王澤軍 季瀏 褚昕宇
1“青少年健康評(píng)價(jià)與運(yùn)動(dòng)干預(yù)”教育部重點(diǎn)實(shí)驗(yàn)室,華東師范大學(xué)體育與健康學(xué)院(上海 200241)2 上海工程技術(shù)大學(xué)體育部
人體研究與動(dòng)物實(shí)驗(yàn)證明,運(yùn)動(dòng)會(huì)影響腦的多種功能,對(duì)腦的健康有著重要作用,包括提高認(rèn)知能力[1],延緩由衰老引起的認(rèn)知能力下降[2,3]以及降低抑郁癥狀[4,5]。關(guān)于運(yùn)動(dòng)影響腦功能的機(jī)制研究主要集中在運(yùn)動(dòng)后神經(jīng)可塑性的變化方面,如神經(jīng)發(fā)生、突觸可塑性、樹(shù)突棘密度與血管新生等[6,7]。特別是海馬作為與認(rèn)知功能密切相關(guān)的腦區(qū),在運(yùn)動(dòng)后其齒狀回(dentate gyrus,DG)的顆粒細(xì)胞下層(subgranular zone,SGZ)會(huì)產(chǎn)生大量的新生神經(jīng)細(xì)胞[1,8,9]。因此認(rèn)為,運(yùn)動(dòng)對(duì)認(rèn)知能力的影響至少有部分依賴于海馬結(jié)構(gòu)與突觸可塑性的改變。
近年來(lái)有大量研究都是集中于運(yùn)動(dòng)對(duì)成年嚙齒動(dòng)物認(rèn)知能力的影響。這些研究的結(jié)果不僅有力地支持了運(yùn)動(dòng)有益于腦功能的觀點(diǎn),并有助于了解運(yùn)動(dòng)提高認(rèn)知能力的細(xì)胞生物學(xué)機(jī)制。研究表明,自主跑轉(zhuǎn)輪運(yùn)動(dòng)與強(qiáng)迫跑臺(tái)跑訓(xùn)練均能夠提高實(shí)驗(yàn)動(dòng)物在Morris水迷宮,Y-迷宮,T-迷宮與八臂迷宮測(cè)試中的空間記憶能力[10]。并且,運(yùn)動(dòng)提高了實(shí)驗(yàn)動(dòng)物在海馬依賴的行為測(cè)試中的成績(jī),包括情景恐懼條件、被動(dòng)回避學(xué)習(xí)與新奇事物認(rèn)知[11-14]。最新的研究也表明,運(yùn)動(dòng)能夠提高成年小鼠海馬DG依賴的空間模式分離能力[15,16]。該研究中發(fā)現(xiàn),運(yùn)動(dòng)組小鼠在較小的空間模式分離測(cè)試中成績(jī)更好,而在較大的空間模式分離測(cè)試中與對(duì)照組相比較并無(wú)顯著性差異[17]。
動(dòng)物實(shí)驗(yàn)表明,學(xué)習(xí)新任務(wù)的能力會(huì)隨著年齡的增長(zhǎng)而降低。從細(xì)胞水平來(lái)看,年齡的增加會(huì)導(dǎo)致海馬[18]與大腦皮層[19]神經(jīng)突觸聯(lián)接的數(shù)量減少,突觸可塑性降低。新近研究表明,運(yùn)動(dòng)有助于提高老年嚙齒動(dòng)物的空間記憶能力[7]與條件回避測(cè)試的成績(jī)[2]。實(shí)驗(yàn)中發(fā)現(xiàn)裝有跑轉(zhuǎn)輪裝置的老年C57Bl/6雄性小鼠的水迷宮成績(jī)顯著好于對(duì)照組。進(jìn)一步研究證實(shí),跑臺(tái)跑訓(xùn)練同樣能提高老年大鼠在水迷宮[20]和八臂迷宮測(cè)試中的成績(jī)[21]。新近研究中對(duì)26月齡的小鼠進(jìn)行空間模式分離測(cè)試發(fā)現(xiàn),雖然老年小鼠無(wú)法習(xí)得較小的空間模式分離能力,但是進(jìn)行跑轉(zhuǎn)輪運(yùn)動(dòng)提高了老年小鼠在中等的空間模式分離測(cè)試中的成績(jī)[17]。由此看來(lái),無(wú)法界定究竟什么樣的運(yùn)動(dòng)才能夠有效延緩或阻止由衰老引起的認(rèn)知功能下降。
一般情況下,運(yùn)動(dòng)被認(rèn)為能夠延緩神經(jīng)退行性疾病的發(fā)?。?2-24],促進(jìn)腦損傷后的恢復(fù)[25]。然而很多證據(jù)顯示,運(yùn)動(dòng)對(duì)阿爾茨海默?。ˋlzheimer’s disease,AD)、亨廷頓?。℉untington’s disease,HD)以及腦缺血或腦卒中的作用效果并不一致[26]。例如,研究發(fā)現(xiàn)沙鼠在腦缺血前進(jìn)行跑轉(zhuǎn)輪運(yùn)動(dòng)具有神經(jīng)保護(hù)的作用[27]。但是,腦卒中后進(jìn)行運(yùn)動(dòng)會(huì)引起不良后果[26]。因此,必須謹(jǐn)慎地評(píng)價(jià)不同病理?xiàng)l件下運(yùn)動(dòng)的作用效果。
