国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

mTOR介導(dǎo)抗阻運(yùn)動(dòng)骨骼肌蛋白質(zhì)合成機(jī)制研究進(jìn)展

2011-08-15 00:51王平李敏丁樹(shù)哲
關(guān)鍵詞:骨骼肌磷酸化氨基酸

王平 李敏 丁樹(shù)哲

1 華東師范大學(xué)體育與健康學(xué)院(上海 200241)

2 太原科技大學(xué)體育學(xué)院 3 商丘師范學(xué)院體育學(xué)院

國(guó)內(nèi)外學(xué)者普遍認(rèn)為,長(zhǎng)期反復(fù)抗阻運(yùn)動(dòng)導(dǎo)致骨骼肌肥大。其根源是蛋白質(zhì)合成率遠(yuǎn)大于蛋白質(zhì)分解以致蛋白質(zhì)積累,導(dǎo)致肌纖維橫截面積增大,骨骼肌質(zhì)量增加[1]。已有研究顯示,骨骼肌質(zhì)量發(fā)生微小變化可能對(duì)骨骼肌功能起著決定性作用[2]。以往研究顯示,抗阻運(yùn)動(dòng)導(dǎo)致骨骼肌IGF-1 mRNA和蛋白表達(dá)均增加[3]。骨骼肌外源性補(bǔ)給IGF-1,蛋白合成明顯增加[4],提示運(yùn)動(dòng)促進(jìn)旁分泌途徑或骨骼肌自分泌途徑,導(dǎo)致骨骼肌IGF-1增加,促進(jìn)蛋白質(zhì)合成增加。但最近,Spangenburg等人對(duì)上述觀(guān)點(diǎn)提出質(zhì)疑,他們使用IGF-1受體轉(zhuǎn)基因大鼠研究發(fā)現(xiàn),雖然IGF-1和胰島素能與IGF-1受體結(jié)合,但不能活化蛋白激酶B(Akt/protein kinase B,PKB),未引起下游信號(hào)發(fā)生,但發(fā)生骨骼肌肥大,提示IGF-1信號(hào)并不是調(diào)控骨骼肌肥大的唯一信號(hào);同時(shí),他們也證實(shí)mTOR信號(hào)途徑是骨骼肌肥大所必需的[5]。本文對(duì)近年來(lái)mTOR介導(dǎo)抗阻運(yùn)動(dòng)骨骼肌蛋白質(zhì)合成的機(jī)制研究進(jìn)行綜述,為骨骼肌肥大的細(xì)胞調(diào)控機(jī)制研究提供參考。

1 mTOR與抗阻運(yùn)動(dòng)骨骼肌蛋白質(zhì)合成

抗阻運(yùn)動(dòng)是骨骼肌蛋白質(zhì)合成與肌細(xì)胞增長(zhǎng)強(qiáng)有力的刺激劑,其機(jī)制是mTOR通路的激活。mTOR是一種非典型絲氨酸/蘇氨酸蛋白激酶,分子量289 kDa,為磷脂酰肌醇激酶相關(guān)激酶(phosphatidylinositol kinase-related kinase,PIKK)蛋白質(zhì)家族成員,在進(jìn)化上高度保守[6]。mTOR具有廣泛生物學(xué)功能,可整合營(yíng)養(yǎng)、能量及生長(zhǎng)因子等多種細(xì)胞外信號(hào),參與基因轉(zhuǎn)錄、蛋白質(zhì)翻譯、核糖體合成等過(guò)程,在細(xì)胞生長(zhǎng)過(guò)程中發(fā)揮極其重要的作用。在哺乳動(dòng)物細(xì)胞中,mTOR存在兩種不同復(fù)合物形式,即mTORC1(mTOR complex1)和mTORC2(mTOR complex2)。TORC1 由 mTOR、Raptor(regulatory associated protein of mTOR) 和Gβl(G protein β-subunit-like,也稱(chēng) mLST8)形成一個(gè)對(duì)雷帕霉素(rapamycin)抑制敏感的復(fù)合物。TORC2復(fù)合物由mTOR、Rictor(rapamycininsensitive companion of mTOR)、mLST8和 Sin1(stress-activated-protein-kinase-interacting protein 1,也稱(chēng) Mip1)構(gòu)成[7]。

