王志英,李建林,孔祥森,楊振生,李春利
(河北工業(yè)大學(xué)化工學(xué)院,天津 300130)
辛醇對(duì)PVDF膜表面浸潤(rùn)性與透過(guò)性能的影響
王志英,李建林,孔祥森,楊振生,李春利
(河北工業(yè)大學(xué)化工學(xué)院,天津 300130)
以聚偏氟乙烯(PVDF)/N,N-二甲基乙酰胺(DMAc)/辛醇/水為制膜體系,采用干、濕相轉(zhuǎn)化法制膜.考察了辛醇含量對(duì)膜結(jié)構(gòu)、表面浸潤(rùn)性和透過(guò)性能的影響.結(jié)果表明,辛醇的加入使成膜過(guò)程中液-固分相在與液-液分相的競(jìng)爭(zhēng)中占據(jù)優(yōu)勢(shì),隨著辛醇含量的增加,膜結(jié)構(gòu)由海綿狀結(jié)構(gòu)向球晶堆積結(jié)構(gòu)轉(zhuǎn)變,當(dāng)辛醇含量增至10%時(shí),生成“菜花狀”球晶粒子堆積的對(duì)稱結(jié)構(gòu),其表面具有微納二重特征,對(duì)水的接觸角可達(dá)140°;實(shí)驗(yàn)范圍內(nèi)PVDF膜下表面的疏水性隨鑄膜液中辛醇含量的增加先增大后略有下降,膜的氣通量隨鑄膜液中辛醇含量的增加先增大后減?。频玫母叨仁杷た赏蔀闅庖耗そ佑|器的理想膜材料.
聚偏氟乙烯(PVDF);膜;相轉(zhuǎn)化;非溶劑添加劑;疏水性;接觸角
膜蒸餾、膜吸收等氣液接觸過(guò)程是應(yīng)用前景十分廣泛的新型膜分離過(guò)程,對(duì)這類過(guò)程而言,較高的傳質(zhì)通量和良好的機(jī)械性能是對(duì)膜的基本要求.為保證較高的傳質(zhì)通量,膜應(yīng)當(dāng)具有多孔性和較高的疏水性[1].研究表明,使用低表面能材料和在材料表面構(gòu)筑適當(dāng)?shù)拇植诮Y(jié)構(gòu)是提高材料表面疏水性的有效途徑[2].聚偏氟乙烯(polyvinylidene fluoride,PVDF)是一種含氟低表面能材料[3],能夠溶于多種溶劑中,有極好的耐熱性和化學(xué)穩(wěn)定性,被認(rèn)為是相轉(zhuǎn)化法制備疏水膜的理想膜材料.目前,對(duì)PVDF的研究多集中在通過(guò)溶劑、聚合物濃度、添加劑、凝膠浴等制備條件或成膜條件的改變,對(duì)膜結(jié)構(gòu)與透過(guò)性能、截留性能等進(jìn)行調(diào)控研究[4],但對(duì)膜表面浸潤(rùn)性的研究文獻(xiàn)中鮮有報(bào)道.近年來(lái),已有多位研究者致力于提高PVDF膜表面疏水性的制備研究[5-7],但均因膜強(qiáng)度太差或制膜成本太高等原因,未獲得大規(guī)模制備和應(yīng)用.
通常,用水作凝膠浴制得的PVDF膜表面都有一層致密的皮層,為使PVDF膜的表面形成有孔結(jié)構(gòu),研究者通常在鑄膜液中添加致孔劑,如PVP、PEG、LiCl等[8-9],但是,添加劑不會(huì)被徹底移除干凈,所以會(huì)降低PVDF膜的疏水性.實(shí)際上,在鑄膜液中加入非溶劑添加劑也是調(diào)控膜結(jié)構(gòu)的有效方法[10-11],但關(guān)于非溶劑添加劑對(duì)PVDF膜表面浸潤(rùn)性的影響尚鮮見(jiàn)報(bào)道.筆者在PVDF鑄膜液中加入非溶劑添加劑辛醇,在一定的相對(duì)濕度環(huán)境下制膜,探討了辛醇對(duì)膜結(jié)構(gòu)、表面浸潤(rùn)性及透過(guò)性能的影響規(guī)律.