對(duì)多種小鼠AD模型的研究表明,無(wú)論是在發(fā)病前或發(fā)病后進(jìn)行運(yùn)動(dòng)干預(yù),均能夠提高認(rèn)知能力。發(fā)病前5個(gè)月開(kāi)始運(yùn)動(dòng)能夠提高水迷宮學(xué)習(xí)成績(jī)。此外,運(yùn)動(dòng)減少了海馬和大腦皮層β-淀粉樣斑塊的沉積[22]。而且,發(fā)病后開(kāi)始的3周運(yùn)動(dòng)能夠提高老年AD Tg2576小鼠的工作與參考記憶[28],改變炎癥標(biāo)志物水平[29]。運(yùn)動(dòng)同樣能夠提高轉(zhuǎn)基因Tg-NSE/PS2小鼠的水迷宮成績(jī),增加腦源性神經(jīng)營(yíng)養(yǎng)因子(brain-derived neurotrophic factor,BDNF)表達(dá),減少凋亡[30]。研究發(fā)現(xiàn),載脂蛋白E基因的等位基因e4(epsilon 4 allele of the apolipoprotein E gene,APOE e4)是AD發(fā)病的風(fēng)險(xiǎn)因素[31],但運(yùn)動(dòng)能夠提高該轉(zhuǎn)基因小鼠的認(rèn)知能力和突觸可塑性[32]。因此認(rèn)為,即便在生命后期或者發(fā)病后開(kāi)始運(yùn)動(dòng),也會(huì)有助于提高正常小鼠與癡呆模型動(dòng)物的認(rèn)知能力。
盡管研究采用的帕金森病(Parkinson’s disease,PD)動(dòng)物模型不同,但是通常都會(huì)涉及具有神經(jīng)毒性的6-羥多巴胺(6-hydroxydopamine,6-OHDA)或者1-甲基-4苯基-1,2,3,6-四氫吡啶(1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine,MPTP)[33]。較早研究發(fā)現(xiàn),無(wú)論是6-OHDA大鼠還是單側(cè)MPTP老年小鼠模型在黑質(zhì)紋狀體損毀后,進(jìn)行跑臺(tái)跑均能夠延緩其運(yùn)動(dòng)能力下降和降低多巴胺神經(jīng)元的易感性[24]。隨后的研究證實(shí),跑臺(tái)跑訓(xùn)練增加6-OHDA損毀大鼠黑質(zhì)體多巴胺神經(jīng)元的存活以及紋狀體的神經(jīng)纖維投射[34]。另一方面,自主跑轉(zhuǎn)輪運(yùn)動(dòng)雖然能夠提高注射6-OHDA大鼠的運(yùn)動(dòng)成績(jī),但這樣并不會(huì)顯著影響多巴胺神經(jīng)末梢的作用[35]。Petzinger等使用MPTP損毀小鼠模型發(fā)現(xiàn),跑臺(tái)跑訓(xùn)練對(duì)運(yùn)動(dòng)成績(jī)的促進(jìn)作用可能伴有黑質(zhì)紋狀體多巴胺神經(jīng)遞質(zhì)的變化[36]。跑臺(tái)跑訓(xùn)練不僅提高了PD動(dòng)物跑步測(cè)試的整體成績(jī),而且在降低焦慮的同時(shí)未改變其兒茶酚胺的水平[37]。新近的研究表明,跑臺(tái)跑訓(xùn)練能通過(guò)BDNF的神經(jīng)保護(hù)作用或者增加神經(jīng)前體細(xì)胞的遷移來(lái)提高6-OHDA損毀大鼠的運(yùn)動(dòng)成績(jī)[38]。而運(yùn)動(dòng)同樣能夠增加MPTP小鼠紋狀體GluR2亞基的表達(dá)[39]。因此,強(qiáng)迫性跑臺(tái)跑運(yùn)動(dòng)對(duì)PD動(dòng)物多巴胺神經(jīng)元的保護(hù)作用或許是由于運(yùn)動(dòng)引起的神經(jīng)發(fā)生、生長(zhǎng)因子以及信號(hào)傳導(dǎo)的作用增強(qiáng)。進(jìn)一步的研究應(yīng)該集中于運(yùn)動(dòng)是否能夠有助于彌補(bǔ)PD動(dòng)物的認(rèn)知能力缺陷。
從現(xiàn)有的研究資料來(lái)看,仍然不能確定運(yùn)動(dòng)是否會(huì)延緩或阻止HD的發(fā)生。早期的研究表明豐富環(huán)境能延緩R6/1轉(zhuǎn)基因小鼠HD癥狀的出現(xiàn)[40],而運(yùn)動(dòng)則是豐富環(huán)境的重要組成之一。運(yùn)動(dòng)有助于R6/1小鼠撫育行為正?;?,延緩后腿抱握、運(yùn)動(dòng)協(xié)調(diào)和空間工作記憶缺陷的出現(xiàn),但是,運(yùn)動(dòng)對(duì)跑步測(cè)試成績(jī)、可降解蛋白凝集、海馬BDNF蛋白水
