楊文成 董有海
·綜述·
人臍帶間充質(zhì)干細(xì)胞的研究進(jìn)展
楊文成 董有海
胞外基質(zhì)中某些生長(zhǎng)因子的釋放和細(xì)胞對(duì)胞外基質(zhì)中生長(zhǎng)因子的敏感性;但持續(xù)的低強(qiáng)度超聲波卻會(huì)降低細(xì)胞的增殖能力[9]。
3.1 hUCMSC的細(xì)胞形態(tài)
培養(yǎng)的24 h內(nèi)即可觀察到貼壁的成纖維樣細(xì)胞,多呈梭形,也可見(jiàn)到多角形細(xì)胞[10];傳代后的細(xì)胞為形態(tài)相對(duì)均一的梭形,呈平行排列或旋渦狀排列生長(zhǎng)。透鏡電鏡觀察顯示,hUCMSC核大,呈圓形或橢圓形,位于胞漿的中央,核仁明顯,常染色質(zhì)多,異染色質(zhì)少,胞漿少,細(xì)胞器以粗面內(nèi)質(zhì)網(wǎng)和線粒體為主,胞漿內(nèi)有較多游離核糖體。多次傳代后,細(xì)胞的核型保持穩(wěn)定。
3.2 hUCMSC表面抗原標(biāo)記
研究發(fā)現(xiàn),hUCMSC高表達(dá)MSC標(biāo)記(CD73、CD90、CD105)和黏附分子標(biāo)記(CD54、CD13、CD29、CD44),低表達(dá)MHC-Ⅰ分子標(biāo)記(HLA-ABC)等,不表達(dá)造血干細(xì)胞標(biāo)記(CD34、CD45、CD14)、內(nèi)皮細(xì)胞標(biāo)記(CD33、CD133)及MHC-Ⅱ分子標(biāo)記(HLA-DR、-DA、-DP、-DQ)等;hUCMSC還表達(dá)部分hESC標(biāo)記,同時(shí)也表達(dá)一些轉(zhuǎn)錄因子,這些轉(zhuǎn)錄因子多為hESC所表達(dá),如Oct-4、Sox-2、Nanog等[9-11]。在hESC中,上述分子是細(xì)胞自我更新和多向分化的主要調(diào)控分子[12],如Oct-4是hESCs特異性基因,對(duì)維持干細(xì)胞未分化狀態(tài)及細(xì)胞的多分化潛能具有重要作用[13];Nanog分子對(duì)保持細(xì)胞自我更新和增殖能力起重要作用;這些分子在細(xì)胞傳代到第9代及冷凍復(fù)蘇后仍有表達(dá)。因此,有理由相信hUCMSC具有和hESC相似的調(diào)控機(jī)制和生物學(xué)特性,說(shuō)明hUCMSC是一種較為原始的干細(xì)胞,是介于hESC和成體干細(xì)胞之間的一類MSC,提示hUCMSC可能具有更強(qiáng)的可塑性和極低的免疫原性。
3.3 hUCMSC的免疫原性和免疫調(diào)節(jié)作用
3.3.1 hUCMSC具有極低的免疫原性
hUCMSC不表達(dá)HLA-DR、-DA、-DP、-DQ[11,13],低表達(dá)移植相關(guān)的細(xì)胞表面標(biāo)記CD80、CD86、HLA-ABC[13]。大量研究證實(shí),hUCMSC表達(dá)CD106、HLA-ABC明顯低于BMSC,因此hUCMSC具有更低的免疫原性[14];另外,hUCMSC表達(dá)某些hESC標(biāo)記,提示hUCMSC的免疫原性極低。野向陽(yáng)等[15]對(duì)正常的hUCMSC及經(jīng)γ-干擾素刺激48 h后的第3代hUCMSC,應(yīng)用流式細(xì)胞儀檢測(cè)其HLA-ABC、HLA-DR、CD80和CD86的表達(dá)情況,結(jié)果表明hUCMSCs低表達(dá)HLA-ABC,不表達(dá)HLA-DR、CD80和CD86;經(jīng)γ-干擾素刺激后的hUCMSCs只增加對(duì)HLA-ABC的表達(dá),而HLA-DR、CD80、CD86仍未表達(dá)。在腦損傷和退行性變的動(dòng)物模型中進(jìn)行細(xì)胞移植治療發(fā)現(xiàn),機(jī)體并未產(chǎn)生針對(duì)這些移植細(xì)胞的排斥反應(yīng)[16];與BMSC相比,UCMSC移植后產(chǎn)生免疫排斥反應(yīng)的可能性較低[17],說(shuō)明hUCMSC為一類免疫缺陷細(xì)胞,hUCMSC存在同種異體移植時(shí)逃避免疫應(yīng)答的可能。但在一項(xiàng)為期180 d的研究中發(fā)現(xiàn),hUCMSC植入體內(nèi)6個(gè)月后卻出現(xiàn)了宿主抗移植物的排斥反應(yīng),這可能是由于在宿主免疫作用下,出現(xiàn)了干細(xì)胞免疫抑制丟失的現(xiàn)象[18]。宿主對(duì)移植的hUCMSC長(zhǎng)期的排斥反應(yīng)尚有待進(jìn)一步研究。