到目前為止,許多研究證實(shí):抗阻運(yùn)動(dòng)誘導(dǎo)骨骼肌肥大過(guò)程中,兩種形式mTOR均起著調(diào)節(jié)蛋白質(zhì)合成的作用[7,8],主要機(jī)制可能是mTOR通過(guò)磷酸化其下游靶蛋白40S核糖體S6蛋白激酶(p70ribosomal proteinS6 kinases,p70S6K), 如S6K1及真核啟動(dòng)因子4E結(jié)合蛋白1(eukaryoticinit iationfactor4Ebindingprotein1,4E-BP1)來(lái)調(diào)節(jié)下游蛋白質(zhì)翻譯。活化的S6K1可磷酸化下游底物,如40S核糖體蛋白S6(p70S6)等,促進(jìn)延長(zhǎng)因子-1α(elongation fator-1α,EF-1α)、poly(A)結(jié)合蛋白等蛋白質(zhì)翻譯及表達(dá)。mRNA 5’端的7-甲基鳥(niǎo)苷帽子結(jié)構(gòu)(cap)可被24 kDa的真核起始因子-4E(eukaryoticinitiationfactor-4E,eIF4E)識(shí)別并夾住,支架蛋白eIF4G與eIF4E及eIF4A結(jié)合并使后二者穩(wěn)定。4E-BP1與eIF-4E結(jié)合并抑制其活性,進(jìn)而抑制依賴(lài)eIF-4E轉(zhuǎn)錄的啟動(dòng)及蛋白質(zhì)的表達(dá)。當(dāng)mTOR磷酸化4E-BP1后,可使其激活,活化的4E-BP1與eIF-4E分離,從而促成eIF4E與eIF4G結(jié)合,eIF4F復(fù)合物形成,促進(jìn)cap-依賴(lài)的翻譯[9]。Hans[10]研究一次性抗阻訓(xùn)練發(fā)現(xiàn),肌肉蛋白質(zhì)合成率在運(yùn)動(dòng)過(guò)程中明顯下降,運(yùn)動(dòng)后1~2小時(shí)mTOR通路激活,即mTORSer2448位點(diǎn)發(fā)生磷酸化,其上游分子Akt及下游分子S6K1和4E-BP1活性明顯增強(qiáng),蛋白質(zhì)合成率明顯增加,提示mTOR是調(diào)控蛋白質(zhì)翻譯開(kāi)始的關(guān)鍵蛋白。