1.1 材料和試劑
主要實(shí)驗(yàn)材料:聚偏氟乙烯(PVDF),上海三愛(ài)富新材料股份有限公司;N,N二甲基乙酰胺(DMAc)(分析純),正辛醇(分析純),天津市博迪化工有限公司;無(wú)水乙醇(分析純)、去離子水,天津大學(xué)科威公司.
1.2 實(shí)驗(yàn)儀器
501A型超級(jí)恒溫水浴,杭州藍(lán)天儀器有限公司;JSM-6700F型場(chǎng)發(fā)射掃描電鏡,JEOL RIGAKU公司;SL200B型光學(xué)動(dòng)/靜態(tài)接觸角儀,上海梭倫信息科技有限公司;SCM-30型杯式超濾器,中科院上海物理研究所.
1.3 PVDF疏水膜的制備
按一定比例準(zhǔn)確稱取PVDF、DMAc和辛醇置于廣口瓶中,放入70,℃電烘箱中48,h,使聚合物完全溶解,并充分搖勻,真空抽濾后在35,℃的環(huán)境中靜置脫泡,充分熟化至少48,h后使用;將一定溫度的制膜液均勻地刮制在基底上,液膜厚度為250,μm,將初生膜在相對(duì)濕度為70%的環(huán)境中預(yù)蒸發(fā)1,min,再浸入35,℃的水浴中凝膠成膜;將完全分相后的膜放入去離子水中浸泡2~3,d,以去除殘余有機(jī)溶劑.為防止膜樣品收縮變形,將其置于無(wú)水乙醇中處理24,h后室溫下自然晾干備用.
1.4 膜結(jié)構(gòu)表征
用JSM-6700F型場(chǎng)發(fā)射掃描電鏡觀察所制備的膜表面和斷面.將膜浸入液氮中脆斷,用導(dǎo)電膠固定在樣品臺(tái)上,和表面一起經(jīng)真空噴金處理后送入電鏡樣品觀測(cè)室觀測(cè)其微觀結(jié)構(gòu).
1.5 浸潤(rùn)性表征
PVDF微孔膜的疏水性用水在膜上的接觸角表示.剪取適當(dāng)大小的膜樣品固定在光學(xué)動(dòng)/靜態(tài)接觸角儀的樣品臺(tái)上,用微量進(jìn)樣器抽取2,μL去離子水滴至膜上,調(diào)節(jié)焦距,拍得液滴圖像,然后用分析軟件對(duì)接觸角進(jìn)行分析.每張膜片上取5個(gè)測(cè)試點(diǎn),并取測(cè)試結(jié)果的平均值.
1.6 透過(guò)性能
膜的透過(guò)性能通常有2種表示方法,即水通量法和氣通量法.本文制得的膜疏水性較強(qiáng),水的透過(guò)壓差較大,因此用氣通量來(lái)表征膜的透過(guò)性能較為適宜.氣通量的測(cè)量如圖1所示,將制備好的膜樣品自然風(fēng)干后在普通光學(xué)顯微鏡下觀察,剪取無(wú)缺陷的標(biāo)準(zhǔn)圓形膜片,放入超濾杯中,有效膜面積為36.49,cm2,調(diào)節(jié)氣動(dòng)定值器閥門(mén)使氮?dú)鈮毫Ψ€(wěn)定,在膜下游用轉(zhuǎn)子流量計(jì)測(cè)量氣體流量.
圖1 氣通量測(cè)量示意Fig.1 Schematic diagram of nitrogen flux measuring
為保證數(shù)據(jù)的準(zhǔn)確性,膜樣品制備及數(shù)據(jù)測(cè)試至少做3個(gè)平行實(shí)驗(yàn).