3.3.2 hUCMSC的免疫調(diào)節(jié)作用
將hUCMSC和經(jīng)絲裂原刺激的T細(xì)胞共培養(yǎng)發(fā)現(xiàn),T細(xì)胞分泌INF-c和TNF-a的水平明顯降低,并且T細(xì)胞的增殖能力受到明顯抑制[19-20];但是,hUCMSC分泌HGF、IL-10、TGF-b1、COX-1、COX-2的水平?jīng)]有明顯降低,說(shuō)明在體外hUCMSC對(duì)T淋巴細(xì)胞具有負(fù)調(diào)節(jié)作用[19];同樣,在體外hUCMSC抑制再生障礙性貧血患者血液中T細(xì)胞的增殖,改變血液中倒置的CD4+/CD8+比例,抑制再生障礙性貧血患者造血負(fù)調(diào)控因子白細(xì)胞介素2、γ-干擾素分泌水平[21];向多發(fā)性硬化患者體內(nèi)輸注hUCMSC,可控制病情[22]。這些研究說(shuō)明,hUCMSC在體內(nèi)、外對(duì)T淋巴細(xì)胞具有負(fù)調(diào)節(jié)作用。
3.4 hUCMSC的增殖特性和增殖周期
hUCMSC具有良好的增殖性能,但是不同的實(shí)驗(yàn)中其倍增時(shí)間存在不同[2]。在早期的傳代培養(yǎng)中,細(xì)胞倍增時(shí)間約為20~24 h[23-24],傳代后的倍增時(shí)間會(huì)縮短[25-26],傳至20~30代其增殖活性仍未降低[14]。BMSC會(huì)隨著機(jī)體的老化而導(dǎo)致數(shù)量減少,增殖活性和分化能力不斷降低[1],但是hUCMSC不存在這樣的問(wèn)題。研究表明,hUCMSC的增殖活性與分娩時(shí)母體的年齡、胎兒性別、分娩方式等無(wú)關(guān),與是否足月產(chǎn)和足月產(chǎn)的嬰兒體重有關(guān),足月產(chǎn)和較重嬰兒的hUCMSC的增殖活性和分化能力較高,其原因和機(jī)制尚不清楚。
hUCMSC在接種后的前3天處于潛伏期,細(xì)胞無(wú)明顯增殖;從第4天開(kāi)始,細(xì)胞進(jìn)入對(duì)數(shù)增長(zhǎng)期,維持至第8天;之后進(jìn)入平臺(tái)期。在對(duì)數(shù)生長(zhǎng)期,第1~10代細(xì)胞的倍增時(shí)間約為20~24 h[23-24],明顯低于BMSC的倍增時(shí)間(40 h[14])。
流式細(xì)胞技術(shù)分析細(xì)胞周期顯示,第2~6代hUCMSC為正常二倍體細(xì)胞,80%以上的細(xì)胞處于G0/G1期,G2/M期細(xì)胞為6.24%(4.86%~10.21%),S期細(xì)胞為3.73%(1.45%~7.57%)。
3.5 hUCMSC的多向分化潛能
hUCMSC在體外被證實(shí)可向脂肪細(xì)胞、成軟骨細(xì)胞、成骨細(xì)胞、心肌細(xì)胞、骨骼肌細(xì)胞、神經(jīng)細(xì)胞、神經(jīng)膠質(zhì)細(xì)胞、多巴胺能神經(jīng)細(xì)胞、內(nèi)皮細(xì)胞、肝細(xì)胞、胰島樣細(xì)胞、平滑肌細(xì)胞、生殖細(xì)胞等方向分化[9-10,28-31];在體內(nèi),可分化為神經(jīng)細(xì)胞、多巴胺能神經(jīng)元細(xì)胞、光敏感感受器神經(jīng)細(xì)胞、內(nèi)皮細(xì)胞、骨骼肌細(xì)胞、心肌細(xì)胞等[31-32]。與BMSC相比,多數(shù)報(bào)道證實(shí)hUCMSC具有更強(qiáng)的向各表型細(xì)胞分化的能力,但也有不同的報(bào)道出現(xiàn)。以向脂肪細(xì)胞分化為例,Karahuseyinoglu等[26]報(bào)道,hUCMSC分化的脂肪前體細(xì)胞含有的脂肪小滴明顯較小,且為多室性;Baksh等[33]的研究發(fā)現(xiàn),在向脂肪細(xì)胞誘導(dǎo)至21 d時(shí),hUCMSC來(lái)源的細(xì)胞產(chǎn)生了更豐富的脂肪小滴;Lu等[34]在這兩種不同來(lái)源的干細(xì)胞向脂肪細(xì)胞分化的對(duì)比研究中并沒(méi)有發(fā)現(xiàn)任何有意義的差異。