平[41,42]和神經(jīng)發(fā)生均無(wú)顯著影響[43]。此外,運(yùn)動(dòng)引起R6/2小鼠紋狀體中型多棘神經(jīng)元在電生理方面發(fā)生積極的變化[44]。然而,最新的研究卻表明運(yùn)動(dòng)可能會(huì)不利于N171-82Q小鼠脆弱的神經(jīng)系統(tǒng)。6周齡雄性N171-82Q小鼠(HD癥狀發(fā)生前)在進(jìn)行跑轉(zhuǎn)輪訓(xùn)練后,其疾病的發(fā)病加速,紋狀體體積減少并且運(yùn)動(dòng)能力損害。更令人驚訝的是,運(yùn)動(dòng)并不能對(duì)抗小鼠體重丟失、生命時(shí)期縮短、高血糖癥、Morris水迷宮學(xué)習(xí)缺陷、海馬神經(jīng)發(fā)生損害、未成熟神經(jīng)元與細(xì)胞核內(nèi)含體形態(tài)缺陷,以及DG體積縮小[45]。至于從該HD小鼠上發(fā)現(xiàn)的可能機(jī)制與運(yùn)動(dòng)是否有直接的關(guān)系,以及能否從其他HD動(dòng)物實(shí)驗(yàn)中得到類似結(jié)果,還需要進(jìn)一步的研究證實(shí)。
抗抑郁藥物、豐富的環(huán)境和運(yùn)動(dòng)等因素會(huì)誘導(dǎo)成年海馬DG SGZ持續(xù)產(chǎn)生新的神經(jīng)細(xì)胞;相反,應(yīng)激、抑郁和衰老等因素,能夠抑制成年海馬神經(jīng)發(fā)生[46]。Kempermann等發(fā)現(xiàn),豐富的環(huán)境會(huì)誘導(dǎo)SGZ神經(jīng)細(xì)胞的增殖與存活[47]。但是研究中采用的豐富環(huán)境包含了多個(gè)影響因素,如增加實(shí)驗(yàn)動(dòng)物學(xué)習(xí)、社會(huì)交往以及運(yùn)動(dòng)的機(jī)會(huì),因而不能確定具體是哪個(gè)因素在海馬神經(jīng)發(fā)生中具有更為重要的作用。為此,van Praag等[1,9]把其中的各個(gè)因素分離出來(lái)研究,發(fā)現(xiàn)自由跑轉(zhuǎn)輪運(yùn)動(dòng)能有效刺激成年小鼠海馬DG神經(jīng)發(fā)生,并延長(zhǎng)新生神經(jīng)元的存活時(shí)間,同時(shí)運(yùn)動(dòng)還提高了小鼠的空間學(xué)習(xí)能力。有研究比較了跑轉(zhuǎn)輪訓(xùn)練與不含跑轉(zhuǎn)輪的豐富環(huán)境對(duì)神經(jīng)發(fā)生的作用,發(fā)現(xiàn)運(yùn)動(dòng)對(duì)神經(jīng)發(fā)生具有更強(qiáng)的促進(jìn)作用[48,49],認(rèn)為跑轉(zhuǎn)輪訓(xùn)練與不含跑轉(zhuǎn)輪的豐富環(huán)境對(duì)腦功能以及行為會(huì)有不同的作用,或者作用互補(bǔ)[50-52]。
另外,對(duì)小鼠跑轉(zhuǎn)輪訓(xùn)練的跑動(dòng)距離與新生細(xì)胞數(shù)量之間關(guān)系的研究發(fā)現(xiàn),單籠飼養(yǎng)的C57Bl/6小鼠之間的跑動(dòng)距離無(wú)顯著性差異[1],但是在新生細(xì)胞數(shù)量與空間模式分離成績(jī)之間存在著某種相關(guān)[17]。另有研究使用129SvEv小鼠,發(fā)現(xiàn)跑動(dòng)距離與神經(jīng)細(xì)胞的增殖與存活能力之間表現(xiàn)出了顯著的正相關(guān)[53]。同樣有研究對(duì)跑動(dòng)距離長(zhǎng)的小鼠連續(xù)繁殖超過(guò)26代,發(fā)現(xiàn)跑動(dòng)距離、新生細(xì)胞數(shù)量以及空間學(xué)習(xí)能力之間并無(wú)顯著相關(guān)[54],認(rèn)為可能是由于選擇性飼養(yǎng)導(dǎo)致了小鼠神經(jīng)系統(tǒng)損傷,影響了腦的功能與行為[55]。
此外,Kronenberg對(duì)運(yùn)動(dòng)誘導(dǎo)細(xì)胞增殖與神經(jīng)發(fā)生的作用進(jìn)行了動(dòng)力學(xué)研究,發(fā)現(xiàn)在運(yùn)動(dòng)24 h后海馬新生神經(jīng)元數(shù)量增加2~3倍,并且細(xì)胞增殖效應(yīng)在運(yùn)動(dòng)的第3天最為明顯,隨后細(xì)胞增殖可以一直持續(xù)到運(yùn)動(dòng)的第10天,但在第32天下降到基礎(chǔ)水平,這或許反映了細(xì)胞增殖對(duì)運(yùn)動(dòng)刺激的一種適應(yīng)[56]。這種現(xiàn)象同樣存在于老年動(dòng)物實(shí)驗(yàn)中[57]。而有關(guān)晝夜節(jié)律的研究發(fā)現(xiàn),單籠飼養(yǎng)的小鼠在夜間循環(huán)中間時(shí)段的細(xì)胞增殖能力最強(qiáng)[58],而循環(huán)開(kāi)始初期是運(yùn)動(dòng)促進(jìn)細(xì)胞增殖作用的最佳時(shí)間[59]。