2 Akt信號(hào)通路與mTOR調(diào)節(jié)抗阻運(yùn)動(dòng)蛋白質(zhì)合成

目前,研究比較清楚的調(diào)控抗阻運(yùn)動(dòng)骨骼肌mTOR信號(hào)途徑的軸是IGF-1/Akt/mTOR。其具體機(jī)制為:IGF-1/胰島素等生長(zhǎng)因子與骨骼肌細(xì)胞膜上的受體特異性結(jié)合,引起其受體發(fā)生磷酸化,磷酸化的受體募集其受體底物-1(insulin receptor substrate-1,IRS-1)到細(xì)胞膜并使其發(fā)生磷酸化,磷酸化的IRS-1激活磷脂酰肌醇3-激酶(phosphoinositide 3-kinase,PI3K)。該激酶的活化使位于細(xì)胞膜上的磷脂酰肌醇(phosphatidylinositol 4,5 trisphosphate,PIP2)磷酸化,即在其肌醇環(huán)3位上添加一個(gè)磷酸基團(tuán),從而形成PIP3(phosphatidylinositol 3,4,5 trisphosphate,PIP3)。PIP3的形成對(duì)于A(yíng)kt的募集及mTOR的激活是必需的[11,12]。Akt/PKB對(duì)mTOR信號(hào)的調(diào)控是通過(guò)結(jié)節(jié)性硬化癥復(fù)合物(tuberous sclerosis complex,TSC)完成的。TSC 蛋白復(fù)合物是TSC1和TSC2的異質(zhì)二聚體,它對(duì)mTOR活性具有抑制作用。TSC1或TSC2基因剔除細(xì)胞或動(dòng)物均具有高活性mTOR[13]。最近研究發(fā)現(xiàn)Rheb作為T(mén)SC 基因的下游作用因子參與了mTOR通路的調(diào)控,其具體機(jī)制可能是Rheb(一種單體蛋白)與GTP或GDP結(jié)合引起的結(jié)構(gòu)改變使其處于激活或失活狀態(tài)。TSC蛋白具有和Rap1-GTP酶激活蛋白(GTPaseactivating protein,GAP)高度同源的GAP區(qū)域,可激活內(nèi)源性GTP 酶活性,從而使Rheb蛋白結(jié)合的GTP變?yōu)镚DP,導(dǎo)致Rheb蛋白失活。TSC2 C端GAP區(qū)域高度保守,與Rheb蛋白的相互作用具有特殊GTPase和GAP的結(jié)合區(qū)域,是TSC2的靶分子[14,15]。在結(jié)節(jié)性硬化癥患者中發(fā)現(xiàn)mTOR通路活性增高,而Rheb蛋白和TSC蛋白分別作為mTOR通路的正性和負(fù)性調(diào)節(jié)因子[16];Akt直接使TSC2上的許多殘基磷酸化,至少2個(gè)位點(diǎn),分別是Ser939和Thr1462,TSC2磷酸化抑制了GAP活性,導(dǎo)致Rheb-GTP結(jié)合增加,同時(shí)增強(qiáng)了mTOR活性。Nader等[17]利用急性負(fù)載模型研究發(fā)現(xiàn),在機(jī)械刺激后即刻,Akt蘇氨酸308和絲氨酸473發(fā)生磷酸化。在肌肉肥大代償模型中發(fā)現(xiàn),Akt磷酸化水平明顯提高[5]。Wan[18]等發(fā)現(xiàn)骨骼肌TSC1發(fā)生過(guò)度表達(dá),導(dǎo)致骨骼肌質(zhì)量下降20%,脛骨前肌和趾長(zhǎng)伸肌橫截面積均明顯下降,導(dǎo)致肌肉萎縮。根據(jù)上述情況推測(cè),對(duì)TSC1基因的抑制可能是骨骼肌發(fā)生肥大的關(guān)鍵因素;而TSC2沒(méi)有發(fā)生明顯變化,但是表現(xiàn)出對(duì)mTOR信號(hào)的明顯抑制。也有研究在骨骼肌肥大代償模型中發(fā)現(xiàn),TSC2 Ser1345和 Thr1462 位點(diǎn)發(fā)生了磷酸化[19]。Drummond[20]等進(jìn)行一次抗阻運(yùn)動(dòng)和營(yíng)養(yǎng)補(bǔ)充,利用肌肉活檢技術(shù)研究發(fā)現(xiàn),運(yùn)動(dòng)后6小時(shí)TSC1 mRNA和TSC2 mRNA明顯下降,Rheb mRNA明顯增加。盡管關(guān)于這方面的報(bào)道不是很多,但是這些發(fā)現(xiàn)足以證明Akt的下游因子TSC和Rheb在調(diào)控mTOR通路方面具有重要作用。

由于mTOR通路調(diào)控比較復(fù)雜,描述具體機(jī)制相對(duì)困難,目前了解比較清楚的是,只要使mTOR分子的Ser-2448位點(diǎn)和Ser-2481位點(diǎn)發(fā)生磷酸化的蛋白,均能直接或間接影響mTOR的活性,從而進(jìn)一步調(diào)節(jié)S6K1和4EBP-1活性,以調(diào)控蛋白質(zhì)翻譯。機(jī)械負(fù)載能夠使mTOR分子Ser-2448位點(diǎn)發(fā)生磷酸化,從而激活mTOR通路[21]??棺柽\(yùn)動(dòng)明顯增強(qiáng)mTOR通路,其下游因子S6K1和4EBP-1的活性也明顯增加,骨骼肌蛋白合成增加[22]。

