唐 婧,馮 利,高尚芬
(1.四川文理學(xué)院化學(xué)與化學(xué)工程系,四川 達(dá)州 635000;2.成都市青白江區(qū)環(huán)境保護(hù)局,四川 成都 610300)
傳統(tǒng)的化學(xué)反應(yīng)和分離過(guò)程由于使用大量易揮發(fā)的有機(jī)溶劑,對(duì)環(huán)境污染較嚴(yán)重。隨著科技進(jìn)步和環(huán)保意識(shí)的日益增強(qiáng),化學(xué)反應(yīng)必然向清潔、低耗、高效的趨勢(shì)發(fā)展,尋找綠色替代化合物與原料、高效催化劑及有利于反應(yīng)控制的介質(zhì)和溶劑已成為化學(xué)工業(yè)需要解決的緊迫問(wèn)題。
針對(duì)有機(jī)溶劑產(chǎn)生的污染,一種新型綠色溶劑——離子液體(Ionic liquids,ILs)正在快速發(fā)展,離子液體用作有機(jī)合成中環(huán)境友好型溶劑已經(jīng)得到公認(rèn),受到學(xué)術(shù)界和工業(yè)界越來(lái)越多的關(guān)注。20世紀(jì)90年代以來(lái),此領(lǐng)域的研究更是方興未艾,許多新的功能化離子液體得以開(kāi)發(fā)和應(yīng)用[1~3],功能化的酸性離子液體[4,5]、手性離子液體[6,7]、高分子離子液體的研究不斷被報(bào)道。離子液體在電化學(xué)[8,9]、分離分析[10,11]、化學(xué)反應(yīng)[12,13]和無(wú)機(jī)納米材料[14,15]以及食品工業(yè)[16]等領(lǐng)域已得到廣泛應(yīng)用。
目前,對(duì)離子液體[17~19]的研究主要集中在新型離子液體的合成、物理化學(xué)特性的表征及其作為溶劑和電解質(zhì)的應(yīng)用等方面。作者在此就普通離子液體和功能化離子液體的合成研究進(jìn)展等進(jìn)行綜述,并對(duì)其前景進(jìn)行了展望。
圖1 離子液體的陽(yáng)離子結(jié)構(gòu)
與傳統(tǒng)的分子溶劑不同,離子液體具有設(shè)計(jì)最優(yōu)化的特點(diǎn),這歸功于其組成可以從100多種陰陽(yáng)離子中選擇,可以進(jìn)行范圍較廣的陰陽(yáng)離子組合。離子液體的物理化學(xué)特性(如極性、與其它溶劑的互溶和鹽的溶解度等)在一定程度上都能進(jìn)行有規(guī)律的調(diào)節(jié),這是其它傳統(tǒng)溶劑幾乎無(wú)法實(shí)現(xiàn)的。離子液體還具有低疏水性[25]、低粘度[26]、寬的液態(tài)范圍(-50~400 ℃)、良好的熱穩(wěn)定性(400 ℃)、寬的電化學(xué)窗口(-4~4 eV)[27]、生物可降解性以及能夠加快反應(yīng)速率獲得高的產(chǎn)率[20]等特性。此外,也可以將離子液體設(shè)計(jì)成腐蝕性和毒性較低、不易燃的結(jié)構(gòu)。離子液體具有很強(qiáng)的Br?nsted、Lewis和Franklin酸性以及超酸性質(zhì),酸堿性可進(jìn)行調(diào)節(jié);能溶解大多數(shù)無(wú)機(jī)物、金屬配合物、有機(jī)物和高分子材料(但不能溶解聚乙烯、PTFE或玻璃),還能溶解一些氣體,如H2、CO和O2等;價(jià)格相對(duì)便宜,且容易制備。這些獨(dú)特的性能使離子液體成為有害有毒揮發(fā)性溶劑的潛在的替代品[28]。
3.1.1 傳統(tǒng)合成方法
3.1.1.1 直接合成法
直接合成法是將有機(jī)酸堿進(jìn)行中和反應(yīng)或季銨化反應(yīng)一步合成離子液體[28,29]。此方法操作簡(jiǎn)便、無(wú)副產(chǎn)物、產(chǎn)品易提純。具體制備過(guò)程如下:中和反應(yīng)后真空除去多余的水,再將其溶解在乙腈或四氫呋喃等有機(jī)溶劑中,用活性炭處理,最后真空除去有機(jī)溶劑得到離子液體。如[emim]Cl+HPF6(aq)→[emim] PF6↓+HCl;也可通過(guò)含氮雜環(huán)化合物與鹵代烴發(fā)生季銨化反應(yīng)得到,如[bmim]++C4H9Br→[bmim]Br([bmim]+為1-丁基-3-甲基咪唑陽(yáng)離子)。
3.1.1.2 兩步合成法