值得注意的是,強(qiáng)迫性跑臺(tái)跑訓(xùn)練同樣能夠誘導(dǎo)成年海馬神經(jīng)發(fā)生[60]。并且,運(yùn)動(dòng)不僅可以提高成年小鼠海馬神經(jīng)發(fā)生[1,9],同樣能夠提高老年小鼠海馬神經(jīng)發(fā)生[7,56],但是后者的神經(jīng)發(fā)生水平明顯較前者低。此外,亦有研究稱運(yùn)動(dòng)對(duì)26月齡小鼠的海馬神經(jīng)發(fā)生無(wú)顯著影響[17]。上述實(shí)驗(yàn)結(jié)果提示,運(yùn)動(dòng)可能是通過(guò)提高海馬DG新生細(xì)胞的增殖能力延緩由衰老引起的神經(jīng)發(fā)生降低以及認(rèn)知能力下降。
運(yùn)動(dòng)不僅提高了成年神經(jīng)發(fā)生,同時(shí)也增強(qiáng)了海馬突觸可塑性,特別是有助于長(zhǎng)時(shí)程增強(qiáng)(longterm potentiation,LTP)——一種推測(cè)的學(xué)習(xí)記憶生理模型[61]。早期研究發(fā)現(xiàn),運(yùn)動(dòng)增強(qiáng)了小鼠海馬DG區(qū)LTP水平,但是對(duì)海馬CA1區(qū)LTP水平以及場(chǎng)興奮性突觸后電位(fi eld excitatory postsynaptic potential,fEPSP)沒(méi)有顯著影響[1]。隨后有研究對(duì)大鼠進(jìn)行跑轉(zhuǎn)輪訓(xùn)練[62]或者跑臺(tái)跑訓(xùn)練[14],發(fā)現(xiàn)運(yùn)動(dòng)能夠有效增強(qiáng)海馬DG區(qū)LTP水平。此外,由于運(yùn)動(dòng)作用于突觸可塑性和神經(jīng)發(fā)生的腦部位相同,提示新生神經(jīng)細(xì)胞在運(yùn)動(dòng)誘導(dǎo)突觸可塑性變化過(guò)程中有著重要的功能作用。另一方面,研究發(fā)現(xiàn)相對(duì)于成熟神經(jīng)細(xì)胞來(lái)說(shuō),更容易誘導(dǎo)出新生神經(jīng)細(xì)胞的LTP[63]。并且,1~1.5月齡的新生神經(jīng)元LTP幅度增加,誘導(dǎo)閾值減?。?4]。
運(yùn)動(dòng)增加海馬DG新生神經(jīng)元的同時(shí),也會(huì)引起神經(jīng)細(xì)胞的形態(tài)變化。樹(shù)突棘的結(jié)構(gòu)可塑性也被認(rèn)為是學(xué)習(xí)記憶的重要機(jī)制之一,并且與LTP是兩個(gè)互相依賴的過(guò)程[65,66]。研究發(fā)現(xiàn),跑轉(zhuǎn)輪訓(xùn)練可以誘導(dǎo)CA1區(qū)樹(shù)突增長(zhǎng)和變細(xì),增加CA1區(qū)錐體細(xì)胞和內(nèi)嗅皮層III錐體細(xì)胞的樹(shù)突棘密度[67]。此外,運(yùn)動(dòng)會(huì)顯著增加DG區(qū)的樹(shù)突長(zhǎng)度和復(fù)雜程度,以及顆粒細(xì)胞的樹(shù)突棘密度[68,69]。有趣的是,運(yùn)動(dòng)除了加速蘑菇型樹(shù)突的成熟過(guò)程,并不能影響成年海馬新生神經(jīng)元的發(fā)育[70]。因此,海馬DG細(xì)胞結(jié)構(gòu)的改變,包括增加新的神經(jīng)元以及單個(gè)神經(jīng)元的形態(tài)變化,都可能是運(yùn)動(dòng)提高海馬LTP以及海馬依賴的認(rèn)知能力的細(xì)胞學(xué)基礎(chǔ)。
運(yùn)動(dòng)能夠增強(qiáng)運(yùn)動(dòng)皮層[71],小腦[6,72]與海馬[7,73-75]的血管新生作用。早期研究發(fā)現(xiàn),腦損傷前進(jìn)行跑轉(zhuǎn)輪訓(xùn)練會(huì)增加海馬DG腦缺血后存活的可能性,降低其損傷程度[27],認(rèn)為運(yùn)動(dòng)引起的腦血管系統(tǒng)變化對(duì)神經(jīng)系統(tǒng)起到保護(hù)作用,誘導(dǎo)血管的數(shù)量以及直徑增加。后來(lái)的研究興趣轉(zhuǎn)移到血管生長(zhǎng)因子與神經(jīng)發(fā)生的相互關(guān)系上。海馬DG新生細(xì)胞聚集于血管附近[76],對(duì)血管生長(zhǎng)因子發(fā)生增殖反應(yīng)[77,78]。這也導(dǎo)致了神經(jīng)前體細(xì)胞與血管微環(huán)境相關(guān)的假說(shuō)產(chǎn)生,認(rèn)為神經(jīng)發(fā)生與血管新生密切關(guān)聯(lián)。特別是海馬基因轉(zhuǎn)染血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)能夠誘導(dǎo)產(chǎn)生大約兩倍數(shù)量的新生神經(jīng)元,并提高成年大鼠認(rèn)知能力[77]。