2.1 膜結(jié)構(gòu)
圖2是辛醇質(zhì)量分?jǐn)?shù)(w)分別為0、6%和10%的鑄膜液在相同條件下制得膜樣品的電鏡照片,其中上表面是指面向水浴的表面,下表面是指面向基底的表面,圖中插入的是水滴在膜表面接觸的照片.可以發(fā)現(xiàn),辛醇的加入使膜結(jié)構(gòu)發(fā)生了很大變化,制膜條件下不添加辛醇的膜斷面上部為大指狀孔結(jié)構(gòu),下部為海綿孔,添加了辛醇后膜斷面均呈現(xiàn)均勻的對(duì)稱結(jié)構(gòu),且隨辛醇含量的增加,由海綿狀孔結(jié)構(gòu)向球晶堆積結(jié)構(gòu)過(guò)渡.
PVDF屬半結(jié)晶性聚合物,在成膜過(guò)程中,存在L-L分相與L-S分相2種相分離方式的競(jìng)爭(zhēng),通常LL分相生成大孔結(jié)構(gòu),L-S分相生成球晶結(jié)構(gòu)[12].鑄膜液中不加辛醇時(shí),鑄膜液黏度較小,浸入凝膠浴后,溶劑與非溶劑間發(fā)生快速L-L傳質(zhì),成膜較快,膜斷面上部的大孔,即是成膜過(guò)程中L-L分相占據(jù)優(yōu)勢(shì)的結(jié)果.辛醇的加入使鑄膜液黏度增大,溶劑與非溶劑水之間的傳遞速率即L-L傳質(zhì)速率減慢,而L-S分相恰是一個(gè)慢過(guò)程[12],因此,鑄膜液中加入辛醇,在動(dòng)力學(xué)上對(duì)L-S分相有利.當(dāng)辛醇質(zhì)量分?jǐn)?shù)為6%時(shí),L-L分相與L-S分相勢(shì)力抗衡,大孔消失,生成對(duì)稱的海綿狀結(jié)構(gòu);當(dāng)辛醇質(zhì)量分?jǐn)?shù)為10%時(shí),延遲分相更有利于晶核的徑向生長(zhǎng),生成了許多“菜花”狀球晶粒子堆積的對(duì)稱結(jié)構(gòu).膜下表面的電鏡照片也證實(shí)了隨辛醇質(zhì)量分?jǐn)?shù)的增加L-S分相在成膜過(guò)程中逐漸占據(jù)優(yōu)勢(shì)的事實(shí).
圖2 辛醇含量對(duì)PVDF膜結(jié)構(gòu)的影響Fig.2 Effect of octanol content on PVDF membrane morphology
2.2 辛醇含量對(duì)PVDF膜表面浸潤(rùn)性的影響
表面的浸潤(rùn)性由表面化學(xué)組成和表面微觀結(jié)構(gòu)共同決定[13].上述膜表面結(jié)構(gòu)的改變必然影響膜表面的浸潤(rùn)性.由圖2中上、下表面的水接觸角可以看出,下表面的接觸角都明顯高于上表面,且上表面的浸潤(rùn)性隨辛醇濃度的增加變化不大.這是因?yàn)樯舷卤砻嬖诮肽z時(shí)分相的速度不一樣;沒(méi)有辛醇加入時(shí)液態(tài)膜的上表面發(fā)生快速L-L分相,形成較為光滑的致密皮層,有辛醇加入時(shí)上表面皮層的形成以L-S分相為主,形成顆粒狀致密皮層,但由于相界面處的PVDF濃度很大,晶核較密集,因此,表面形貌隨辛醇含量的變化不大,僅晶粒大小有所不同,在該尺度上晶粒大小的變化對(duì)表面浸潤(rùn)性幾乎不構(gòu)成影響.所以,以下關(guān)于膜浸潤(rùn)性的討論僅針對(duì)膜下表面.
