国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

米良1號(hào)獼猴桃貯藏過程中糖酸含量估測(cè)模型的構(gòu)建

2025-03-03 00:00:00劉麗楊天意董聰穎石彩云司鵬魏志峰高登濤
果樹學(xué)報(bào) 2025年1期
關(guān)鍵詞:高光譜獼猴桃硬度

摘 " "要:【目的】針對(duì)傳統(tǒng)化學(xué)方法測(cè)定獼猴桃品質(zhì)存在工序復(fù)雜、費(fèi)時(shí)費(fèi)力、需破壞性檢測(cè)等問題,提出一種基于高光譜技術(shù)的高效無(wú)損檢測(cè)方法。【方法】以110個(gè)米良1號(hào)獼猴桃(Actinidia chinensis var. deliciosa ‘Miliang-1’)樣本為研究對(duì)象,利用高光譜儀采集不同貯藏時(shí)間果實(shí)的高光譜反射光譜。利用光譜-理化值共生距離法(sample set partitioning based on joint X-Y distance sampling,SPXY)將獼猴桃樣本按照8∶3的數(shù)量比例劃分為訓(xùn)練集和測(cè)試集,統(tǒng)一采用支持向量機(jī)(SVM)對(duì)比分析標(biāo)準(zhǔn)正態(tài)變換(SNV)、多元散射校正(MSC)、一階導(dǎo)數(shù)(1st-D)、二階導(dǎo)數(shù)(2nd-D)、平滑算法(SG)對(duì)原始光譜進(jìn)行預(yù)處理。使用遺傳算法(genetic algorithm,GA)和隨機(jī)蛙跳(random frog,RF)對(duì)獼猴桃高光譜特征波長(zhǎng)進(jìn)行篩選,結(jié)合支持向量回歸(SVR)、反向傳播神經(jīng)網(wǎng)絡(luò)(BP)算法,組合構(gòu)建獼猴桃品質(zhì)的回歸預(yù)測(cè)模型?!窘Y(jié)果】在組合模型中,可溶性固形物含量的最優(yōu)模型為1st-D+GA-BP,R2為0.903,RMSE為1.731;可滴定酸含量的最優(yōu)模型為1st-D+GA-BP,R2為0.857,RMSE為0.225?!窘Y(jié)論】應(yīng)用高光譜技術(shù)對(duì)米良1號(hào)獼猴桃可溶性固形物含量、可滴定酸含量進(jìn)行無(wú)損檢測(cè)具有可行性。為進(jìn)一步研究不同品種獼猴桃可溶性固形物含量、可滴定酸含量的無(wú)損檢測(cè)模型奠定了基礎(chǔ)。

關(guān)鍵詞:獼猴桃;高光譜;硬度;可溶性固形物含量;可滴定酸含量

中圖分類號(hào):S663.4 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2025)01-0216-11

Construction of a sugar and acid content estimation model for Miliang-1 kiwifruit during storage

LIU Li1, 2, YANG Tianyi1#, DONG Congying1, SHI Caiyun1, SI Peng1, WEI Zhifeng1, GAO Dengtao1, 3*

(1Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China; 2Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, Henan, China; 3Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, Xinjiang, China)

Abstract: 【Objective】 Traditional chemical methods for assessing the storage quality of kiwifruit typically involve complex procedures and high costs, which may hinder their widespread use. These conventional approaches often require significant labor, time and expensive reagents, making them less feasible for large-scale or routine quality control applications. Additionally, these methods usually result in the destruction of the fruit samples, which is not ideal for continuous monitoring. The complexity and cost associated with traditional chemical methods create barriers for smaller producers and can lead to inconsistencies in quality control across the industry. To address these issues, we propose a non-destructive testing method based on hyperspectral technology. This study aims to develop a reliable and efficient method for evaluating the quality of kiwifruit during storage without damaging the samples, thereby providing a more practical and economical solution for the kiwifruit industry. 【Methods】 In this study, 110 Miliang-1 kiwifruit samples were used as experimental subjects. These samples were selected to represent a broad range of storage conditions and potential quality variations, ensuring that the findings of the study would be widely applicable. During the research, a hyperspectral imaging system was used to collect hyperspectral reflectance data of these kiwifruits at different storage times. This data collection included indicators such as titratable acidity, firmness and soluble solid content, which are critical factors in determining the fruit’s overall quality. Hyperspectral imaging technology can capture detailed spectral information across a wide range of wavelengths, providing rich spectral data that offers insights into the internal and external properties of the fruit. This non-invasive method enables the assessment of quality attributes without compromising the integrity of the samples, allowing for repeated measurements over time. However, to ensure the accuracy and reliability of the data, multiple preprocessing methods were employed to process the collected data. These preprocessing methods not only enhance signal quality but also effectively remove noise from the data, ensuring the precision and effectiveness of subsequent analyses. The preprocessing methods used in the study included Standard Normal Variate transformation (SNV), Multiplicative Scatter Correction (MSC), first-order derivative (1st-D), second-order derivative (2nd-D) and Savitzky-Golay smoothing (SG). These methods help correct baseline variations, scatter effects and noise, improving the quality of the spectral data. Each preprocessing technique addresses specific issues within the spectral data, such as correcting for light scattering, baseline shifts and other interferences, thereby optimizing the data for further analysis. To select the optimal hyperspectral wavelengths for predicting kiwifruit quality, Genetic Algorithm (GA) and Random Frog (RF) methods were employed. These algorithms are powerful tools for feature selection, and capable of identifying the most informative wavelengths from the hyperspectral data. By pinpointing the most relevant wavelengths, these methods reduce the dimensionality of the data and enhance the efficiency of the predictive models. The selected wavelengths were then used to construct regression prediction models for kiwifruit quality indicators, including soluble solid content (SSC), firmness and titratable acidity. The regression models utilized a combination of Support Vector Regression (SVR) and Backpropagation Neural Network (BP) algorithms to determine the optimal predictive performance for each quality indicator. These models are particularly suitable for handling the complexity and non-linearity of hyperspectral data, as they can effectively learn from the intricate relationships within the data. 【Results】 The study found that the combination of preprocessing and wavelength selection significantly impacted the accuracy of the prediction models. For soluble solid content, the best model was 1st-D + GA-BP, with a coefficient of determination (R2) of 0.903 and a root mean square error (RMSE) of 1.731, indicating high accuracy in predicting kiwifruit SSC, and reflecting the potential relationship between spectral data and SSC. For firmness, the best prediction model was 1st-D + RF-BP, with an R2 of 0.900 and an RMSE of 0.879, demonstrating reliable predictive capability and highlighting the robustness of the model. For titratable acidity, the best model was 1st-D + GA-BP, with an R2 of 0.857 and an RMSE of 0.225, showing good performance in predicting acidity levels and demonstrating the model’s effective generalization to new data. These results underscore the effectiveness of the developed models and the significant role of preprocessing and feature selection in enhancing model performance. 【Conclusion】 The successful application of hyperspectral technology in this study highlights its potential for non-destructive quality assessment of kiwifruit. By accurately predicting key quality attributes such as SSC, firmness and acidity, hyperspectral imaging provides a powerful alternative to traditional chemical methods. This technology not only simplifies the assessment process but also reduces costs and preserves the integrity of the fruit samples. Additionally, it allows for continuous monitoring of fruit quality during storage, enabling timely interventions to maintain optimal conditions and prevent spoilage. This advancement could revolutionize quality control in the kiwifruit industry, providing a more efficient, cost-effective and sustainable approach to maintaining high standards of fruit quality. The ability to monitor quality in a non-destructive manner also opens up new possibilities for research and development in the field of agricultural sciences, potentially leading to further innovations and improvements in fruit quality assessment and management.

