DONDINI L,F(xiàn)ICKLIN S,GOODSTEIN D M,XUAN P F,DEL FABBRO C,ARAMINI V,COPETTI D,GONZALEZ S,HORNER D S,F(xiàn)ALCHI R,LUCAS S,MICA E,MALDONADO J,LAZZARI B,BIELENBERG D,PIRONA R,MICULAN M,BARAKAT A,TESTOLIN R,STELLA A,TARTARINI S,TONUTTI P,ARúS P,ORELLANA A,WELLS C,MAIN D,VIZZOTTO G,SILVA H,SALAMINI F,SCHMUTZ J,MORGANTE M,ROKHSAR D S. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity,domestication and genome evolution[J]. Nature Genetics,2013,45(5):487-494.

[74] FRESNEDO-RAMíREZ J,F(xiàn)RETT T J,SANDEFUR P J,SALGADO-ROJAS A,CLARK J R,GASIC K,PEACE C P,ANDERSON N,HARTMANN T P,BYRNE D H,BINK M C A M,VAN DE WEG E,CRISOSTO C H,GRADZIEL T M. QTL mapping and breeding value estimation through pedigree-based analysis of fruit size and weight in four diverse peach breeding programs[J]. Tree Genetics amp; Genomes,2016,12(2):25.

[75] 孟君仁,曾文芳,鄧麗,潘磊,魯振華,崔國朝,王志強(qiáng),牛良. 桃若干重要性狀的KASP分子標(biāo)記開發(fā)與應(yīng)用[J]. 中國農(nóng)業(yè)科學(xué). 2021,54(15):3295-3307.

MENG Junren,ZENG Wenfang,DENG Li,PAN Lei,LU Zhenhua,CUI Guochao,WANG Zhiqiang,NIU Liang. Development and application of KASP molecular markers of some important traits for peach[J]. Scientia Agricultura Sinica,2021,54(15):3295-3307.

[76] 許建蘭,馬瑞娟,張斌斌,張妤艷,張春華,郭磊,沈志軍,俞明亮. 早熟紅肉蟠桃新品種‘金陵血蟠’[J]. 園藝學(xué)報,2021,48(1):193-194.

XU Jianlan,MA Ruijuan,ZHANG Binbin,ZHANG Yuyan,ZHANG Chunhua,GUO Lei,SHEN Zhijun,YU Mingliang. A new early ripening red-flesh flat peach cultivar ‘Jinling xuepan’[J]. Acta Horticulturae Sinica,2021,48(1):193-194.

猜你喜歡
遺傳變異紅色
紅色的眷戀
心聲歌刊(2021年5期)2021-12-21 06:33:26
紅色是什么
紅色在哪里?
先導(dǎo)編輯技術(shù)可編輯近90%的人類遺傳變異
基于改進(jìn)遺傳變異算子的海島算法
電子制作(2019年24期)2019-02-23 13:22:18
紅色之旅
追憶紅色浪漫
Coco薇(2017年11期)2018-01-03 19:42:51
火力楠子代遺傳變異分析及優(yōu)良家系選擇
江南油杉優(yōu)樹子代家系苗期遺傳變異與早期選擇
GABABR2基因遺傳變異與肥胖及代謝相關(guān)表型的關(guān)系
扎赉特旗| 临西县| 光泽县| 喀什市| 杂多县| 易门县| 平远县| 通州市| 松原市| 庆阳市| 醴陵市| 客服| 苏尼特左旗| 澜沧| 龙游县| 荔浦县| 子长县| 稷山县| 五大连池市| 丰顺县| 湖南省| 寻乌县| 固镇县| 同江市| 蛟河市| 杨浦区| 临汾市| 鹤庆县| 资中县| 湖北省| 本溪| 龙州县| 辽宁省| 延川县| 赣榆县| 双桥区| 中阳县| 石屏县| 商洛市| 巴楚县| 南郑县|