兩步合成法主要包括陰離子和陽(yáng)離子的合成以及陰陽(yáng)離子的反應(yīng)結(jié)合[30]。具體制備過(guò)程如下:首先通過(guò)季銨化反應(yīng)制備目標(biāo)陽(yáng)離子的鹵鹽([陽(yáng)離子]X);然后用目標(biāo)陰離子(Y-)置換出X-或加入Lewis酸MXY來(lái)得到目標(biāo)離子液體。其中,使用金屬鹽MY(常用的是AgY或NH4Y)時(shí),產(chǎn)生AgY沉淀或NH3、HX氣體而容易除去;加入強(qiáng)質(zhì)子酸HY,反應(yīng)要求在低溫?cái)嚢钘l件下進(jìn)行,然后多次水洗至中性,用有機(jī)溶劑提取離子液體,最后真空除去有機(jī)溶劑得到純凈的離子液體。
以咪唑類離子液體為例,其合成過(guò)程如圖2所示。
X-=Cl-、Br-、、、
采用兩步合成法合成離子液體時(shí),對(duì)于需加熱的反應(yīng),合成第一步加熱耗時(shí)較長(zhǎng),且為了得到較高的產(chǎn)率,通常需要鹵化物過(guò)量,這使得離子液體合成的第一步既不環(huán)保且成本較高;與此同時(shí),合成第二步會(huì)產(chǎn)生大量的鹵化副產(chǎn)物(MX或HX)。
從綠色化學(xué)的角度來(lái)看,傳統(tǒng)的離子液體合成方法并不是環(huán)境友好型的,這就促使研究者去開(kāi)發(fā)清潔、高效的離子液體新型合成方法。
3.1.2 新型合成方法
3.1.2.1 微波輔助合成離子液體
微波是一種強(qiáng)電磁波,在微波照射下能產(chǎn)生熱力學(xué)方法得不到的高能態(tài)原子、分子和離子,可以迅速升高反應(yīng)體系中自由基或碳陽(yáng)離子的濃度,使體系中活化分子增加,加快反應(yīng)速率、縮短反應(yīng)時(shí)間。
微波加熱是以均相和選擇性的方式對(duì)材料中心進(jìn)行瞬時(shí)加熱[33,34]。相對(duì)傳統(tǒng)加熱方式由于弱的熱傳導(dǎo)性能而導(dǎo)致的低加熱效率而言,局部過(guò)熱成為微波加熱的主要問(wèn)題。微波加熱可以使由于加熱密封容器產(chǎn)生的壓力過(guò)大而帶來(lái)的安全問(wèn)題最小化,進(jìn)而被證明是優(yōu)越的。就離子液體的合成而言,微波能與反應(yīng)混合物直接作用,在非常短的時(shí)間內(nèi)發(fā)生化學(xué)反應(yīng),不僅降低了反應(yīng)能耗,也縮短了反應(yīng)時(shí)間,從而提高反應(yīng)效率。
Varma等[35]最先報(bào)道了在家用微波爐中不用溶劑合成離子液體的方法。離子液體能有效地吸收微波的能量,如20 g [bmim]BF4在300 W的微波照射下,55 s即可升溫至100 ℃,400 W照射只需35 s。在制備過(guò)程中,微波提供了反應(yīng)分子所需的活化能,但隨著離子液體的生成,吸收能量增多,反應(yīng)體系很容易過(guò)熱和失控,造成鹵代烴的氣化和產(chǎn)物的分解。為解決這一問(wèn)題,Varma等采用微波間歇輻射、間歇混合反應(yīng)物的操作,快速地合成了離子液體。
Law等[36]在微波爐中用升溫慢的水浴轉(zhuǎn)移反應(yīng)體系吸收的過(guò)多熱量,有效地控制了離子液體的合成反應(yīng)。Khadilkar等[37]通過(guò)控制微波照射時(shí)間,進(jìn)行了密閉體系中離子液體的微波輔助合成,在防止反應(yīng)過(guò)熱的同時(shí),避免了開(kāi)放體系中反應(yīng)物與產(chǎn)物的氣化和腐蝕。這兩種改進(jìn)方法雖然操作復(fù)雜,但提高了反應(yīng)的安全性與穩(wěn)定性,更為重要的是實(shí)現(xiàn)了大量離子液體的一次性合成。
為了將微波和離子液體的優(yōu)勢(shì)結(jié)合起來(lái),有學(xué)者對(duì)微波輻射條件下諸如乙?;?、低聚、二聚、高聚和共聚等類型的有機(jī)反應(yīng)進(jìn)行了研究[38,39]。
微波輻射通過(guò)微波與起始原料的分子偶極矩分子之間相互作用,對(duì)分子直接加熱[40],從而實(shí)現(xiàn)快速容積加熱、高效節(jié)能熱合成;但微波輻射或多或少存在一些缺陷,如反應(yīng)不易控制、有副反應(yīng)發(fā)生、反應(yīng)器價(jià)格昂貴等,因此,僅限于實(shí)驗(yàn)室小規(guī)模合成。
3.1.2.2 超聲波輔助合成離子液體
超聲波能夠加快化學(xué)反應(yīng)速率、減小液體中懸浮粒子的尺寸、加快異相反應(yīng)速率[41]。與傳統(tǒng)方法相比,超聲波輔助合成縮短了反應(yīng)時(shí)間、提高了產(chǎn)品收率,并可在常溫條件下進(jìn)行有機(jī)反應(yīng)(若用常規(guī)方法,則需要較高溫度和較大壓力,有時(shí)甚至無(wú)法反應(yīng)[42])。