Key words: Kiwifruit; Hyperspectral technology; Firmness; Soluble solid content; Titratable acidity

獼猴桃原產(chǎn)于中國(guó),屬于獼猴桃科獼猴桃屬。因其果實(shí)獨(dú)特的甜酸口感和豐富的維生素C含量而在全球范圍內(nèi)備受歡迎,是一種具有重要經(jīng)濟(jì)價(jià)值的水果[1]。在獼猴桃貯藏過程中,通過檢測(cè)硬度、可溶性固形物含量(SSC)和可滴定酸含量這幾個(gè)關(guān)鍵指標(biāo),可以有效地管理獼猴桃的存儲(chǔ)條件和時(shí)長(zhǎng),以維持其最佳食用品質(zhì),延長(zhǎng)貨架期,同時(shí)減少因過度成熟或腐爛導(dǎo)致的損失[2]。目前,獼猴桃的品質(zhì)檢測(cè)過程主要依賴于耗時(shí)而復(fù)雜的傳統(tǒng)化學(xué)方法,這些方法不僅操作繁瑣,而且具有破壞性,往往會(huì)對(duì)果實(shí)本身造成損害。因此,建立一套高效且無(wú)損的獼猴桃果實(shí)品質(zhì)檢測(cè)方法,不僅可以節(jié)省大量人力物力,也能有效減少獼猴桃貯藏過程中的損耗。

高光譜技術(shù)在水果非破壞性檢測(cè)方面具有明顯優(yōu)勢(shì),國(guó)內(nèi)外科研人員已廣泛應(yīng)用高光譜技術(shù)進(jìn)行水果內(nèi)部品質(zhì)的深入分析和研究。例如,盧娜等[3]利用高光譜成像系統(tǒng)預(yù)測(cè)草莓硬度,通過標(biāo)準(zhǔn)正態(tài)變換(SNV)、多元散射校正(MSC)和Savitzky-Golay平滑等方法預(yù)處理光譜數(shù)據(jù),采用偏最小二乘(PLS)方法結(jié)合化學(xué)計(jì)量學(xué)建模,比較各預(yù)處理方法對(duì)模型效果的影響。結(jié)果顯示,經(jīng)SNV處理的PLS模型表現(xiàn)最佳,相關(guān)系數(shù)高達(dá)0.989,均方根誤差為0.021,也間接證明了高光譜成像技術(shù)檢測(cè)果實(shí)硬度的可行性。林嬌嬌等[4]通過近紅外高光譜成像技術(shù)分析杧果的可溶性固形物含量,以探究不同品種之間在400~1000 nm波段的光譜差異。通過采集光譜數(shù)據(jù)并運(yùn)用CARS-PLS模型進(jìn)行分析,結(jié)果顯示該模型具有高擬合度和預(yù)測(cè)精度,相關(guān)系數(shù)高達(dá)0.880 6,均方根誤差為0.636 6,也間接證明了高光譜技術(shù)快速和無(wú)損檢測(cè)果實(shí)可溶性固形物含量的可行性。趙明蕊等[5]使用近紅外高光譜成像技術(shù)來檢測(cè)加工番茄的品質(zhì),并通過Savitzky-Golay方法優(yōu)化原始光譜數(shù)據(jù),建立了循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)、支持向量機(jī)(SVM)、K最近鄰(KNN)、隨機(jī)森林(RF)和偏最小二乘法(PLS)的模型,以預(yù)測(cè)番茄的可滴定酸含量,結(jié)果顯示該模型具有高擬合度和預(yù)測(cè)精度,相關(guān)系數(shù)高達(dá)0.869,均方根誤差為0.03,也間接證明了高光譜技術(shù)在快速和無(wú)損檢測(cè)果實(shí)可滴定酸含量上的可行性。這些研究強(qiáng)調(diào)了高光譜成像技術(shù)在水果無(wú)損檢測(cè)中的潛力,以及通過不同方法和模型的應(yīng)用,可以實(shí)現(xiàn)對(duì)水果內(nèi)部質(zhì)量的準(zhǔn)確和高效檢測(cè)。盡管針對(duì)各類水果內(nèi)部品質(zhì)的研究使用高光譜技術(shù)已相當(dāng)成熟[6-11],但關(guān)于運(yùn)用高光譜技術(shù)和化學(xué)計(jì)量學(xué)來分析和研究獼猴桃在貯藏時(shí)期無(wú)損檢測(cè)的定量模型相對(duì)較少。