另外,運(yùn)動(dòng)誘導(dǎo)的腦血管變化可能受到VEGF以及胰島素樣生長(zhǎng)因子-1(insulin-like growth factor-1,IGF-1)作用的調(diào)控。運(yùn)動(dòng)提高了腦內(nèi)皮細(xì)胞的增殖能力[79]以及血管新生作用[6,80-82]。同時(shí),運(yùn)動(dòng)不僅能提高海馬IGF-1基因表達(dá)與蛋白水平[83-85],還會(huì)增加外周血循環(huán)中IGF-1與VEGF的含量[85,86];并且,阻斷外周VEGF與IGF-1會(huì)抑制運(yùn)動(dòng)誘導(dǎo)的神經(jīng)發(fā)生[75,86]。
新近研究使用核磁共振成像技術(shù)發(fā)現(xiàn),2周跑轉(zhuǎn)輪訓(xùn)練能夠有效增加小鼠海馬DG血容量,認(rèn)為血流量的改變可以作為一種間接測(cè)定人神經(jīng)發(fā)生水平的方法[87]。然而有研究使用一種有助于神經(jīng)發(fā)生的植物性黃烷醇(-)表兒茶精,誘導(dǎo)血管新生作用的同時(shí)并未發(fā)現(xiàn)細(xì)胞增殖能力提高[88],這也提示血管新生與神經(jīng)發(fā)生兩者之間并不總是直接關(guān)聯(lián)的。更有研究認(rèn)為,血管新生在運(yùn)動(dòng)影響認(rèn)知能力中的作用比神經(jīng)發(fā)生更為重要[89]。考慮到運(yùn)動(dòng)中腦血流量發(fā)生明顯變化,同時(shí)血流量的增加會(huì)增強(qiáng)神經(jīng)活動(dòng),因此推測(cè)血管新生很可能是運(yùn)動(dòng)影響認(rèn)知能力的重要因素。
綜上所述,對(duì)于成年和老年動(dòng)物甚至人,運(yùn)動(dòng)都被認(rèn)為是一種能提高認(rèn)知能力的可量化活動(dòng)。而運(yùn)動(dòng)的積極作用很可能是通過(guò)調(diào)節(jié)海馬可塑性實(shí)現(xiàn)的,包括神經(jīng)發(fā)生、突觸可塑性、樹(shù)突棘密度與血管新生等。然而,結(jié)合最新研究可以認(rèn)為,在腦損傷或某些神經(jīng)退行性疾病存在的情況下,對(duì)運(yùn)動(dòng)的選擇應(yīng)該謹(jǐn)慎。此外,有研究發(fā)現(xiàn)運(yùn)動(dòng)對(duì)成年小鼠海馬神經(jīng)發(fā)生的促進(jìn)作用要強(qiáng)于抗抑郁藥物氟西汀和度洛西?。?0];另一方面,注射運(yùn)動(dòng)模擬藥物能夠提高小鼠的空間記憶能力,增加海馬神經(jīng)發(fā)生[91]。這些結(jié)果提示我們:在某種程度上,運(yùn)動(dòng)的積極作用會(huì)誘導(dǎo)出相應(yīng)的藥理學(xué)反應(yīng)。然而,運(yùn)動(dòng)的作用不僅僅局限在神經(jīng)可塑性和認(rèn)知的范圍內(nèi),藥物不能夠完全取代運(yùn)動(dòng)的作用。
[1]van Praag H,Kempermann G,Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci,1999,2(3):266-270.
[2]Adlard PA,Engesser-Cesar C,Cotman CW. Mild stress facilitates learning and exercise improves retention in aged mice. Exp Gerontol,2011,46(1):53-59.
[3]Erickson KI,Voss MW,Prakash RS,et al. Exercise training increases size of hippocampus and improves memory. Proc Nat Acad Sci USA,2011,108(7):3017-3022.
[4]Duman CH,Schlesinger L,Russell DS,et al. Voluntary exercise produces antidepressant and anxiolytic behavioral effects in mice. Brain Res,2008,1199:148-158.
[5]Hunsberger JG,Newton SS,Bennett AH,et al.Antidepressant actions of the exercise-regulated gene VGF. Nat Med,2007,13(12):1476-1482.