由膜下表面的電鏡照片可以發(fā)現(xiàn),當(dāng)辛醇質(zhì)量分?jǐn)?shù)為10%時(shí),“菜花”狀球晶粒子的尺寸約5~10,μm,而且球晶粒子都不是光滑的,而是生長(zhǎng)有更小尺寸的微結(jié)構(gòu),這種雙重微結(jié)構(gòu)大大提高了膜下表面的粗糙度,按照Cassie模型[14],該結(jié)構(gòu)對(duì)提高疏水表面的疏水性十分有益.
圖3是水與膜下表面的接觸角與鑄膜液中辛醇含量的關(guān)系,可以看出,水在膜下表面的接觸角先明顯增大后緩慢減?。@主要是源于膜底面粗糙度的變化,非溶劑辛醇的加入使溶劑對(duì)聚合物的溶解能力下降,使較為舒展的PVDF鏈段逐漸收縮,當(dāng)鑄膜液中辛醇增至一定濃度時(shí),鑄膜液中將形成一些預(yù)晶核聚集體,當(dāng)液態(tài)膜與凝固浴接觸,瞬間成核,生成許多微晶,隨著微晶表面片晶的發(fā)散生長(zhǎng),球晶的半徑逐漸增大,導(dǎo)致兩球晶間的距離逐漸減小,當(dāng)兩球晶相遇時(shí),生長(zhǎng)的片晶逐漸相交并相互終止,形成一個(gè)明顯的界面(見(jiàn)圖2(i)).當(dāng)辛醇含量較高時(shí),晶核密度增大,片晶的發(fā)散生長(zhǎng)在較短的時(shí)間內(nèi)即被終止,所以球晶表面的粗糙度下降,進(jìn)而導(dǎo)致膜下表面的粗糙度下降,因此,水在其上的接觸角減?。?/p>
從接觸角數(shù)據(jù)可以發(fā)現(xiàn),辛醇的加入使PVDF膜的疏水性大幅度提高,當(dāng)辛醇質(zhì)量分?jǐn)?shù)在6%~18%范圍內(nèi),水在膜表面的接觸角達(dá)到130°以上,成為高度疏水膜;當(dāng)辛醇質(zhì)量分?jǐn)?shù)增至18%時(shí),盡管接觸角沒(méi)有明顯下降,但實(shí)驗(yàn)發(fā)現(xiàn)膜的機(jī)械強(qiáng)度明顯下降,因此也就限制了膜的實(shí)用性.
圖3 辛醇含量對(duì)PVDF膜疏水性的影響Fig.3 Effect of octanol content on the hydrophobic of PVDF membrane
2.3 氣通量
圖4是鑄膜液中辛醇含量與膜氮?dú)馔康年P(guān)系.在0.1 MPa下,辛醇質(zhì)量分?jǐn)?shù)在3%~18%范圍內(nèi)隨辛醇含量的增加,氣通量先增大后減小.由膜上表面的電鏡照片可以看出,鑄膜液中沒(méi)有辛醇時(shí),上表面幾乎是無(wú)孔的致密表面,加入辛醇后,膜上表面結(jié)晶明顯,并有較多的小孔生成,因此,加入辛醇制得膜的氣通量比不加辛醇的大;當(dāng)辛醇含量較小時(shí),膜斷面為對(duì)稱的海綿狀結(jié)構(gòu),這種胞腔孔結(jié)構(gòu)往往連通性較差[15],所以氣通量并不高;當(dāng)辛醇質(zhì)量分?jǐn)?shù)增至10%時(shí),生成了粗糙的球晶粒子堆積的結(jié)構(gòu),膜孔間連通性得到改善,氣通量增大;但當(dāng)辛醇含量再增大時(shí),由于晶核密度增大,球晶的生長(zhǎng)在較短的時(shí)間內(nèi)即被終止,直徑減小,球晶間空隙率下降,故氣通量又會(huì)減?。硗猓け砻娴拇植诙扔绊懥黧w與膜的接觸面積,進(jìn)而也對(duì)氣通量產(chǎn)生一定影響,膜表面越粗糙,膜與氣體的接觸面積越大,氣通量越大.辛醇質(zhì)量分?jǐn)?shù)為10%時(shí)制得膜的疏水性最強(qiáng),表面最為粗糙,因此,氣通量較大.