Namboodiri等[43]在密閉體系非溶劑條件下采用超聲波輔助合成離子液體時(shí)發(fā)現(xiàn),鹵化物與甲基咪唑的反應(yīng)活性大小依次為:I>Br>Cl。溴化物和碘化物在室溫下0.5~2 h即可完成反應(yīng),收率均高于90%;氯化物則需要加熱和較長(zhǎng)時(shí)間的超聲波作用。Leveque等[44]研究[bmim]Cl與NH4BF4、NH4CF3SO3、NH4PF6等鹽的離子交換反應(yīng)時(shí)發(fā)現(xiàn),磁力攪拌一般需要5~8 h,而超聲波作用只需1 h,大大縮短了反應(yīng)時(shí)間。
總之,微波和超聲波輔助合成離子液體能在獲得高產(chǎn)率的同時(shí)加快反應(yīng)速度、避免長(zhǎng)時(shí)間加熱、降低能耗、減少有機(jī)溶劑的使用,具有普遍的實(shí)用性。
近來(lái),功能化離子液體(Task-specific ionic liquids,TSILs)的合成愈來(lái)愈受到人們的重視,其功能化是通過(guò)在離子液體的陽(yáng)離子或陰離子上引入官能團(tuán)來(lái)實(shí)現(xiàn)的[45]。引入官能團(tuán)能夠賦予離子液體特殊的性能。胺、酰胺、腈、乙醚、酒精、酸、尿素或硫脲、咪唑和吡啶陽(yáng)離子、含氟陰離子等都能夠作為官能團(tuán)引入到離子液體中[46~49],合成的離子液體不僅可以作為可替代的綠色溶劑,也可作為有機(jī)反應(yīng)中的試劑和催化劑,具有較高的應(yīng)用價(jià)值。由于功能化離子液體具有可控的物理化學(xué)特性,許多學(xué)者對(duì)其合成進(jìn)行了廣泛的研究[50]。
3.2.1 功能化手性離子液體的合成
功能化手性離子液體(Chiral ionic liquids,CILs)由于在不對(duì)稱合成、立體選擇性聚合和手性色譜等方面具有潛在的應(yīng)用價(jià)值,越來(lái)越受到重視。其合成方法主要有以下幾種:直接在普通離子液體中引入帶有手性中心的陰離子;用手性烷基化試劑對(duì)胺、咪唑或吡啶進(jìn)行烷基化;用帶有手性中心的天然產(chǎn)物合成氮雜環(huán);利用手性池制備含有手性陽(yáng)離子的手性離子液體。自1999年,通過(guò)引入乳酸鹽陰離子合成了第一個(gè)具有手性的CILs[50]以來(lái),相繼成功制備了較多具有中心、軸向和平面手性的CILs[51~53]。但是,由于受到發(fā)展和應(yīng)用范圍的限制,CILs的研究現(xiàn)在還處在初步階段。
引入手性胺官能團(tuán)從而將有效的不對(duì)稱誘導(dǎo)模式賦予離子液體,所得到的CILs在不對(duì)稱合成中用于手性轉(zhuǎn)移比傳統(tǒng)手性試劑更有效。Ishikawa等采用離子交換法制備了以手性樟腦磺酸根離子為陰離子的CILs[54],在Diels-Alder反應(yīng)中取得了endo∶exo高達(dá)10.3的選擇性,但遺憾的是該研究未涉及對(duì)映選擇性。Kim等[18]利用Mitsunobu烷基化反應(yīng)制備基于咪唑陽(yáng)離子的CILs,但需要昂貴的手性烷基化試劑,限制了該類CILs在合成反應(yīng)中的應(yīng)用。
由于手性烷基化試劑的昂貴,人們將目光轉(zhuǎn)向價(jià)廉的天然手性物質(zhì),希望能以其為原料直接合成所預(yù)想的CILs。有效、便捷地合成離子液體的方法之一就是使用來(lái)源于手性庫(kù),特別是生物可再生資源的基質(zhì),如麻黃堿[55,56]、尼古丁、薄荷[57~59]、松香芹酮[60]和氨基酸[55]等。
研究表明,只有少數(shù)CILs可用于有非手性基質(zhì)參與反應(yīng)的手性誘導(dǎo),因此尋找新的CILs迫在眉睫。Matos等[61]報(bào)道了基于薄荷[62,63]、龍腦[64]的一系列CILs的合成和表征,與已經(jīng)報(bào)道的一些含有醚官能團(tuán)的薄荷基[62,63]CILs的合成不同,Matos在合成中引入酯基,除了可以得到所需的CILs,還可改善其與聚合物穩(wěn)定性相關(guān)的某些性能。
其合成路線如圖3所示。
圖3 基于薄荷、龍腦的CILs的合成
CILs不僅可以用作有效的反應(yīng)介質(zhì),也可用于手性催化。由于其合成初始原料易得、反應(yīng)條件適宜、方法簡(jiǎn)單實(shí)用,可預(yù)見(jiàn)CILs的合成和應(yīng)用研究將得到更快的發(fā)展。