筆者在本研究中以米良1號(hào)為對(duì)象,使用高光譜成像技術(shù)獲取其光譜數(shù)據(jù),使用化學(xué)計(jì)量分析獲取其硬度、可溶性固形物含量、可滴定酸含量數(shù)據(jù),并對(duì)光譜數(shù)據(jù)特征波段進(jìn)行篩選,提取其品質(zhì)指標(biāo)的相關(guān)特征波段,并進(jìn)一步建立米良1號(hào)貯藏過程中內(nèi)部品質(zhì)的預(yù)測(cè)模型,以期為米良1號(hào)及其他獼猴桃品質(zhì)無(wú)損檢測(cè)提供參考。

1 材料和方法

1.1 試驗(yàn)材料

試驗(yàn)所用樣本果實(shí)采摘于中國(guó)農(nóng)業(yè)科學(xué)院鄭州果樹研究所獼猴桃試驗(yàn)園,品種為米良1號(hào),共計(jì)采摘了110個(gè)大小均勻、表面無(wú)損傷和疤痕的樣本,編號(hào)后放入冷庫(kù)中儲(chǔ)存,儲(chǔ)藏溫度為4 ℃。每次采集圖像前,需提前12 h將獼猴桃從冷庫(kù)中取出,使其與周圍溫度保持一致。在試驗(yàn)的第0、10、20、30、40 d,每次分別測(cè)量22個(gè)樣本的高光譜數(shù)據(jù)、可溶性固形物含量、硬度和可滴定酸含量。

1.2 儀器和設(shè)備

FigSpec? FS1X系列-高光譜相機(jī)(線掃描),彩譜科技(浙江)有限公司生產(chǎn);GY-4-J型水果硬度計(jì),浙江托普云農(nóng)科技股份有限公司生產(chǎn);PAL-BX/ACID 8便攜式數(shù)顯糖酸一體機(jī)(獼猴桃),日本ATAGO愛拓公司生產(chǎn)。

1.3 數(shù)據(jù)獲取

高光譜數(shù)據(jù)采集:高光譜成像系統(tǒng)由FigSpec? FS1X系列-高光譜相機(jī)(線掃描)、位移控制平臺(tái)、2個(gè)150 W的光纖鹵素?zé)簟?臺(tái)戴爾數(shù)據(jù)處理機(jī)組成。硬件包括高光譜相機(jī)(線掃描)、平移臺(tái)、光源、計(jì)算機(jī)和軟件處理控制系統(tǒng),該成像系統(tǒng)通過PC機(jī)進(jìn)行控制,并利用HSI Analyzer高光譜圖像采集軟件來采集信息。成像光譜儀光譜范圍為400~1000 nm,光譜分辨率為2.5 nm。為了減少誤差,在采集過程中確保環(huán)境溫度和光源強(qiáng)度的穩(wěn)定性,在正常室溫20~26 ℃和光線陰暗條件下,采用鹵素?zé)籼峁┕庠催M(jìn)行高光譜圖像的拍攝。此外,將標(biāo)準(zhǔn)白板的高度調(diào)整到與獼猴桃樣本在同一焦面上,設(shè)置光譜相機(jī)的曝光時(shí)間為13.5 ms,樣本平臺(tái)與鏡頭的距離為170 mm。電控移動(dòng)平臺(tái)的前進(jìn)距離為11 cm,前進(jìn)速度為0.46 cm·s-1,回退速度為5 cm·s-1。

硬度測(cè)定:在進(jìn)行測(cè)量前,將測(cè)試狀態(tài)設(shè)為峰值保持狀態(tài),并將每個(gè)樣品固定在工作臺(tái)上,確保果實(shí)表面與儀器保持垂直。然后,在果實(shí)的赤道部位選擇3個(gè)測(cè)量點(diǎn)(相隔120°)。以勻速轉(zhuǎn)動(dòng)GY-4型硬度計(jì)升降手柄的方式,使探頭下壓,并讀取數(shù)據(jù)。當(dāng)探頭達(dá)到刻線(壓入10 mm)后停止施加力,讀出硬度值,單位為N。并求取3個(gè)測(cè)量點(diǎn)的平均值作為該樣品的硬度參考值。

可溶性固形物含量(SSC)、可滴定酸含量測(cè)定:在完成硬度值測(cè)定后,立即切取所需測(cè)量部位的獼猴桃。使用手動(dòng)榨汁機(jī)進(jìn)行榨汁,在榨汁后立刻倒入一次性杯中。搖晃混勻,然后倒入測(cè)定窗口,馬上點(diǎn)擊Start,測(cè)定可溶性固形物含量和可滴定酸含量。每一個(gè)獼猴桃取3次測(cè)量結(jié)果平均值作為最終值,每次測(cè)量完畢后,需要用蒸餾水清洗測(cè)定窗口,并擦拭干凈,以免影響試驗(yàn)結(jié)果。

1.4 光譜數(shù)據(jù)預(yù)處理與特征波段篩選

采集的獼猴桃樣本高光譜數(shù)據(jù)導(dǎo)入ViewSpecPro軟件中,計(jì)算各組樣本的平均光譜作為該組樣本的高光譜數(shù)據(jù)并導(dǎo)出文件,然后在MatLab軟件中進(jìn)行預(yù)處理。由于外界及光譜儀自身擾動(dòng)的影響,獲得的獼猴桃光譜在兩端波段噪聲較大,信息冗余,為減少計(jì)算量,故選取400~1000 nm波段作為建模的全波段。