圖4 辛醇含量對(duì)氮?dú)馔康挠绊慒ig.4 Effect of octanol content on the nitrogen flux
(1)非溶劑添加劑辛醇的加入使液-固相分離成為成膜控制機(jī)制,生成“菜花狀”球晶粒子堆積的微納二重粗糙結(jié)構(gòu),該結(jié)構(gòu)使膜表面的疏水性顯著提高.
(2)PVDF膜表面的疏水性隨鑄膜液中辛醇含量的增加先增大后略有下降,氣通量隨鑄膜液中辛醇含量的增加先增大后減?。?/p>
(3)實(shí)驗(yàn)范圍內(nèi)制得綜合性能較好PVDF膜的最佳辛醇質(zhì)量分?jǐn)?shù)是10%,此時(shí)水在其表面的接觸角高達(dá)140°,成為高度疏水膜,具有該表面特征的PVDF膜可望成為氣液膜接觸器的理想膜材料.
[1] 堦高從,俞三傳,蔡惠如. 膜接觸器及相關(guān)過(guò)程[J].水處理技術(shù),1999,25(6):311-316.
Gao Congjie,Yu Sanchuan,Cai Huiru. Membrane contactors and related processes[J]. Technology of Water Treatment,1999,25(6):311-316(in Chinese).
[2] 王慶軍,陳慶民. 超疏水表面的制備技術(shù)及其應(yīng)用[J]. 高分子材料科學(xué)與工程,2005,21(2):6-10.
Wang Qingjun,Chen Qingmin. Recent research advances in manufacturing super hydrophobic membrane and applications[J]. Polymer Materials Science and Engineering,2005,21(2):6-10(in Chinese).
[3] 卓 震. 聚偏二氟乙烯(PVDF)特性及其在過(guò)程工業(yè)中應(yīng)用[J]. 腐蝕科學(xué)與防護(hù)技術(shù),2004,16(2):118-120.
Zhuo Zhen. Characteristic of polyvinylidene fluoride and its application in process industry[J]. Corrosion Science and Protection Technology,2004,16(2):118-120(in Chinese).
[4] 韓 玉,金建波,嚴(yán)咪咪,等. 非溶劑致相分離法制備PVDF膜影響因素探究[J]. 寧波大學(xué)學(xué)報(bào),2009,22(3):419-424.
Han Yu,Jin Jianbo,Yan Mimi,et al. Influencing factors of nonsolvent-induced phase separation for ployvinylidene fluoride(PVDF)membranes[J]. Journal of Ningbo University,2009,22(3):419-424(in Chinese).
[5] Gugliuzza A,Drioli E. PVDF and HYFLON AD membranes:Ideal interfaces for contactor applications[J]. Journal of Membrane Science,2007,300(1/2):51-62.
[6] Kuo Chunyin,Lin Huini,Tsai Huian,et al. Fabrication of a high hydrophobic PVDF membrane via nonsolvent induced phase separation[J]. Desalination,2008,233(1/2/3):40-47.
[7] Mao Peng,Li Hongbing,Wu Lijuan,et al. Porous poly(vinylidene fluoride)membrane with highly hydropobic surface[J]. Journal of Applied Polymer Science,2005,98(3):1358-1363.
[8] 楊曉天,許振良,魏永明. 添加劑對(duì)PVDF凝膠速率和膜性能的影響[J]. 膜科學(xué)與技術(shù),2007,27(4): 26-30.
Yang Xiaotian,Xu Zhenliang,Wei Yongming. Effect of additives on the demixing rate and membrane performance of PVDF membrane[J]. Membrane Science and Technology,2007,27(4):26-30(in Chinese).