3.2.2 功能化酸性離子液體的合成
功能化酸性離子液體(Functionalized acidic ionic liquids,F(xiàn)AILs)是指具有明顯的Lewis酸性或Br?nsted酸性的離子液體。一般具有Lewis酸性的FAILs是由金屬鹵化物與季銨化的胺或咪唑、吡啶等雜環(huán)或四級(jí)磷鹽混合制備的,最為常見(jiàn)的是以鋁氯酸根為陰離子,在室溫下大多呈液態(tài),可以作為反應(yīng)介質(zhì)和Lewis酸催化劑[65~67]。與傳統(tǒng)溶劑和催化劑相比,F(xiàn)AILs更易于循環(huán)利用,用作催化劑時(shí)可重復(fù)和循環(huán)使用多次,其活性沒(méi)有明顯的降低。
由于合成化學(xué)工業(yè)中酸性催化劑的廣泛使用,使得基于離子液體的酸性催化劑日益受到重視[68,69]。在過(guò)去的十幾年里,鋁酸鹽離子液體,由于其幾乎可以忽略的蒸汽壓、可調(diào)的溶解度等被用來(lái)替代礦物質(zhì)和固體酸性催化劑,受到更多的關(guān)注。然而,鋁酸鹽離子液體易水解,痕量的水便可改變鹽的組成和質(zhì)子的濃度,很難準(zhǔn)確地控制其酸度。因此,迫切需要開(kāi)發(fā)對(duì)水和空氣穩(wěn)定且更高效的酸性離子液體。通過(guò)研究,現(xiàn)已成功制備出非鋁酸鹽酸性離子液體如磺酸基FAILs[70]、磺酰氯FAILs[71]。通過(guò)[bmim]Cl(1-Butyl-3-methylimidazolium)和H2SO4(或NaHSO4)間的離子交換,也可制備磺酸氫鹽FAILs,可用作酯化和烷基化反應(yīng)的催化劑。此外,一些無(wú)機(jī)或有機(jī)酸,如HCl、HBF4和CF3COOH也可與N-烷基咪唑反應(yīng)形成一類新的質(zhì)子型離子液體。
圖4 三辛基甲銨離子液體的合成
作為環(huán)境友好型綠色溶劑的離子液體,在不同的領(lǐng)域都有潛在的應(yīng)用價(jià)值,近年來(lái)受到世界各國(guó)的廣泛關(guān)注。人們已經(jīng)開(kāi)發(fā)出多種手性離子液體,它們的應(yīng)用研究也已經(jīng)起步。除了拓展特殊的功能和應(yīng)用,降低成本也是手性離子液體發(fā)展的關(guān)鍵。合成時(shí)需要優(yōu)先考慮的是手性源的選擇,使用天然手性源作為起始原料將是獲得手性離子液體的發(fā)展方向。Lewis酸性離子液體尤其是AlCl3類離子液體的發(fā)展較早,應(yīng)用也較廣;相比之下,Br?nsted酸性離子液體的合成才剛剛起步,還需要進(jìn)一步提高Br?nsted酸性離子液體的酸度;從已有研究可以看到,要開(kāi)發(fā)適于工業(yè)應(yīng)用的酸性離子液體,應(yīng)充分發(fā)揮酸性離子液體類似固體酸和液體酸的優(yōu)勢(shì),并發(fā)展兼具Lewis酸性和Br?nsted酸性的離子液體的合成方法,設(shè)計(jì)出具有獨(dú)特物理化學(xué)性質(zhì)的功能化離子液體來(lái)適應(yīng)各種特殊需要將是功能化離子液體未來(lái)發(fā)展的方向。
以離子液體作為反應(yīng)溶劑,為化學(xué)反應(yīng)提供了不同于傳統(tǒng)分子溶劑的環(huán)境,可能改變反應(yīng)機(jī)理,使催化劑的活性、穩(wěn)定性更好,轉(zhuǎn)化率、選擇性更高。將催化劑溶于液體中,可以與離子液體一起循環(huán)使用,催化劑兼具均相催化效率高及多相催化易分離的特點(diǎn)。
目前,離子液體的研究面臨的主要問(wèn)題是:如何降低離子液體的合成成本、如何進(jìn)行離子液體的回收利用、如何減輕離子液體對(duì)環(huán)境和生物的影響。相信隨著科技的不斷進(jìn)步和研究的不斷深入,離子液體的研究和開(kāi)發(fā)必將為“綠色化學(xué)”和“綠色工藝”開(kāi)辟新的道路。
[1] Gao Y,Arritt S W,Twamley B,et al.Guanidinium-based ionic liquids[J].Inorg Chem,2005,44(6):1704-1712.
[2] Genisson Y,Lauth-de Viguerie N,Andre C,et al.New chiral imidazolinic derivatives[J].Tetrahedron:Asymmetry,2005,16(5):1017-1023.