[6]Black JE,Isaacs KR,Anderson BJ,et al. Learning causes synaptogenesis,whereas motor activity causes angiogenesis,in cerebellar cortex of adult rats. Proc Nat Acad Sci USA,1990,87(14):5568-5572.
[7]van Praag H,Shubert T,Zhao C,et al. Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci,2005,25(38):8680-8685.
[8]van der Borght K,Havekes R,Bos T,et al. Exercise improves memory acquisition and retrieval in the Y-maze task:Relationship with hippocampal neurogenesis.Behav Neurosci,2007,121(2):324-334.
[9]van Praag H,Christie BR,Sejnowski TJ,et al.Running enhances neurogenesis,learning,and longterm potentiation in mice. Proc Nat Acad Sci USA,1999,96(23):13427-13431.
[10]van Praag H. Neurogenesis and exercise:Past and future directions. Neuromolecular Med,2008,10(2):128-140.
[11]Falls WA,F(xiàn)ox JH,MacAulay CM. Voluntary exercise improves both learning and consolidation of cued conditioned fear in C57 mice. Behav Brain Res,2010,207(2):321-331.
[12] L iu YF,Chen HI,Lin LC,et al. Treadmill exercise enhances passive avoidance learning in rats:the role of down-regulated serotonin systemin the limbic system.Neurobiol Learn Mem,2008,89(4):489-496.
[13]Mello PB,Benetti F,Cammarota M,et al. Physical exercise can reverse the defi cit in fear memory induced by maternal deprivation. Neurobiol Learn Mem,2009,92(3):364-369.
[14] O 'Callaghan RM,Ohle R,Kelly AM. The effects of forced exercise on hippocampal plasticity in the rat:A comparison of LTP,spatial- and non-spatial learning.Behav Brain Res,2007,176(2):362-366.
[15]Leutgeb JK,Leutgeb S,Moser MB,et al. Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science,2007,315(5814):961-966.
[16]McHugh TJ,Jones MW,Quinn JJ,et al. Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science,2007,317(5834):94-99.
[17] C reer DJ,Romberg C,Saksida LM,et al. Running enhances spatial pattern separation in mice. Proc Nat Acad Sci USA,2010,107(5):2367-2372.
[18]Barnes CA. Normal aging:Regionally specifi c changes in hippocampal synaptic transmission. Trends Neurosci,1994,17(1):13-18.
[19] C hen KS,Masliah E,Mallory M,et al. Synaptic loss in cognitively impaired aged rats is ameliorated by chronic human growth factor infusion. Neuroscience,1995,68(1):19-27.
[20] A lbeck DS,Sano K,Prewitt GE,et al. Mild forced treadmill exercise enhances spatial learning in the aged rat. Behav Brain Res,2006,168(2):345-348.
[21]Kim SE,Ko IG,Kim BK,et al. Treadmill exercise prevents aging-induced failure of memory through an increase in neurogenesis and suppression of apoptosis in rat hippocampus. Exp Gerontol,2010,45(5):357-365.
[22]Adlard PA,Perreau VM,Pop V,et al. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. J Neurosci,2005,25(17):4217-4221.
[23]Kaspar BK,F(xiàn)rost LM,Christian L,et al. Synergy of insulin-like growth factor-1 and exercise in amyotrophic lateral sclerosis. Ann Neurol,2005,57(5):649-655.
[24]Tillerson JL,Caudle WM,Reveron ME,et al.Exercise induces behavioral recovery and attenuates neurochemical defi cits in rodent models of Parkinson’s disease. Neuroscience,2003,119(3):899-911.
[25]Gobbo OL,O’Mara SM. Exercise,but not environmental enrichment,improves learning after kainic acid-induced hippocampal neurodegeneration in association with an increase in brain-derived neurotrophic factor. Behav Brain Res,2005,159(1):21-26.
[26]Komitova M,Zhao LR,Gido G,et al. Postischemic exercise attenuates whereas enriched environment has certain enhancing effects on lesion-induced subventricular zone activation in the adult rat. Eur J Neurosci,2005,21(9):2397-2405.
[27]Stummer W,Weber K,Tranmer B,et al. Reduced mortality and brain damage after locomotor activity in gerbil forebrain ischemia. Stroke,1994,25(9):1862-1869.
[28]Nichol KE,Parachikova AI,Cotman CW. Three weeks of running wheel exposure improves cognitive performance in the aged Tg2576 mouse. Behav Brain Res,2007,184(2):124-132.
[29]Parachikova A,Nichol KE,Cotman CW. Short-term exercise in aged Tg2576 mice alters neuroinflammation and improves cognition. Neurobiol Dis,2008,30(1):121-129.
[30]Um HS,Kang EB,Koo JH,et al. Treadmill exercise represses neuronal cell death in an aged transgenic mouse model of Alzheimer’s disease. Neurosci Res,2011,69(2):161-173.
[31]Mahley RW,Weisgraber KH,Huang Y.ApolipoproteinE4:A causative factor and therapeutic target in neuropathology,including Alzheimer’s disease. Proc Nat Acad Sci USA,2006,103(15):5644-5651.