3 氨基酸與mTOR調(diào)節(jié)抗阻運(yùn)動(dòng)蛋白質(zhì)合成

除Akt調(diào)節(jié)mTOR途徑外,氨基酸作為重要的營(yíng)養(yǎng)信號(hào)也調(diào)控mTOR通路,調(diào)節(jié)蛋白質(zhì)合成。對(duì)哺乳動(dòng)物細(xì)胞的研究發(fā)現(xiàn),如果氨基酸缺乏,尤其是亮氨酸缺乏,mTOR通路抑制,導(dǎo)致蛋白質(zhì)合成率明顯減少;但如果補(bǔ)充氨基酸,這種現(xiàn)象立即發(fā)生逆轉(zhuǎn)[23]。有關(guān)嚙齒類(lèi)動(dòng)物和人的實(shí)驗(yàn)證實(shí),補(bǔ)充必需氨基酸尤其是亮氨酸可通過(guò)激活mTOR通路進(jìn)而增強(qiáng)蛋白質(zhì)合成[24,25]。目前,氨基酸調(diào)節(jié)mTOR通路這一觀(guān)點(diǎn)已被普遍接受,但其具體機(jī)制尚不明確。有學(xué)者提出氨基酸調(diào)節(jié)mTOR通路依賴(lài)TSC1/TSC2[26],也有學(xué)者提出其獨(dú)立于TSC1/TSC2[27]。一些研究顯示,Rheb在氨基酸調(diào)控mTOR通路中必不可少[28],氨基酸缺乏會(huì)導(dǎo)致Rheb與mTOR結(jié)合減弱[29]。但也有相反的觀(guān)點(diǎn),即Rheb不參與mTOR通路,而是氨基酸缺乏時(shí),引起mTOR復(fù)合物構(gòu)型變化,最終導(dǎo)致mTOR活性下降[30]。最近研究顯示,hVps34參與氨基酸調(diào)節(jié)mTOR通路,并且完全獨(dú)立于A(yíng)kt/PKB-TSCRheb通路[31,32]。對(duì)果蠅和哺乳動(dòng)物細(xì)胞的研究發(fā)現(xiàn),Rag蛋白的異源二聚體復(fù)合物在氨基酸調(diào)節(jié) mTOR/TORC1 通路中起重要作用[33,34]。但在mTOR/TORC1通路中,hVps34、Rag與氨基酸之間如何調(diào)節(jié),尚不清楚,需要進(jìn)一步研究。關(guān)于氨基酸與抗阻運(yùn)動(dòng)方面的研究很少。Hartman等[35]證實(shí),補(bǔ)充必需氨基酸尤其是亮氨酸的同時(shí)進(jìn)行抗阻運(yùn)動(dòng)能明顯增加蛋白質(zhì)合成率,使肌纖維橫截面積明顯增大,骨骼肌質(zhì)量明顯增加。為了進(jìn)一步證實(shí)其研究結(jié)果,他們進(jìn)行了細(xì)胞培養(yǎng),發(fā)現(xiàn)氨基酸能夠促進(jìn)蛋白質(zhì)合成,并且激活mTOR,從而激活其下游p70S6激酶。此激酶的功能是磷酸化核糖體S6,它在蛋白質(zhì)翻譯過(guò)程中非常重要。其具體機(jī)制可能與細(xì)胞內(nèi)鈣離子和hVps34有關(guān),但是否直接作用于mTOR還不是很清楚。最近研究顯示,氨基酸可通過(guò)Rag GTPases,Rheb或MAP激酶4間接調(diào)節(jié)mTOR信號(hào)傳導(dǎo)通路。但是氨基酸不會(huì)激活A(yù)kt,因此,它不會(huì)作用于A(yíng)kt/mTOR信號(hào)的上游,提示胰島素樣生長(zhǎng)因子/胰島素和氨基酸通過(guò)各自獨(dú)立的途徑影響mTOR信號(hào)。

4 機(jī)械刺激與mTOR調(diào)節(jié)抗阻運(yùn)動(dòng)蛋白質(zhì)合成

自Bodine[36]發(fā)現(xiàn)機(jī)械負(fù)載導(dǎo)致骨骼肌肥大與mTOR通路有關(guān)以來(lái),許多學(xué)者也證實(shí)了在哺乳動(dòng)物骨骼肌肥大方面,機(jī)械負(fù)載確實(shí)激活了mTOR信號(hào)。但是關(guān)于他們之間確切機(jī)制了解不多。離體肌肉拉伸和細(xì)胞培養(yǎng)拉伸模型證實(shí):(1)被動(dòng)拉伸刺激對(duì)于mTOR信號(hào)的激活是必需的;(2)拉伸刺激激活mTOR信號(hào)獨(dú)立于PI3K;(3)機(jī)械拉伸在氨基酸或生長(zhǎng)因子均缺乏的狀態(tài)下仍能激活mTOR信號(hào)[37-39]。且拉伸刺激激活mTOR通路時(shí)必須有細(xì)胞骨架[7]。另外,其他一些研究發(fā)現(xiàn),拉伸刺激激活mTOR通路中磷脂酶D1(phospholipase D1,PLD1)和磷脂酰膽堿水解產(chǎn)生的第二信使物質(zhì)磷脂酸(phosphatidic acid,PA)也參與了此過(guò)程[40]。其具體機(jī)制可能是PA與mTOR抑制劑雷帕霉素/FKBP12復(fù)合物競(jìng)爭(zhēng)性結(jié)合mTOR的FRB結(jié)構(gòu)域[28]。最近,Sun[41]的實(shí)驗(yàn)室證實(shí),Rheb活化mTOR信號(hào)時(shí)PLD1是必需的,他們?cè)趯?shí)驗(yàn)過(guò)程中將PLD1放置于Rheb的下游和mTOR的上游,結(jié)果提示,機(jī)械刺激激活mTOR通路完全獨(dú)立于氨基酸和生長(zhǎng)因子路徑。因此認(rèn)為,機(jī)械刺激、氨基酸和生長(zhǎng)因子途徑對(duì)于mTOR通路的激活起著協(xié)同作用。另有人報(bào)道[42],AMPK活性變化對(duì)mTOR也產(chǎn)生一定影響。Thomson和Brown觀(guān)察到,肌肉中AMPK表達(dá)增加,肌肉發(fā)生萎縮,提示AMPK與mTOR呈負(fù)向調(diào)控。