[3] Zhao D S,Duan E H,Liu R,et al.Efficient synthesis of 1,4-diazabicyclo(2.2.2)octane in ionic liquids[J].Catal Commun,2008,9(8):1725-1727.
[4] Wang L,Li H J,Li P H.Task-specific ionic liquid as base,ligand and reaction medium for the palladium-catalyzed Heck reaction[J].Tetrahedron,2009,65(1):364-368.
[5] Yue C B,Mao A Q,Wei Y Y,et al.Knoevenagel condensation reaction catalyzed by task-specific ionic liquid under solvent-free conditions[J].Catal Commun,2008,9(7):1571-1574.
[6] Fukumoto K,Yoshizawa M,Ohno H.Room temperature ionic liquids from 20 natural amino acids[J].J Am Chem Soc,2005,127(8):2398-2399.
[7] Baudoux J,Judeinstein P,Cahard D,et al.Design and synthesis of novel ionic liquid/liquid crystals (IL2Cs) with axial chirality[J].Tetrahedron Lett,2005,46(7):1137-1140.
[8] Xia J,Masaki N,Jiang J,et al.Deposition of a thin film of TiOxfrom a titanium metal target as novel blocking layers at conducting glass/TiO2interfaces in ionic liquid mesoscopic TiO2dye-sensitized solar cells[J].J Phys Chem B,2006,110(50):25222-25228.
[9] Yang J Z,Jin Y,Xu W G,et al.Studies on mixture of ionic liquid EMIGaCl4and EMIC[J].Fluid Phase Equilibria,2005,227(1):41-46.
[10] Mank M,Stahl B,Boehm G.2,5-Dihydroxybenzoic acid butylamine and other ionic liquid matrixes for enhanced MALDI-MS analysis of biomolecules[J].Anal Chem,2004,76(10):2938-2950.
[11] Tian K,Qi S D,Cheng Y Q,et al.Separation and determination of lignans from seeds ofSchisandraspecies by micellar electrokinetic capillary chromatography using ionic liquid as modifier[J].J Chromatogr A,2005,1078(1-2):181-187.
[12] Martin R,Teruel L,Aprile C,et al.Imidazolium ionic liquids in OLEDs:Synthesis and improved electroluminescence of an ′ionophilic′ diphenylanthracene[J].Tetrahedron,2008,64(27):6270-6274.
[13] Venkatesan K,Pujari S S,Lahoti R J,et al.An efficient synthesis of 1,8-dioxo-octahydro-xanthene derivatives promoted by a room temperature ionic liquid at ambient conditions under ultrasound irradiation[J].Ultrason Sonochem,2008,15(4):548-553.