獼猴桃樣品通過聯(lián)合X/Y的異常樣本識(shí)別方法剔除異常樣本數(shù)據(jù)后,用聯(lián)合X-Y距離樣本集算法劃分驗(yàn)證集和校正集,然后對(duì)光譜進(jìn)行標(biāo)準(zhǔn)正態(tài)變換(SNV)、多元散射校正(MSC)、卷積平滑濾波處理(SG)、一階導(dǎo)數(shù)(1st-D)、二階導(dǎo)數(shù)(2nd-D)等預(yù)處理以消除噪聲和雜散光對(duì)模型性能的影響。

為解決光譜模型建立過程中的問題,如波長(zhǎng)數(shù)目不足、低效率及模型復(fù)雜性,提出采用特征波長(zhǎng)的建模方法。此方法通過選擇合適的算法,如隨機(jī)蛙跳(RF)和遺傳算法(GA),來提升模型的穩(wěn)定性并減少誤差。隨機(jī)蛙跳算法通過隨機(jī)搜索最優(yōu)解,而遺傳算法則模擬自然選擇的過程,通過迭代選擇最優(yōu)個(gè)體;遺傳算法則通過模擬自然選擇過程,迭代地優(yōu)化特征選擇,有效減少模型復(fù)雜度。通過合適的算法選擇,可以有效地進(jìn)行特征波長(zhǎng)的提取和建模,使得模型在實(shí)際應(yīng)用中更為精確和高效。

1.5 定量建模方法

定量建模是將檢測(cè)樣本中得到的信息進(jìn)行量化并建立數(shù)學(xué)模型的過程,該建模方法可分為線性方法(SVR)和非線性方法(BP神經(jīng)網(wǎng)絡(luò)模型)。

支持向量回歸(Support Vector Regression, SVR)是一種用于預(yù)測(cè)連續(xù)值的機(jī)器學(xué)習(xí)方法,通過尋找一個(gè)最佳的線來使得大多數(shù)數(shù)據(jù)點(diǎn)的預(yù)測(cè)值與實(shí)際值的誤差在一個(gè)容許范圍內(nèi)。SVR 有幾個(gè)顯著的優(yōu)點(diǎn):首先,它在高維數(shù)據(jù)中表現(xiàn)良好,適合處理有很多特征的數(shù)據(jù);其次,通過使用核函數(shù),SVR可以處理復(fù)雜的非線性問題;再次,SVR對(duì)異常值有一定的魯棒性對(duì)小誤差不敏感。然而,SVR也有一些缺點(diǎn)。它的計(jì)算復(fù)雜度較高,尤其是在處理大規(guī)模數(shù)據(jù)時(shí),訓(xùn)練過程可能會(huì)非常耗時(shí)。此外,SVR需要選擇合適的參數(shù)(如核函數(shù)類型、c值和g值),這通常需要通過交叉驗(yàn)證等方法來進(jìn)行調(diào)優(yōu)。

BP神經(jīng)網(wǎng)絡(luò)(反向傳播神經(jīng)網(wǎng)絡(luò))是一種用于回歸任務(wù)的人工神經(jīng)網(wǎng)絡(luò)模型,通過調(diào)整網(wǎng)絡(luò)權(quán)重和偏置以最小化預(yù)測(cè)誤差。它包含輸入層、隱藏層和輸出層,利用前向傳播計(jì)算輸出,通過誤差反向傳播調(diào)整權(quán)重。模型訓(xùn)練通過多次迭代優(yōu)化誤差函數(shù),并使用早停法防止過擬合。最終,經(jīng)過評(píng)估和驗(yàn)證的模型可應(yīng)用于實(shí)際數(shù)據(jù),實(shí)現(xiàn)對(duì)新數(shù)據(jù)的預(yù)測(cè)。

2 結(jié)果與分析

2.1 貯藏品質(zhì)的分析

從實(shí)際測(cè)得的數(shù)據(jù)可以看出,隨著貯藏時(shí)間的增加,米良1號(hào)獼猴桃硬度逐漸降低。從圖1可以看出,在貯藏初期會(huì)出現(xiàn)硬度快速降低的現(xiàn)象[12]。SSC和TA含量是評(píng)價(jià)獼猴桃風(fēng)味和食用品質(zhì)的關(guān)鍵指標(biāo),二者作為呼吸基質(zhì),也是合成ATP的主要來源[13]。從圖1可以看出,隨著獼猴桃的存放時(shí)間增加,伴隨著呼吸作用,淀粉的轉(zhuǎn)化使得SSC逐漸增加,TA含量逐漸下降。

2.2 樣本劃分

待測(cè)樣本在進(jìn)行光譜掃描和理化實(shí)驗(yàn)的過程中,由于儀器異常、操作錯(cuò)誤和環(huán)境的影響,存在個(gè)別樣本測(cè)量結(jié)果異常,筆者在本研究中采用基于XY變量聯(lián)合的ODXY異常樣本剔除算法進(jìn)行異常樣本剔除以提高模型精確度[14]。通過SPXY算法計(jì)算樣本之間的歐氏距離和標(biāo)簽差異,構(gòu)建距離矩陣D和標(biāo)簽差異矩陣Dy。對(duì)距離矩陣進(jìn)行歸一化處理。選擇距離最遠(yuǎn)的兩個(gè)樣本作為初始訓(xùn)練樣本。迭代選擇距離已選訓(xùn)練樣本最遠(yuǎn)的樣本作為新的訓(xùn)練樣本,直到達(dá)到指定的訓(xùn)練樣本數(shù)量。將未被選為訓(xùn)練樣本的樣本作為測(cè)試樣本。