另外,mTOR的活性也直接或間接受REDD2、PRAS40、rictor和raptor的影響。已有研究報(bào)道,REDD2過(guò)度表達(dá)明顯降低了mTOR活性[43]。值得注意的是,REDD2影響mTOR的機(jī)制似乎完全獨(dú)立于A(yíng)kt,但其機(jī)制與TSC1/TSC2密切相關(guān)。另一信號(hào)分子PRAS40通過(guò)與raptor間接作用抑制mTOR通路,同時(shí)Akt通過(guò)磷酸化PRAS40的Thr-246位點(diǎn),使PRAS40從mTOR復(fù)合物中分離出來(lái),最終減緩了PRAS40對(duì)mTOR通路的抑制[21]。那么 REDD2、PRAS40、rictor和 raptor在抗阻運(yùn)動(dòng)骨骼肌肥大過(guò)程中是否與Akt有關(guān),他們又如何影響mTOR信號(hào)分子,關(guān)于這方面研究的文獻(xiàn)極少。例如Raptor是mTOR的一個(gè)調(diào)節(jié)性蛋白,包括4EBP1和p70s6k,他們能夠使mTOR結(jié)構(gòu)發(fā)生磷酸化,導(dǎo)致骨骼肌肥大,但其具體作用機(jī)制還需進(jìn)一步研究。

5 小結(jié)

mTOR信號(hào)通路在骨骼肌肥大的蛋白質(zhì)合成中起重要作用,但調(diào)控mTOR通路的確切機(jī)制尚不清楚。尤其關(guān)于細(xì)胞膜如何將細(xì)胞外信號(hào)轉(zhuǎn)導(dǎo)到細(xì)胞內(nèi),如何刺激mTOR信號(hào)的發(fā)生,如何刺激相關(guān)下游信號(hào)分子的蛋白合成,尚需進(jìn)一步研究。

[1]Kimball SR. The role of nutrition in stimulation muscle protein accretion at the molecular level. Biochem Soc Trans,2007,35(5):1298-1301.

[2]Janssen I,Baumgartner R,Ross R,et al. Skeletal muscle cut points associated with elevated physical disability risk in older men and women. Am J Epidemiol,2004,159(4):413-421.

[3]Adams GR,Haddad F. The relationships among IGF-1,DNA content and protein accumulation during skeletal muscle hypertrophy. J Appl Physiol,1996,81(6):2509-2516.

[4]Parsons SA,Millay DP,Wilkins BJ,et al. Genetic loss of calcineurin blocks mechanical overload-induced skeletal muscle fi ber type switching but not hypertrophy.J Biol Chem,2004,279(6):26192-26200.

[5]Spangenburg EE,Le Roith D,Ward CW,et al. A functional insulin-like growth factor receptor is not necessary for load-induced skeletal muscle hypertrophy. J Physiol,2008,586(7):283-291.

[6]Jacinto E,Hall MN. TOR signalling in bugs,brain and brawn. Nat Rev Mol Cell Biol,2003,4(3):117-126.

[7]Mitsunori M,Karyn A. Cellular mechanisms regulating protein synthesis and skeletal muscle hypertrophy in animals. J Appl Physiol,2009,106(4):1367-1373.

[8]Nader GA,Mcloughlin TJ,Esser KA. mTOR function in skeletal muscle hypertrophy:increased ribosomal RNA via cell cycle regulators. Am J Physiol Cell Physiol,2005,289(6):C1457-C1465.