3.6 hUCMSC的成骨分化潛能
Jo等[10]的研究發(fā)現(xiàn),hUCMSCs經(jīng)成骨誘導(dǎo)后,ALP組織化學(xué)染色顯示ALP活性增高,并表達(dá)骨涎蛋白(Osteonectin,ON);Cremonesi等[35]應(yīng)用Von kossa染色顯示,hUCMSCs經(jīng)成骨誘導(dǎo)后有明顯的鈣沉積并形成鈣結(jié)節(jié),證明hUCMSCs具有成骨潛能。研究表明,未誘導(dǎo)的臍帶貼壁細(xì)胞中無(wú)ALP、ColⅠmRNA表達(dá),誘導(dǎo)后表達(dá)ALP、ColⅠmRNA,但誘導(dǎo)前和誘導(dǎo)后成骨細(xì)胞中均有ON表達(dá),且誘導(dǎo)后ON表達(dá)明顯增強(qiáng);hUCMSCs經(jīng)誘導(dǎo)后形成鈣化結(jié)晶,茜素紅染色陽(yáng)性[36]。
與BMSC、ADMSC相比,hUCMSC具有明顯的優(yōu)勢(shì),但仍有一些問(wèn)題亟待解決,如定向分化的方法、移植后的免疫學(xué)特性以及是否具有遠(yuǎn)期的致瘤性等。我們相信,隨著研究的不斷深入,hUCMSC有望成為組織工程研究中極具潛力的種子細(xì)胞。
[1]Mueller SM,Glowacki J.Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges[J].J Cellular Biochemistry,2001,82(4):583-590.
[2]Mitchell K,Weiss ML,Mitchell JB,et al.Matrix cells from Wharton's jelly from neurons and glia[J].Stem Cells,2003,21(1):50-60.
[3]Jomura S,Uy M,Mitchell K,et al.Potential treatment of cerebral global ischemia with Oct-4(+)umbilical cord matrix cells[J].Stem Cells,2007,25(1):98-106.
[4]Weiss ML,Medicetty S,Bledsoe AR,et al.Human umbilical cord matrix stem cells:preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease[J].Stem Cells, 2006,24(3):781-792.
[5]Wang HS,Hung SC,Peng ST,et al.Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord[J].Stem Cells, 2004,22(7):1330-1337.
[6]Petsa A,Gargani S,Felesakis A,et al.Effectiveness of protocol for the isolation of Wharton's jelly stem cells in large-scale applications [J].In Vitro Cell Dev Biol Anim,2009,45(10):573-576.
[7]Lee S,Park JR,Seo MS,et al.Histone deacetylase inhibitors decrease proliferation potential and multilineage differentiation capability of human mesenchymal stem cells[J].Cell Prolif,2009, 42(6):711-720.