[9] Mansourizadeh A,Ismail A F. Effect of LiCl concentration in the polymer dope on the structure and performance of hydrophobic PVDF hollow fiber membranes for CO2absorption[J]. Chemical Engineering Journal,2010,165(3):980-988.
[10] Yuan Zhiqing,Chen Hong,Tang Jianxin,et al. Facile method to fabricate stable superhydrophobic polystyrene surface by adding ethanol[J]. Surface Coating Technology,2007,201(16/17):7138-7142.
[11] Buonomenna M G,Macchi P,Davoli M,et al. Poly (vinylidene fluoride)membranes by phase inversion:The role the casting and coagulation conditions play in their morphology,crystalline structure and properties[J]. European Polymer Journal,2007,43(4):1557-1572.
[12] Young Tai-Horng,Cheng Liaoping,Lin Dar-Jong,et al. Mechanisms of PVDF membrane formation by immersion-precipitation in soft(1-octanol)and harsh (water) nonsolvents[J]. Polymer,1999,40(19):5315-5323.
[13] Jiang L,Wang R,Yang B,et al. Binary cooperative complementary nanoscale interfacial materials[J]. Pure and Applied Chemistry,2000,72(1/2):73-81.
[14] Cassie A B D,Baxter S. Wettability of porous surfaces[J]. Trans Faraday Soc,1944,40:546-551.
[15] 楊振生,張廣厚,王志英,等. 稀釋劑對(duì)TIPS法等規(guī)聚丙烯中空纖維微孔膜孔徑及其連通性的影響[J].化工學(xué)報(bào),2009,60(2):524-530.
Yang Zhensheng,Zhang Guanghou,Wang Zhiying,et al. Effect of diluent on pore size and connectivity of iPP hollow fiber microporous membranes via thermally induced phase separation[J]. Jourmal of Chemical Industry and Engineering,2009,60(2):524-530(in Chinese).
Effect of Octanol on Wettability and Permeability of PVDF Porous Membrane via Dry-Wet Phase Inversion
WANG Zhi-ying,LI Jian-lin,KONG Xiang-sen,YANG Zhen-sheng,LI Chun-li
(School of Chemical Engineering,Hebei University of Technology,Tianjin 300130,China)
Hydrophobic polyvinylidene fluoride (PVDF)membranes were tailored by dry-wet phase inversion with the system of polyvinylidene fluoride(PVDF)/N,N-dimethylacetamide(DMAc)and octanol/water. The effects of octanol content on the morphology,wettability and permeability of PVDF membrene were investigated. PVDF is a semi-crystalline polymer,therefore,there exists the competition of liquid-liquid demixing and liquid-solid demixing. Adding octanol into the solvent made the liquid-solid demixing occupy the predominant position as competing with liquid-liquid demixing. The membrane morphologies transited from spongy structure to nodule-like structure with increasing octanol content. The membrane exhibited cauliflower-like spherulitic particles and symmetric morphologies when octanol content increased to 10%. The particles had a diameter of 5—10,μm and nanoscale papillas appeared on the particles. The micro- and nano-scale hierarchical roughness on the bottom surface brought about an enhanced hydrophobicity of the membrane. The contact angle of the membrane with water was as high as 140°,exhibiting high hydrophobic property. In the experimental range,the water contact angle increased and then decreased slightly with increasing octanol content;the nitrogen flux increased and then decreased obviously with increasing octanol content. The well controlled structure makes these membranes ideal interfaces to be processed in membrane contactors.
polyvinilydene fluoride;membrane;phase inversion;nonsolvent addition;hydrophobic;contact angle
TS102.54;TQ028.8
A
0493-2137(2011)07-0628-05
2010-10-15;
2011-01-18.
河北省自然科學(xué)基金資助項(xiàng)目(B2008000016).
王志英(1977— ),女,博士,副教授,ctstwzy@hebut.edu.cn.
楊振生,zsyang@hebut.edu.cn.