對(duì)待測(cè)樣本剔除異常值后,利用SPXY算法以8∶3的比例劃分訓(xùn)練集和預(yù)測(cè)集,具體的劃分?jǐn)?shù)據(jù)的統(tǒng)計(jì)結(jié)果見表1。由表1可知,訓(xùn)練集中包含了測(cè)試集中硬度、可滴定酸含量、可溶性固形物含量的最大值和最小值,并且其分布范圍較大,也表明了SPXY劃分的數(shù)據(jù)集是可靠的,這種合理的數(shù)據(jù)集劃分能夠確保模型的預(yù)測(cè)性能和準(zhǔn)確性[15]。

2.3 貯藏時(shí)期光譜分析

110個(gè)米良1號(hào)獼猴桃所獲得的最初原始光譜數(shù)據(jù)在400~1000 nm范圍的平均光譜反射率曲線如圖2所示,結(jié)果表明,所有樣品均表現(xiàn)出相似的光譜曲線趨勢(shì),110個(gè)米良1號(hào)獼猴桃所獲取的最初原始光譜數(shù)據(jù)在400~1000 nm范圍的平均光譜反射率曲線如圖2所示,結(jié)果表明,所有樣品均表現(xiàn)出相似的光譜曲線趨勢(shì)。圖3曲線是5個(gè)不同貯藏時(shí)間(0,10,20,30和40 d)下,每個(gè)時(shí)期22個(gè)樣本的平均光譜曲線,從曲線可以看出,400~640 nm之間反射率處于上升狀態(tài),這主要是由于獼猴桃果肉和表皮中的葉綠素和其他色素吸收引起的[16],在640~660 nm范圍內(nèi),趨于平穩(wěn)但不同時(shí)期反射率而差值較大,是因?yàn)殡S著貯藏時(shí)間的增加,葉綠素的含量逐漸被分解,其反射率的值相對(duì)更高。670~750 nm呈急劇上升趨勢(shì),由于紅邊效應(yīng),可見光區(qū)轉(zhuǎn)變到反射率較高的近紅外區(qū)的邊緣[17]。在830~900 nm呈緩慢趨勢(shì)且不同時(shí)期的反射率差值較大。在810~830 nm和900~910 nm之間存在微弱波峰主要是果實(shí)中的碳水化合物和水分引起的,即體現(xiàn)了O-H的三級(jí)和二級(jí)倍頻信息[18]。

2.4 光譜預(yù)處理

利用SNV、MSC、SG、1st-D、2nd-D五種不同預(yù)處理方式得到米良一號(hào)獼猴桃光譜數(shù)據(jù)分別與硬度、可滴定酸含量、可溶性固形物含量進(jìn)行SVR建模,得到的數(shù)據(jù)如表2。c和g是通過網(wǎng)格尋優(yōu)的方式得到的模型最佳參數(shù)。模型評(píng)價(jià)采用RMSEP和R2指標(biāo),RMSE表示模型預(yù)測(cè)值與實(shí)際值之間差異的標(biāo)準(zhǔn)差,R2衡量模型解釋能力。由表2可知,獼猴桃硬度經(jīng)SNV處理得到的模型最好,R2為0.732,RMSE為1.360;可溶性固形物含量最優(yōu)預(yù)處理是1st-D,R2和RMSE分別為0.805、1.523;獼猴桃可滴定酸含量最優(yōu)預(yù)處理是1st-D,R2和RMSE分別為0.811、0.185。

2.5 提取特征波長(zhǎng)

預(yù)處理后的光譜數(shù)據(jù)中含有大量的冗余信息,嚴(yán)重影響模型的魯棒性和準(zhǔn)確性,為了簡(jiǎn)化模型結(jié)果和提高預(yù)測(cè)精度,筆者使用隨機(jī)蛙跳(RF)和遺傳算法(GA)對(duì)獼猴桃高光譜特征波長(zhǎng)進(jìn)行篩選。由于算法具有隨機(jī)性,筆者多次重復(fù),選擇選取最佳波段。將隨機(jī)蛙跳算法的參數(shù)設(shè)置迭代次數(shù)N為1000次,主成分個(gè)數(shù)10個(gè),蛙跳初始種群數(shù)目Q為2個(gè),以每個(gè)光譜被選擇的可能性為篩選依據(jù),運(yùn)行結(jié)果為降序排列的被選擇可能性,設(shè)定一階導(dǎo)數(shù)預(yù)處理后數(shù)據(jù)、SNV處理后數(shù)據(jù)被選擇可能性閾值分別為0.116、0.27,如圖4所示隨機(jī)蛙跳算法下波長(zhǎng)選擇的概率分布圖,每組數(shù)據(jù)共篩選出10個(gè)特征波長(zhǎng),如圖5所示紅色邊框方塊為選定的變量。

遺傳算法(Genetic Algorithm,GA)是一種基于自然選擇和遺傳機(jī)制的搜索和優(yōu)化算法,用于解決復(fù)雜的優(yōu)化問題。在GA運(yùn)算過程中,設(shè)定初始群體為40,交叉率為0.5,變異率為0.01,迭代次數(shù)為200。以最小的RMSECV值為標(biāo)準(zhǔn),RMSECV變化圖如圖6-A所示。篩選出波長(zhǎng)點(diǎn)在迭代過程中出現(xiàn)頻次較多的波長(zhǎng)點(diǎn)為最優(yōu)波長(zhǎng)點(diǎn),最終選定特征波長(zhǎng)點(diǎn)為81個(gè),如圖6-B所示。

2.6 獼猴桃無(wú)損檢測(cè)模型建立與分析

SVR支持向量機(jī)回歸模型建立:以可溶性固形物含量、硬度和可滴定酸含量的校正集樣本經(jīng)RF和GA算法篩選出的特征波段作為輸入,對(duì)應(yīng)的含量值作為輸出結(jié)合SVR算法建立回歸預(yù)測(cè)模型。對(duì)可溶性固形物含量、硬度和可滴定酸含量的全譜作為輸入,對(duì)應(yīng)的含量值作為輸出結(jié)合SVR算法建立回歸預(yù)測(cè)模型。采用網(wǎng)格尋優(yōu)的方式尋找最佳參數(shù)c、g,建模結(jié)果如表2所示。