[8]Ma L,Feng XY,Cui BL,et al.Human umbilical cord Wharton's jelly-derived mesenchymal stem cells differentiation into nervelike cells[J].Chin Med J(Engl),2005,118(23):1987-1993.
[9]Yoon JH,Roh EY,Shin S,et al.Introducing pulsed low-intensity ultrasound to culturing human umbilical cord-derived mesenchymal stem cells[J].Biotechnol Lett,2009,31(3):329-335.
[10]Jo CH,Kim OS,Park EY,et al.Fetal mesenchymal stem cells derived from human umbilical cord sustain primitive characteristics during extensive expansion[J].Cell Tissue Res,2008,334(3):423-433.
[11]Kita K,Gauglitz GG,Phan TT,et al.Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane[J].Stem Cells Dev,2009,19(4):491-506.
[12]Chambers I,Colby D,Robertson M,et al.Functional expression cloning of Nanog,a pluripotency sustaining factor in embryonic stem cells[J].Cell,2003,113(5):643-655.
[13]La Rocca G,Anzalone R,Corrao S,et al.Isolation and characterization of Oct-4+/HLA-G+mesenchymal stem cells from human umbilical cord matrix:differentiation potential and detection of new markers[J].Histochem Cell Biol,2009,131(2):267-282.
[14]Lu LL,Liu YJ,Yang SG,et al.Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesissupportive function and other potentials[J].Haematologica,2006, 91(8):1017-1026.
[15]野向陽(yáng),李相軍,徐巖,等.人臍帶間充質(zhì)干細(xì)胞體外成骨及其免疫學(xué)特征[J].中國(guó)組織工程研究與臨床康復(fù),2009,13(36):7029-7033.
[16]Liao W,Xie J,Zhong J,et al.Therapeutic effect of human umbilical cord multipotent mesenchymal stromal cells in a rat model of stroke [J].Transplantation,2009,87(3):350-359.
[17]Oh W,Kim D,Yang YS,et al.Immunological properties of umbilical cord blood-derived mesenchymal stromal cells[J].Cellular Immunology,2008,251(2):116-123.
[18]Prigozhina TB,Khitrin S,Elkin G,et al.Mesenchymal stromal cells lose their immunosuppressive potential after allotransplantation [J].Exp Hematol,2008,36(10):1370-1376.
[19]Yoo KH,Jang IK,Lee MW,et al.Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues[J].Cell Immunol,2009,259(2):150-156.
[20]Girdlestone J,Limbani VA,Cutler AJ,et al.Efficient expansion of mesenchymal stromal cells from umbilical cord under low serum conditions[J].Cytotherapy,2009,11(6):738-748.
[21]陳新,華建媛,石慶之.人臍帶間充質(zhì)干細(xì)胞對(duì)再生障礙性貧血T細(xì)胞的調(diào)節(jié)作用[J].中國(guó)組織工程研究與臨床康復(fù),2009,13 (40):7908-7912.
[22]Liang J,Zhang H,Hua B,et al.Allogeneic mesenchymal stem cells transplantation in treatment of multiple sclerosis[J].Mult Scler,2009,15(5):644-646.
[23]Qiao C,Xu W,Zhu W,et al.Human mesenchymal stem cells isolated from the umbilical cord[J].Cell Biol Int,2008,32(1):8-15.
[24]Sarugaser R,Hanoun L,Keating A,et al.Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy[J].PLoS One,2009,4(8):e6498.
[25]Sarugaser R,Lickorish D,Baksh D,et al.Human umbilical cord perivascular(HUCPV)cells:a source of mesenchymal progenitors [J].Stem Cells,2005,23(2):220-229.
[26]Karahuseyinoglu S,Cinar O,Kilic E,et al.Biology of stem cells in human umbilical cord stroma:in situ and in vitro surveys[J]. Stem Cells,2007,25(2):319-331.
[27]Troyer DL,Weiss ML.Wharton's jelly-derived cells are a primitive stromal cell population[J].Stem Cells,2008,26(3):591-599.
[28]Ishige I,Nagamura-Inoue T,Honda MJ,et al.Comparison of mesenchymal stem cells derived from arterial,venous,and Wharton's jelly explants of human umbilical cord[J].Int J Hematol,2009,90 (2):261-269.