[14] Fonseca G S,Machado G,Teixeira S R,et al.Synthesis and characterization of catalytic iridium nanoparticles in imidazolium ionic liquids[J].J Colloid Interface Sci,2006,301(1):193-204.
[15] Hou X M,Zhou F,Sun Y B,et al.Ultrasound-assisted synthesis of dentritic ZnO nanostructure in ionic liquid[J].Mater Lett,2007,61(8-9):1789-1792.
[16] 劉曉庚,鞠興榮,陳梅梅,等.幾種離子液體對(duì)生物活性物的溶解行為[A].中國(guó)化學(xué)會(huì)第四屆有機(jī)化學(xué)學(xué)術(shù)會(huì)議論文集[C].2005:145.
[17] Ranu B C,Banerjee S.Ionic liquid as catalyst and reaction medium.The dramatic influence of a task-specific ionic liquid,[bmim]OH,in Michael addition of active methylene compounds to conjugated ketones,carboxylic esters,and nitriles[J].Org Lett,2005,7(14):3049-3052.
[18] Kim E J,Koa S Y,Dziadulewiczb E K.Mitsunobu alkylation of imidazole:A convenient route to chiral ionic liquids[J].Tetrahedron Lett,2005,46(4):631-633.
[19] Zou D B,Xu C,Luo H,et al.Synthesis of Co3O4nanoparticles via an ionic liquid-assisted methodology at room temperature[J].Mater Lett,2008,62(12-13):1976-1978.
[20] Welton T.Room-temperature ionic liquids:Solvents for synthesis and catalysis[J].Chem Rev,1999,99(8):2071-2084.
[21] 李汝雄.綠色溶劑——離子液體的合成與應(yīng)用[M].北京:化學(xué)工業(yè)出版社,2004:10,16.
[22] Mallakpour S,Taghavi M.Microwave heating coupled with ionic liquids:Synthesis and properties of novel optically active polyamides,thermal degradation and electrochemical stability on multi-walled carbon nanotubes electrode[J].Polym,2008,49(15):3239-3249.
[23] Przybysz K,Drzewinska E,Stanislawska A,et al.Ionic liquids and paper[J].Ind Eng Chem Res,2005,44(13):4599-4604.
[24] Cho C,Pham T P,Jeon Y C,et al.Toxicity of imidazolium salt with anion bromide to a phytoplanktonSelenastrumcapricornutum:Effect of alkyl-chain length[J].Chemosphere,2007,69(6):1003-1007.
[25] Swatloski R P,Visser A E,Reichert W M,et al.Solvation of 1-butyl-3-methylimidazolium hexafluorophosphate in aqueous ethanol——A green solution for dissolving ′hydrophobic′ ionic liquids[J].Chem Commun,2001,(20):2070-2071.
[26] MacFarlane D R,Golding J,F(xiàn)orsyth S,et al.Low viscosity ionic liquids based on organic salts of the dicyanamide anion[J].Chem Commun,2001,(16):1430-1431.
[27] Bühler G,Zharkouskaya A,F(xiàn)eldmann C.Ionic liquid based approach to nanoscale functional materials[J].Solid State Sci,2008,10(4):461-465.
[28] Bradaric C J,Downard A,Kennedy C,et al.Industrial preparation of phosphonium ionic liquids[J].Green Chem,2003,5(2):143-152.
[29] Holbrey J D,Reichert W M,Swatloski R P,et al.Efficient,halide free synthesis of new,low cost ionic liquids:1,3-Dialkylimidazolium salts containing methyl-and ethyl-sulfate anions[J].Green Chem,2002,4(5):407-413.
[30] Zhao S H,Zhao E L,Shen P,et al.An atom-efficient and practical synthesis of new pyridinium ionic liquids and application in Morita-Baylis-Hillman reaction[J].Ultrason Sonochem,2008,15(6):955-959.
[31] Xue H,Verma R,Shreeve J M.Review of ionic liquids with fluorine-containing anions[J].J Fluorine Chem,2006,127(2):159-176.
[32] Quek S K,Lyapkalo I M,Huynh H V.Synthesis and properties ofN,N′-dialkylimidazolium bis(nonafluorobutane-1-sulfonyl)imides:A new subfamily of ionic liquids[J].Tetrahedron,2006,62(13):3137-3145.
[33] Mallakpour S,Rafiemanzelat F.New optically active poly(amide-imide-urethane) thermoplastic elastomers derived from poly(ethylene glycol diols),4,4′-methylene-bis(4-phenylisocyanate),and a diacid based on an amino acid by a two-step method under microwave irradiation[J].J Appl Polym Sci,2005,98(4):1781-1792.