BP神經(jīng)網(wǎng)絡(luò)模型建立:設(shè)置BP神經(jīng)網(wǎng)絡(luò)模型參數(shù),激活函數(shù)使用ReLU,輸入層節(jié)點(diǎn),學(xué)習(xí)率0.01,迭代次數(shù)1000次,以可溶性固形物含量、硬度和可滴定酸含量的校正集樣本經(jīng)RF和GA算法篩選出的特征波段作為輸入,對(duì)應(yīng)的含量值作為輸出結(jié)合BP算法建立回歸預(yù)測(cè)模型。對(duì)可溶性固形物含量、硬度和可滴定酸含量的全譜作為輸入,對(duì)應(yīng)的含量值作為輸出結(jié)合BP算法建立回歸預(yù)測(cè)模型,建模結(jié)果如表3所示。

結(jié)合表2和表3可得:可溶性固形物含量的最優(yōu)模型為1st-D+GA-BP,R2為0.903,RMSE為1.731;硬度的最優(yōu)預(yù)測(cè)模型為1st-D+RF-BP,R2為0.9,RMSE為0.879;可滴定酸含量的最優(yōu)模型為1st-D+GA-BP,R2為0.857,RMSE為0.225。可溶性固形物含量、硬度和可滴定酸含量的高光譜回歸預(yù)測(cè)模型預(yù)測(cè)值與真實(shí)值分析如圖7、8、9所示,訓(xùn)練集和預(yù)測(cè)集的相關(guān)系數(shù)均在0.85以上,其均方根誤差也最小,預(yù)測(cè)值也擬合在曲線周圍,模型預(yù)測(cè)準(zhǔn)確。

3 討 論

筆者在本研究中利用成像高光譜對(duì)米良1號(hào)獼猴桃可溶性固形物含量、硬度、可滴定酸含量進(jìn)行無(wú)損檢測(cè),獲取覆蓋400~1000 nm光譜范圍內(nèi)300個(gè)波段的詳細(xì)光譜數(shù)據(jù)。樣品中可溶性固形物含量、可滴定酸含量的參考值是通過便攜式數(shù)字折光儀(ATAGO,日本)經(jīng)過3次單獨(dú)測(cè)量獲得的,以平均值作為可溶性固形物含量的參考值。硬度的參考值是通過GY-4型硬度計(jì)(浙江托普),果實(shí)的赤道部位選擇3個(gè)測(cè)量點(diǎn)(相隔120°),以相同的速度進(jìn)行按壓,最后取三點(diǎn)的平均值作為硬度的參考值。使用ViewSpecPro軟件,進(jìn)行圈取獼猴桃輪廓并提取其平均光譜數(shù)據(jù)。隨后采用MATLABR2023b軟件進(jìn)行分析,采用1st-D、2nd-D、MSC、SNV和SG等5種預(yù)處理方法來進(jìn)行數(shù)據(jù)的處理與分析,采用隨機(jī)蛙跳(RF)、遺傳算法(GA)提取特征光譜信息,同時(shí)降低數(shù)據(jù)的復(fù)雜度。

基于特征變量構(gòu)建的1st-D+RF-BP模型,擁有較高的R2=0.900以及較小的RMSE=0.879,說明1st-D+RF-BP模型可以很好地預(yù)測(cè)米良1號(hào)獼猴桃的硬度。相較于基于全變量構(gòu)建的獼猴桃硬度無(wú)損檢測(cè)模型,該模型從全部變量中篩選出較少的變量,很大程度上提升了模型的運(yùn)行速率,運(yùn)算時(shí)間從5.84 s降至0.84 s??扇苄怨绦挝锖康淖顑?yōu)模型為1st-D+GA-BP,R2為0.903,RMSE為1.731。相比孟慶龍等[7]基于主成分回歸的獼猴桃可溶性固形物含量無(wú)損檢測(cè)和吳彥紅等[19]建立的獼猴桃多線性回歸模型精度有所提升,但對(duì)比姜鳳麗等[8]研究的軟棗獼猴桃SSC檢測(cè)精度有所不足,可能是由于獼猴桃品種不同所致??傻味ㄋ岷康淖顑?yōu)模型為1st-D+GA-BP,擁有較高的R2=0.857和較小的RMSE=0.225,說明該模型對(duì)預(yù)測(cè)米良一號(hào)獼猴桃可滴定酸含量的可行性,但精度相較于孟慶龍等[20]預(yù)測(cè)結(jié)果存在一定的不足,可能是由于貯藏時(shí)間的問題??傻味ㄋ岷吭谫A藏前期變化程度較大,貯藏后期趨于平穩(wěn),調(diào)整數(shù)據(jù)采集區(qū)間可以提高模型精度。

筆者在本研究中通過提取特征波長(zhǎng)并結(jié)合線性和非線性模型,成功預(yù)測(cè)了米良1號(hào)獼猴桃的可溶性固形物含量、硬度和可滴定酸含量,為該獼猴桃在貯藏過程中的內(nèi)部生理變化提供了參考依據(jù)。未來研究重點(diǎn)將為選擇和組合其他有效的特征波長(zhǎng)提取方法,以解決波長(zhǎng)變量自相關(guān)性的問題,并考慮不同品種和貯藏方式等因素的影響,從而達(dá)到提升米良1號(hào)獼猴桃預(yù)測(cè)模型準(zhǔn)確率的目的。

4 結(jié) 論

以米良1號(hào)獼猴桃為研究對(duì)象,采集不同貯藏時(shí)間的獼猴桃高光譜信息和理化指標(biāo),通過分析1st-D、2nd-D、MSC、SNV和SG等5種預(yù)處理方法,兩種特征篩選方法隨機(jī)蛙跳(RF)、遺傳算法(GA)再結(jié)合BP神經(jīng)網(wǎng)絡(luò)、SVR支持向量機(jī)兩種算法,建立米良1號(hào)獼猴桃貯藏品質(zhì)無(wú)損檢測(cè)模型,最終得出如下結(jié)論:

1)通過比較5種光譜預(yù)處理方法,發(fā)現(xiàn)可溶性固形物含量、硬度、可滴定酸含量的最優(yōu)預(yù)處理均為1st-D。

2)采用遺傳算法、隨機(jī)蛙跳對(duì)預(yù)處理光譜進(jìn)行處理,能夠有效對(duì)特征波長(zhǎng)進(jìn)行篩選,簡(jiǎn)化了模型復(fù)雜度,提高了預(yù)測(cè)精度。

3)可溶性固形物含量的最優(yōu)模型為1st-D+GA-BP,R2為0.903,RMSE為1.731;硬度的最優(yōu)預(yù)測(cè)模型為1st-D+RF-BP,R2為0.900,RMSE為0.879;可滴定酸含量的最優(yōu)模型為1st-D+GA-BP,R2為0.857,RMSE為0.225。

參考文獻(xiàn) References:

[1] 鐘曼茜,翟舒嘉,劉偉,睢國(guó)祥,段玉權(quán),林瓊,陶鑫涼. 我國(guó)即食獼猴桃產(chǎn)業(yè)發(fā)展現(xiàn)狀、問題與對(duì)策[J]. 中國(guó)果樹,2023(2):122-127.

ZHONG Manxi,ZHAI Shujia,LIU Wei,SUI Guoxiang,DUAN Yuquan,LIN Qiong,TAO Xinliang. Current situation,problems and countermeasures of the development of ready-to-eat kiwifruit industry in China[J]. China Fruits,2023(2):122-127.

[2] 郭琳琳,龐榮麗,王瑞萍,喬成奎,田發(fā)軍,王彩霞,李君,龐濤,成昕,謝漢忠. 獼猴桃營(yíng)養(yǎng)品質(zhì)綜合評(píng)價(jià)[J]. 果樹學(xué)報(bào),2022,39(10):1864-1872.

GUO Linlin,PANG Rongli,WANG Ruiping,QIAO Chengkui,TIAN Fajun,WANG Caixia,LI Jun,PANG Tao,CHENG Xin,XIE Hanzhong. Comprehensive trait evaluation for kiwifruit nutritional quality[J]. Journal of Fruit Science,2022,39(10):1864-1872.

[3] 盧娜,韓平,王紀(jì)華. 基于高光譜成像技術(shù)的草莓硬度預(yù)測(cè)[J]. 軟件導(dǎo)刊,2018,17(3):180-182.

LU Na,HAN Ping,WANG Jihua. Prediction on firmness of strawberry based on hyperspectral imaging[J]. Software Guide,2018,17(3):180-182.

[4] 林嬌嬌,蒙慶華,吳哲鋒,常洪娟,倪淳宇,邱鄒全,李華榮,黃玉清. 基于近紅外高光譜技術(shù)的杧果可溶性固形物含量無(wú)損檢測(cè)[J]. 果樹學(xué)報(bào),2024,41(1):122-132.

LIN Jiaojiao,MENG Qinghua,WU Zhefeng,CHANG Hongjuan,NI Chunyu,QIU Zouquan,LI Huarong,HUANG Yuqing. Fruit soluble solids content non-destructive detection based on visible/near infrared hyperspectral imaging in mango[J]. Journal of Fruit Science,2024,41(1):122-132.

[5] 趙明蕊. 基于高光譜成像技術(shù)的加工番茄果實(shí)品質(zhì)無(wú)損檢測(cè)研究[D]. 石河子:石河子大學(xué),2023.

ZHAO Mingrui. Nondestructive testing of processing tomato fruit quality based on hyperspectral imaging[D]. Shihezi:Shihezi University,2023.

[6] 尚靜,馮樹南,譚濤,吳美芝,陳海江,孟慶龍. 基于高光譜成像的貴長(zhǎng)獼猴桃硬度快速預(yù)測(cè)[J]. 食品工業(yè)科技,2023,44(6):345-350.

SHANG Jing,F(xiàn)ENG Shunan,TAN Tao,WU Meizhi,CHEN Haijiang,MENG Qinglong. Rapid prediction for the firmness of Guichang kiwifruit by hyperspectral imaging[J]. Science and Technology of Food Industry,2023,44(6):345-350.

[7] 孟慶龍,黃人帥,張艷,尚靜. 貯藏期內(nèi)獼猴桃酸度的快速無(wú)損檢測(cè)[J]. 農(nóng)產(chǎn)品加工,2022(11):66-68.

MENG Qinglong,HUANG Renshuai,ZHANG Yan,SHANG Jing. Rapidly nondestructive detection for the pH of kiwifruits during storage[J]. Farm Products Processing,2022(11):66-68.

[8] 姜鳳利,楊磊,田有文,孫炳新,羅子旋. 基于高光譜成像的軟棗獼猴桃SSC檢測(cè)研究[J]. 沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào),2023,54(3):318-326.

JIANG Fengli,YANG Lei,TIAN Youwen,SUN Bingxin,LUO Zixuan. Detection of soluble solids content in Actinidia argute based on hyperspectral imaging[J]. Journal of Shenyang Agricultural University,2023,54(3):318-326.

[9] GALV?O R K H,ARAUJO M C U,JOSé G E,PONTES M J C,SILVA E C,SALDANHA T C B. A method for calibration and validation subset partitioning[J]. Talanta,2005,67(4):736-740.

[10] RICCIOLI C,PéREZ-MARíN D,GARRIDO-VARO A. Optimizing spatial data reduction in hyperspectral imaging for the prediction of quality parameters in intact oranges[J]. Postharvest Biology and Technology,2021,176:111504.