[32]Nichol K,Deeny SP,Seif J,et al. Exercise improves cognition and hippocampal plasticity in APOE epsilon4 mice. Alzheimers Dement,2009,5(14):287-294.
[33]Smith AD,Zigmond MJ. Can the brain be protected through exercise? Lessons from an animal model of parkinsonism. Exp Neurol,2003,184(1):31-39.
[34] Y oon MC,Shin MS,KimTS,et al. Treadmill exercise suppresses nigrostriatal dopaminergic neuronal loss in 6-hydroxydopamine-induced Parkinson’s rats. Neurosci Lett,2007,423(1):12-17.
[35] O ’Dell SJ,Gross NB,F(xiàn)ricks AN,et al. Running wheel exercise enhances recovery from nigrostriatal dopamine injury without inducing neuroprotection.Neuroscience,2007,144(3):1141-1151.
[36] P etzinger GM,Walsh JP,Akopian G,et al. Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. J Neurosci,2007,27(20):5291-5300.
[37]Gorton LM,Vuckovic MG,Vertelkina N,et al.Exercise effects on motor and affective behavior and catecholamine neurochemistry in the MPTP-lesioned mouse. Behav Brain Res,2010,213(2):253-262.
[38]Tajiri N,Yasuhara T,Shingo T,et al. Exercise exerts neuroprotective effects on Parkinson’s disease model of rats. Brain Res,2010,1310:200-207.
[39] V anLeeuwen JE,Petzinger GM,Walsh JP,et al.Altered AMPA receptor expression with treadmill exercise in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinelesioned mouse model of basal ganglia injury. J Neurosci Res, 2010,88(3):650-668.
[40]van Dellen A,Blakemore C,Deacon R,et al. Delaying the onset of Huntington’s in mice. Nature,2000,404(6779):721-722.
[41]Pang TY,Stam NC,Nithianantharajah J,et al.Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in Huntington’s disease transgenic mice. Neuroscience,2006,141(2):569-584.
[42]van Dellen A,Cordery PM,Spires TL,et al.Wheel running from a juvenile age delays onset of specifi c motor defi cits but does not alter protein aggregate density in a mouse model of Huntington’s disease. BMC Neurosci,2008,9:34.
[43] K ohlZ,Kandasamy M,Winner B,et al. Physical activity fails to rescue hippocampal neurogenesis defi cits in the R6/2 mouse model of Huntington’s disease. Brain Res, 2007,1155 :24-33.
[44] C epedaC,Cummings DM,Hickey MA,et al. Rescuing the corticostriatal synaptic disconnection in the R6/2 mouse model of Huntington's disease:Exercise,adenosine receptors and ampakines. PLoS Curr,2010,2 :RRN1182.
[45] P otterM,Yuan C,Ottenritter C,et al. Exercise is not benefi cial and may accelerate symptom onset in a mouse model of Huntington’s disease. PLoS Curr,2010,2 :RRN1201.
[46]Gage FH,Kempermann G,Song H. Adult Neurogenesis. New York,USA :Cold Spring Harbor Laboratory Press,2008.
[47]Kempermann G,Kuhn HG,Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature,1997,386(6624):493-495.
[48]Ehninger D,Kempermann G. Regional effects of wheel running and environmental enrichment on cell genesis and microglia proliferation in the adult murine neocortex.Cereb Cortex,2003,13(8):845-851.
[49] F abelK,Wolf SA,Ehninger D,et al. Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front Neurosci,2009,3:50.
[50]Hendriksen H,Prins J,Olivier B,et al. Environmental enrichment induces behavioral recovery and enhanced hippocampal cell proliferation in an antidepressantresistant animal model for PTSD. PLoS One,2010,5(8):e11943.
[51]Meshi D,Drew MR,Saxe M,et al. Hippocampal neurogenesis is not required for behavioral effects of environmental enrichment. Nat Neurosci,2006,9(6):729-731.
[52]Kobilo T,Liu Q-R,Gandhi K,et al. Running is the neurogenic and neurotrophic stimulus in environmental enrichment. Learn Mem,2011,18(9):605-609.
[53]Allen DM,van Praag H,Ray J,et al. Ataxia telangiectasia mutated is essential during adult neurogenesis. Genes Dev,2001,15(5):554-566.
[54]Rhodes JS,Hosack GR,Girard I,et al. Differential sensitivity to acute administration of cocaine,GBR 12909,& fluoxetine in mice selectively bred for hyperactive wheel-running behavior.Psychopharmacology,2001,158(2):120-131.
[55]Rhodes JS,van Praag H,Jeffrey S,et al. Exercise increases hippocampal neurogenesis to high levels but does not improve spatial learning in mice bred for increased voluntary wheel running. Behav Neurosci,2003,117(15):1006-1016.
[56]Kronenberg G,Bick-Sander A,Bunk E,et al. Physical exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. Neurobiol Aging,2006,27(10):1505-1513.
[57] K annangara TS,Lucero MJ,Gil-Mohapel J,et al.Running reduces stress and enhances cell genesis in aged mice. Neurobiol Aging,2011,32(12):2279-2286.
[58]Holmes MM,Galea LA,Mistlberger RE,et al.Adult hippocampal neurogenesis and voluntary running activity:Circadian and dose-dependent effects. J Neurosci Res,2004,76(2):216-222.