[29]Campard D,Lysy PA,Najimi M,et al.Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocytelike cells[J].Gastroenterology,2008,134(3):833-848.
[30]Wu LF,Wang NN,Liu YS,et al.Differentiation of Wharton's jelly primitive stromal cells into insulin-producing cells in comparison with bone marrow mesenchymal stem cells[J].Tissue Eng Part A, 2009,15(10):2865-2873.
[31]Huang P,Lin LM,Wu XY,et al.Differentiation of human umbilical cord Wharton's jelly-derived mesenchymal stem cells into germlike cells in vitro[J].J Cell Biochem,2010,109(4):747-754.
[32]Lund RD,Wang S,Lu B,et al.Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease[J].Stem Cells,2007,25(3):602-611.
[33]Baksh D,Yao R,Tuan RS.Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow[J].Stem Cells,2007,25(6):1384-1392.
[34]Liu M,Yang SG,Liu PX,et al.Comparative study of in vitro hematopoietic supportive capability of human mesenchymal stem cells derived from bone marrow and umbilical cord[J].Zhongguo Shi Yan Xue Ye Xue Za Zhi,2009,17(5):1294-1300.
[35]Cremonesi F,Violini S,Lange CA,et al.Isolation,in vitro culture and characterization of foal umbilical cord stem cells at birth[J]. Vet Res Commun,2008,32(1):139-142.
[36]Lu L,Liu Y,Yang S,et al.Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials[J].Haematologiga,2006,91(8):1017-1026.
Q813
B
1673-0364(2010)05-0292-03
1 hUCMSCs來(lái)源
200040上海市復(fù)旦大學(xué)附屬上海市第五人民醫(yī)院骨科。質(zhì)干細(xì)胞(Human umbilical cord mesenchymal stem cells,hUCMSC)[3-5]。
2.1 hUCMSC的分離
2.1.1 酶消化法
臍帶是富含膠原和葡萄糖胺的組織,膠原占臍帶干重的50%,透明質(zhì)酸占葡萄糖胺的70%,故多用含有膠原酶和透明質(zhì)酸酶的酶液消化臍帶組織以獲取細(xì)胞[6-7]。將去除了臍血管的臍帶組織切割成小塊,然后置入酶液中消化。多數(shù)含高活性膠原酶的消化液中同時(shí)含有酪蛋白酶、梭菌蛋白酶和胰蛋白酶,Ⅰ型膠原蛋白酶被廣泛用于分離間質(zhì)細(xì)胞[3]。在膠原蛋白酶中加入透明質(zhì)酸酶,可明顯加快基質(zhì)的降解和縮短間質(zhì)細(xì)胞分離的時(shí)間[4]。對(duì)MSC增殖和分化而言,酶的濃度和處理的時(shí)間極為重要,尤其在膠原酶和透明質(zhì)酸酶聯(lián)合應(yīng)用時(shí),有可能造成細(xì)胞外膜的破壞,使分離的MSC不能貼壁。臍帶組織塊消化時(shí)間從30 min至16 h不等[5],主要取決于組織塊的大小和酶的成分及濃度;酶消化法獲得的細(xì)胞,除MSC外還含有其他類型的細(xì)胞,熒光標(biāo)記和磁珠標(biāo)記技術(shù)可在較短時(shí)間獲得純化的細(xì)胞。
2.1.2 組織塊貼壁法