[11] AREDO V,VELáSQUEZ L,CARRANZA-CABRERA J,SICHE R. Predicting of the quality attributes of orange fruit using hyperspec-tral images[J]. Journal of Food Quality and Hazards Control,2019,6:82-92.

[12] 陸玲鴻,馬媛媛,古咸彬,肖金平,宋根華,張慧琴. 獼猴桃果實(shí)貯藏期間細(xì)胞壁多糖物質(zhì)降解特性及組織結(jié)構(gòu)差異分析[J]. 核農(nóng)學(xué)報(bào),2023,37(3):550-558.

LU Linghong,MA Yuanyuan,GU Xianbin,XIAO Jinping,SONG Genhua,ZHANG Huiqin. Degradation characteristics of cell wall polysaccharides and differences in tissue structure of kiwifruit fruits during storage[J]. Journal of Nuclear Agricultural Sciences,2023,37(3):550-558.

[13] 李艷杰,孫先鵬,郭康權(quán),王英. 臭氧、保鮮劑對(duì)獼猴桃貯藏保鮮效果的比較[J]. 食品科技,2009,34(2):45-48.

LI Yanjie,SUN Xianpeng,GUO Kangquan,WANG Ying. Comparison of the storage effect on kiwi fruit between ozone and preservative[J]. Food Science and Technology,2009,34(2):45-48.

[14] 尹寶全,史銀雪,孫瑞志. 近紅外光譜分析中的一種基于XY變量聯(lián)合的異常樣本剔除算法[J]. 中國(guó)科學(xué)技術(shù)大學(xué)學(xué)報(bào),2016,46(3):208-214.

YIN Baoquan,SHI Yinxue,SUN Ruizhi. An outlier sample eliminating algorithm based on joint XY distances for near infrared spectroscopy analysis[J]. Journal of University of Science and Technology of China,2016,46(3):208-214.

[15] 張芳,鄧照龍,田有文,高鑫,王開田,徐正玉. 基于高光譜成像技術(shù)的南果梨酸度無(wú)損檢測(cè)方法[J]. 沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào),2024,55(2):231-239.

ZHANG Fang,DENG Zhaolong,TIAN Youwen,GAO Xin,WANG Kaitian,XU Zhengyu. Non-destructive testing method for acidity of Nanguo pear based on hyperspectral imaging technology[J]. Journal of Shenyang Agricultural University,2024,55(2):231-239.

[16] 高宏盛,郭志強(qiáng),曾云流,丁港,王逍遙,李黎. 基于高光譜圖像波段融合的獼猴桃軟腐病早期分類檢測(cè)[J]. 光譜學(xué)與光譜分析,2024,44(1):241-249.

GAO Hongsheng,GUO Zhiqiang,ZENG Yunliu,DING Gang,WANG Xiaoyao,LI Li. Early classification and detection of kiwifruit soft rot based on hyperspectral image band fusion[J]. Spectroscopy and Spectral Analysis,2024,44(1):241-249.

[17] GITELSON A A,KEYDAN G P,MERZLYAK M N. Three-band model for noninvasive estimation of chlorophyll,carotenoids,and anthocyanin contents in higher plant leaves[J]. Geophysical Research Letters,2006,33(11):L11402.

[18] SPIER M R,WOICIECHOWSKI A L,DE SOUZA V L P,SOCCOL C R. Production and characterization of amylases by Aspergillus niger under solid state fermentation using agro industrials products[J]. International Journal of Food Engineering,2006,2(3):1556-3758.

[19] 吳彥紅,嚴(yán)霖元,吳瑞梅,楊勇. 利用熒光高光譜圖像技術(shù)無(wú)損檢測(cè)獼猴桃糖度[J]. 江西農(nóng)業(yè)大學(xué)學(xué)報(bào),2010,32(6):1297-1300.

WU Yanhong,YAN Linyuan,WU Ruimei,YANG Yong. Nondestructive determination of sugar content in kiwifruit using hyperspectral fluorescence imaging technology[J]. Acta Agriculturae Universitatis Jiangxiensis,2010,32(6):1297-1300.

[20] 孟慶龍,黃人帥,張艷,尚靜. 貯藏期內(nèi)獼猴桃酸度的快速無(wú)損檢測(cè)[J]. 農(nóng)產(chǎn)品加工,2022(11):66-68.

MENG Qinglong,HUANG Renshuai,ZHANG Yan,SHANG Jing. Rapidly nondestructive detection for the pH of kiwifruits during storage[J]. Farm Products Processing,2022(11):66-68.

猜你喜歡
高光譜獼猴桃硬度
終軋溫度對(duì)F460海工鋼組織及硬度影響
山東冶金(2022年1期)2022-04-19 13:40:34
摘獼猴桃
提取獼猴桃的DNA
摘獼猴桃
65Mn表面電噴鍍Ni-Co-P/BN復(fù)合鍍層的硬度分析
基于實(shí)測(cè)光譜的紅花葉綠素含量高光譜估算模型研究
養(yǎng)個(gè)獼猴桃
一種基于引導(dǎo)濾波和MNF的高光譜遙感圖像分類方法
基于高光譜響應(yīng)的農(nóng)田大棚EVA棚膜拉伸強(qiáng)度估計(jì)
基于光譜特征參數(shù)的果樹樹種的遙感識(shí)別
祁门县| 合水县| 甘南县| 梓潼县| 安塞县| 洛南县| 沈丘县| 辛集市| 英山县| 金山区| 旬阳县| 颍上县| 吉木萨尔县| 大竹县| 温泉县| 高阳县| 林甸县| 彭泽县| 社旗县| 石狮市| 即墨市| 建瓯市| 东平县| 崇义县| 金华市| 睢宁县| 佛学| 台湾省| 三亚市| 郯城县| 临西县| 永新县| 广灵县| 洛阳市| 留坝县| 漳平市| 米易县| 尚义县| 密云县| 涿州市| 精河县|