[34] Kretschmann O,Schmitz S,Ritter H.Microwave-assisted synt-hesis of associative hydrogels[J].Macromol Rapid Commun,2007,28(11):1265-1269.
[35] Varma R S,Namboodiri V V.An expeditious solvent-free route to ionic liquids using microwaves[J].Chem Commun,2001,(7):643-644.
[36] Law M C,Wong K Y,Chan T H.Solvent-free route to ionic liquid precursors using a water-moderated microwave process[J].Green Chem,2002,4(4):328-330.
[37] Khadilkar B M,Rebeito G L.Microwave-assisted synthesis of room-temperature ionic liquid precursor in closed vessel[J].Org Proc Res Dev,2002,6(6):826-828.
[38] Hakala U,W?h?l? K.Expedient deuterolabeling of polyphenols in ionic liquidssDCl/D2O under microwave irradiation[J].J Org Chem,2007,72(15):5817-5819.
[39] Borriello A,Nicolais L,F(xiàn)ang X,et al.Synthesis of poly(amide-ester)s by microwave methods[J].J Appl Polym Sci,2007,103(3):1952-1958.
[40] Mallakpour S,Rafiee Z.Use of ionic liquid and microwave irradiation as a convenient,rapid and eco-friendly method for synthesis of novel optically active and thermally stable aromatic polyamides containingN-phthaloyl-L-alanine pendent group[J].Polym Degrad Stab,2008,93(4):753-759.
[41] Rajagopal R,Jarikote V,Srinivasan K V.Ultrasound promoted Suzuki cross-coupling reactions in ionic liquid at ambient conditions[J].Chem Commun,2002,(6):616-617.
[42] Ambulgekar G V,Bhanage B M,Samant S D.Low temperature recyclable catalyst for Heck reactions using ultrasound[J].Tetrahedron Lett,2005,46(14):2483-2485.
[43] Namboodiri V V,Varma R S.Solvent-free sonochemical preparation of ionic liquids[J].Org Lett,2002,4(18):3161-3163.
[44] Leveque J M,Luehe J L,Rouxa C P R,et al.An improved preparation of ionic liquids by ultrasound[J].Green Chem,2002,4(4):357-360.
[45] Germani R,Mancini M V,Savelli G,et al.Mercury extraction by ionic liquids:Temperature and alkyl chain length effect[J].Tetrahedron Lett,2007,48(10):1767-1769.
[46] Visser A E,Swatloski R P,Reichert W M,et al.Task-specific ionic liquids incorporating novel cations for the coordination and extraction of Hg2+and Cd2+:Synthesis,characterization,and extraction studies[J].Environ Sci Technol,2002,36(11):2523-2529.
[47] Holbrey J D,Visser A E,Spear S K,et al.Mercury(Ⅱ) partitioning from aqueous solutions with a new,hydrophobic ethylene-glycol functionalized bis-imidazolium ionic liquid[J].Green Chem,2003,5:129-135.
[48] Zhao D B,F(xiàn)ei Z F,Ohlin C A,et al.Dual-functionalised ionic liquids:Synthesis and characterisation of imidazolium salts with a nitrile-functionalised anion[J].Chem Commun,2004,(21):2500-2501.
[49] Ouadi A,Gadenne B,Hesemann P,et al.Task-specific ionic liquids bearing 2-hydroxybenzylamine units:Synthesis and americium-extraction studies[J].Chem,2006,12(11):3074-3081.
[50] Earle M J,McCormac P B,Seddon K R.Diels-Alder reactions in ionic liquids[J].Green Chem,1999,1(1):23-25.
[51] Baudequin C,Bregeon D,Levillain J,et al.Chiral ionic liquids,a renewal for the chemistry of chiral solvents Design,synthesis and applications for chiral recognition and asymmetric synthesis[J].Tetrahedron:Asymmetry,2005,16(24):3921-3945.
[52] Branco L C,Gois P M P,Lourenco N M T,et al.Simple transformation of crystalline chiral natural anions to liquid medium and their use to induce chirality[J].Chem Commun,2006,(22):2371-2372.
[53] Patil M L,La Rao C V,Yonezawa K,et al.Design and synthesis of novel chiral spiro ionic liquids[J].Org Lett,2006,8(2):227-230.
[54] Nobuoka K,Kitaoka S,Kunimitsu K,et al.Camphor ionic liquid:Correlation between stereoselectivity and cation-anion interaction[J].J Org Chem,2005,70(24):10106-10108.