該法操作簡(jiǎn)單,直接將切成小塊的臍帶組織放在MSC培養(yǎng)液中,置于5%CO2、37℃、飽和濕度的培養(yǎng)箱中培養(yǎng),約5~7 d后可見(jiàn)貼壁生長(zhǎng)的單個(gè)長(zhǎng)條梭形細(xì)胞從組織中移出,10~15 d時(shí)即可獲得MSC[8]。在培養(yǎng)早期,酶消化法獲得的細(xì)胞數(shù)量明顯多于組織塊貼壁法;但較長(zhǎng)培養(yǎng)過(guò)程中,兩種培養(yǎng)方法所獲得的細(xì)胞量及細(xì)胞表型沒(méi)有明顯差異;貼壁法操作簡(jiǎn)單,且傳代后的細(xì)胞形態(tài)及增殖活性更為穩(wěn)定。
2.2 hUCMSC的培養(yǎng)
常用的hUCMSC培養(yǎng)基為a-MEM或低糖DMEM中加入10%的胎牛血清、抗生素、生長(zhǎng)因子和營(yíng)養(yǎng)物質(zhì)等。在5% CO2、37℃培養(yǎng)箱中培養(yǎng);2~3 d需更換一次培養(yǎng)液。當(dāng)貼壁細(xì)胞80%融合時(shí),可進(jìn)行傳代。研究發(fā)現(xiàn),以低強(qiáng)度脈沖式超聲波處理臍帶及傳代細(xì)胞,相同條件下可獲得對(duì)照組3倍數(shù)量的細(xì)胞,且獲得的細(xì)胞擴(kuò)增能力明顯增強(qiáng);可能是因?yàn)槌暡ㄊ鼓殠чg質(zhì)變得更為松散,促進(jìn)了細(xì)胞增殖,并增加了
2010年6月6日,
2010年8月14日)
10.3969/j.issn.1673-0364.2010.05.016
人臍帶(Human umbilical cords,hUC)連接于母體和胎兒之間,妊娠期間為胎兒提供營(yíng)養(yǎng),由三部分構(gòu)成:羊膜被覆上皮、臍血管和位于兩者之間被稱為華氏膠(Wharton's Jelly)的黏液結(jié)締組織。華氏膠對(duì)臍血管起支撐和保護(hù)作用。華氏膠中存在著一種成纖維樣細(xì)胞,該細(xì)胞具有自我更新、增殖和多向分化潛能,被稱為人臍帶間充質(zhì)干細(xì)胞(Human umbilical cord mesenchymal stem cells,hUCMSC)。與人胚胎干細(xì)胞(Human embryonic stem cells,hESC)、骨髓間充質(zhì)干細(xì)胞(Bone marrow derived mesenchymal stem cells,BMSC)和脂肪間充質(zhì)干細(xì)胞(Adipose derived mesenchymal stem cells,ADMSC)相比,hUCMSC具有明顯的優(yōu)勢(shì):①成本較低,hUCs是醫(yī)學(xué)廢棄物;②來(lái)源豐富,全世界每年都有數(shù)億新生兒出生;③不會(huì)給捐獻(xiàn)者造成新的創(chuàng)傷和痛苦;④不涉及倫理問(wèn)題;⑤hUCMSCs是一種較為原始的干細(xì)胞,表達(dá)某些hESC的特異標(biāo)志,具有極強(qiáng)的可塑性;⑥與BMSC和ADMSC相比具有更強(qiáng)的擴(kuò)增能力;⑦無(wú)致瘤活性和低免疫原性;⑧與BMSC相比,不會(huì)隨著傳代次數(shù)增加和機(jī)體年齡增長(zhǎng)導(dǎo)致增殖能力和分化能力降低[1]。這些優(yōu)勢(shì)使hUCMSC可能成為一種更具潛力的種子細(xì)胞。本文就hUCMSC的生物學(xué)特性及其研究進(jìn)展進(jìn)行綜述。
hUC被覆鱗狀立方上皮細(xì)胞,稱為臍帶上皮,通常被認(rèn)為來(lái)源于羊膜上皮;臍帶的兩條動(dòng)脈和一條靜脈被粘連組織華氏膠包被,該粘連組織是由特異的成纖維樣的基質(zhì)細(xì)胞和胞外基質(zhì)構(gòu)成。這些成纖維樣的基質(zhì)細(xì)胞具有中等量的胞漿內(nèi)糖原、脂質(zhì)小滴和前膠原蛋白分泌顆粒,具有成熟的寬大的內(nèi)質(zhì)網(wǎng)、成熟的高爾基體和大量的線粒體,說(shuō)明這些細(xì)胞具有活躍的蛋白質(zhì)合成和分泌功能;另外,這些細(xì)胞具有脯氨酸羥化酶活性,該酶為膠原合成所必需。因此,有學(xué)者推測(cè),該基質(zhì)細(xì)胞是膠原和胞外基質(zhì)合成的主要細(xì)胞。2003年,Mitchell等[2]首先證實(shí)了該類細(xì)胞具有多向分化潛能;隨后有多位學(xué)者從臍帶華氏膠中分離到這種成纖維樣細(xì)胞,證實(shí)其具有自我更新、增殖和多向分化潛能,并命名為人臍帶間充