[59] v an der BorghtK,F(xiàn)errari F,Klauke K,et al.Hippocampal cell proliferation across the day:Increase by running wheel activity,but no effect of sleep and wakefulness. Behav Brain Res,2006,167(1):36-41.
[60]Uda M,Ishido M,Kami K,et al. Effects of chronic treadmill running on neurogenesis in the dentate gyrus of the hippocampus of adult rat. Brain Res,2006,1104 :64-72.
[61]Bliss TV,Collingridge GL. A synaptic model of memory:Long-term potentiation in the hippocampus.Nature,1993,361(6407):31-39.
[62]Farmer J,Zhao X,van Praag H,et al. Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience,2004,124(1):71-79.
[63]Schmidt-Hieber C,Jonas P,Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature,2004,429(6988):184-187.
[64]van Praag H,Schinder AF,Christie BR,et al.Functional neurogenesis in the adult hippocampus.Nature,2002,415(6875):1030-1034.
[65]Lang C,Barco A,Zablow L,et al. Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. Proc Nat Acad Sci USA,2004,101(47):16665-16670.
[66]Zhou Q,Homma KJ,Poo MM. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron,2004,44(5):749-757.
[67]Stranahan AM,Khalil D,Gould E. Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus,2007,17(11):1017-1022.
[68]Eadie BD,Redila VA,Christie BR. Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation,dendritic complexity,and spine density. J Comp Neurol,2005,486(1):39-47.
[69]Redila VA,Christie BR. Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience,2006,137(4):1299-1307.
[70] Z haoC,Teng EM,Summers RG Jr,et al. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci,2006,26(1):3-11.
[71]McCloskey DP,Adamo DS,Anderson BJ. Exercise increases metabolic capacity in the motor cortex and striatum,but not in the hippocampus. Brain Res,2001,891:168-175.
[72]Isaacs KR,Anderson BJ,Alcantara AA,et al. Exercise and the brain:Angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J Cereb Blood Flow Metab,1992,12(1):110-119.
[73]Carro E,Trejo JL,Busiguina S,et al. Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci,2001,21(15):5678-5684.
[74]Lorens-Martin M,Torres-Aleman I,Trejo JL.Pronounced individual variation in the response to the stimulatory action of exercise on immature hippocampal neurons. Hippocampus,2006,16(5):480-490.
[75]Trejo JL,Carro E,Torres-Aleman I. Circulating insulinlike growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci,2001,21(5):1628-1634.
[76]Palmer TD,Willhoite AR,Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol,2000,425(4):479-494.
[77] Cao L,Jiao X,Zuzga DS,et al. VEGF links hippocampal activity with neurogenesis,learning and memory. Nat Genet,2004,36(8):827-835.
[78]Jin K,Zhu Y,Sun Y,et al. Vascular endothelial growth factor( VEGF) stimulates neurogenesis in vitro and in vivo. Proc Nat Acad Sci USA,2002,99(18):11946-11950.
[79]Lopez-Lopez C,LeRoith T,Torres-Aleman I.Insulinlike growth factor I is required for vessel remodeling in the adult brain. Proc Nat Acad Sci USA,2004,101(26):9833-9838.
[80]Anderson BJ,Eckburg PB,Relucio KI. Alterations in the thickness of motor cortical subregions after motorskill learning and exercise. Learn Mem,2002,9(1):1-9.
[81]Kleim JA,Cooper NR,VandenBerg PM. Exercise induces angiogenesis but does not alter movement representations within rat motor cortex. Brain Res,2002,934(1):1-6.
[82]Swain RA,Harris AB,Wiener EC,et al. Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat.Neuroscience,2003,117(4):1037-1046.
[83]Ding Q,Vaynman S,Akhavan M,et al. Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience,2006,140(3):823-833.
[84]Ding YH,Li J,Zhou Y,et al. Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Curr Neurovasc Res,2006,3(1):15-23.
[85]Carro E,Nunez A,Busiguina S,et al. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci,2000,20(8):2926-2933.
[86]Fabel K,F(xiàn)abel K,Tam B,et al. VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci,2003,18(10):2803-2812.
[87] P ereira AC,Huddleston DE,Brickman AM,et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Nat Acad Sci USA,2007,104(13):5638-5643.
[88]van Praag H,Lucero MJ,Yeo GW,et al. Plant-derived flavanol( -)epicatechin enhances angiogenesis and retention of spatial memory in mice. J Neurosci,2007,27(22):5869-5878.
[89] K err AL,Steuer EL,Pochtarev V,et al.Angiogenesis but not neurogenesis is critical for normal learning and memory acquisition. Neuroscience,2010,171(1):214-226.
[90]Marlatt MW,Lucassen PJ,van Praag H. Comparison of neurogenic effects of fl uoxetine,duloxetine and running in mice. Brain Res,2010,1341:93-99.
[91]Kobilo T,Yuan C,van Praag H. Endurance factors improve hippocampal neurogenesis and spatial memory in mice. Learn Mem,2011,18(2):103-107.
中國(guó)運(yùn)動(dòng)醫(yī)學(xué)雜志2011年11期