[55] Clavier H,Boulanger L,Audic N,et al.Design and synthesis of imidazolinium salts derived from (L)-valine.Investigation of their potential in chiral molecular recognition[J].Chem Commun,2004,(10):1224-1225.
[56] Vo-Thanh G,Pegot B,Loupy A.Solvent-free microwave-assisted preparation of chiral ionic liquids from (-)-N-methylephedrine[J].Eur J Org Chem,2004,2004(5):1112-1116.
[57] Biedron T,Kubisa P.Radical polymerization in a chiral ionic liquid:Atom transfer radical polymerization of acrylates[J].J Polym Sci Part A:Polym Chem,2005,43(15):3454-3459.
[58] Pernak J,F(xiàn)eder-Kubis J.Synthesis and properties of chiral ammonium-based ionic liquids[J].Chem Eur J,2005,11(15):4441-4449.
[59] Malhotra S V,Wang Y.Application of chiral ionic liquids in the copper catalyzed enantioselective 1,4-addition of diethylzinc to enones[J].Tetrahedron:Asymmetry,2006,17(7):1032-1035.
[60] Bao W L,Wang Z M,Li Y X.Synthesis of chiral ionic liquids from natural amino acids[J].J Org Chem,2003,68(2):591-593.
[61] Matos R A F,Andrade C K Z.Synthesis of new chiral ionic liquids based on (-)-menthol and (-)-borneol[J].Tetrahedron Lett,2008,49(10):1652-1655.
[62] Ding J,Desikan V,Han X,et al.Use of chiral ionic liquids as solvents for the enantioselective photoisomerization of dibenzobicyclo[2.2.2]octatrienes[J].Org Lett,2005,7(2):335-337.
[63] Pernak J,F(xiàn)eder-Kubis J.Synthesis and properties of chiral ammonium-based ionic liquids[J].Chem Eur J,2005,11(15):4441-4449.
[64] Gadenne B,Hesemann P,Moreau J J E.Ionic liquids incorporating camphorsulfonamide units for the Ti-promoted asymmetric diethylzinc addition to benzaldehyde[J].Tetrahedron Lett,2004,45(44):8157-8160.
[65] Fang D,Luo J,Zhou X L,et al.Mannich reaction in water using acidic ionic liquid as recoverable and reusable catalyst[J].Catal Lett,2007,116(1-2):76-80.
[66] Fang D,Gong K,F(xiàn)ei Z H,et al.A practical and efficient synthesis of quinoxaline derivatives catalyzed by task-specific ionic liquid[J].Catal Commun,2008,9(2):317-320.
[67] Gong K,F(xiàn)ang D,Wang H L,et al.The one-pot synthesis of 14-alkyl-or aryl-14H-dibenzo[a,j]xanthenes catalyzed by task-specific ionic liquid[J].Dyes and Pigments,2009,80(1):30-33.
[68] Fang D,Luo J,Zhou X L,et al.One-pot green procedure for Biginelli reaction catalyzed by novel task-specific room-temperature ionic liquids[J].J Mol Catal A:Chem,2007,274(1-2):208-211.
[69] Wang W J,Shao L L,Cheng W P,et al.Br?nsted acidic ionic liquids as novel catalysts for Prins reaction[J].Catal Commun,2008,9(3):337-341.
[70] Cole A C,Jensen J L,Ntai I.Novel Br?nsted acidic ionic liquids and their use as dual solvent-catalysts[J].J Am Chem Soc,2002,124(21):5962-5963.
[71] Gui J Z,Deng Y Q,Hu Z D,et al.A novel task-specific ionic liquid for Beckmann rearrangement:A simple and effective way for product separation[J].Tetrahedron Lett,2004,45(12):2681-2683.
[72] Du Z Y,Li Z,Deng Y.Synthesis and characterization of sulfonyl-functionalized ionic liquids[J].Synth Commun,2005,35(10):1343-1349.
[73] Kim Y J,Varma R S.Microwave-assisted preparation of imidazolium-based tetrachloroindate(Ⅲ) and their application in the tetrahydropyranylation of alcohols[J].Tetrahedron Lett,2005,46(9):1467-1469.
[74] Duan Z Y,Gu Y L,Zhang J,et al.Protic pyridinium ionic liquids:Synthesis,acidity determination and their performances for acid catalysis[J].J Mol Catal A:Chem,2006,250(1-2):163-168.
[75] Kogelnig D,Stojanovic A,Galanski M,et al.Greener synthesis of new ammonium ionic liquids and their potential as extracting agents[J].Tetrahedron Lett,2008,49(17):2782-2785.