[9] 陳洪菊,屈藝,母得志. mTOR信號(hào)通路的生物學(xué)功能.生命的化學(xué),2010,30(4),555-561.

[10]Hans C,Satoshi F,Jerson G,et al. Presentation 7:skeletal muscle early growth response to resistance exercise in young adults:establishing a normative data set.Arch Phys Med Rehab,2006,87(10):8-14.

[11]Chan TO,Rittenhouse SE,Tsichlis PN. Phosphoinositide 3-kinase signaling-which way to target? Trends Pharmacol Sci,2003,24(7):366-376.

[12]趙永軍,陳彩珍,盧健.抗阻運(yùn)動(dòng)誘導(dǎo)骨骼肌生理性肥大的信號(hào)傳導(dǎo)通路.中國(guó)運(yùn)動(dòng)醫(yī)學(xué)雜志,2011,30(2):206-210.

[13]Potter CJ,Pedraza LG,Xu T. Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol,2002,4(9):658-665.

[14]Zhang Y,Gao X,Saucedo L,et al. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol,2003,5(6):578-581.

[15]Li Y,Inoki K,Guan KL. Biochemical and functional characterizations of small GTPase Rheb and TSC2GAP activity. Mol Cell Biol,2004,24(18):7965-7975.

[16]Tee AR,Manning BD,Roux PP,et al. Tuberous sclerosis complex gene products,Tuberin and Hamartin,control mTOR signaling by acting as a GTPase-activatingprotein complex toward Rheb. Curr Biol,2003,13(4):1259-1268.

[17]Nader GA,Esser KA. Intracellular signaling specifi city in skeletal muscle in response to different modes of exercise. J Appl Physiol,2001,90(5):1936-1942.

[18]Wan M,Wu X,Guan K,et al. Muscle atrophy in transgenic mice expressing a human TSC1 transgene.FEBS Lett,2006,580(24):5621-5627.

[19]McGee SL,Mustard KJ,Hardie DG,et al. Normal hypertrophy accompanied by phosphorylation and activation of AMP-activated protein kinase alpha1 following overload in LKB1 knockout mice. J Physiol,2008,586(2):1731-1741.

[20]Drummond MJ,Miyazaki M,Dreyer HC,et al. Expression of growth-related genes in young and old human skeletal muscle following an acute stimulation of protein synthesis. J Appl Physiol,2009,106(4):1403-1411.

[21]Sancak Y,Thoreen C,Peterson T,et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase.Mol Cell,2007,25(6):903-915.

[22]Juha JH,Jorgen T,Harri S. Resistance exercise with whey protein ingestion affects mTOR signaling pathway and myostatin in men. J Appl Physiol,2009,106(5):1720-1729.

[23]Hara K,Yonezawa K,Weng QP,et al. Amino acid sufficiency and mTOR regulate p70S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem,1998,273(34):14484-14494.

[24]Dreyer HC,Drummond MJ,Pennings B,et al.Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J Physiol Endocrinol Metab,2008,294(2):E392-E400.

[25]Drummond MJ,Dreyer HC,Pennings B,et al. Skeletal muscle protein anabolic response to resistance exercise and essential amino acids is delayed with aging. J Appl Physiol,2008,104(5):1452-1461.

[26]Gao X,Zhang Y,Arrazola P,et al. Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling.Nat Cell Biol,2002,4(9):699-704.

[27]Smith EM,F(xiàn)inn SG,Tee AR,et al. The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses. J Biol Chem,2005,280(3):18717-18727.

[28]Foster DA. Regulation of mTOR by phosphatidic acid?Cancer Res,2007,67(1):1-4.

[29]Long X,Ortiz-Vega S,Lin Y,et al. Rheb binding to mammalian target of rapamycin(mTOR) is regulated by amino acid suffi ciency. J Biol Chem,2005,280(25):23433-23436.

[30]Kim DH,Sarbassov DD,Ali SM,et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell,2002,110(2):163-175.

[31]Byfield MP,Murray JT,Backer JM. hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J Biol Chem,2005,280(38):33076-33082.

[32]Nobukuni T,Joaquin M,Roccio M,et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci USA,2005,102(40):14238-14243.

[33]Kim E,Goraksha-Hicks P,Li L,et al. Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol,2008,10(8):935-945.

[34]Sancak Y,Peterson TR,Shaul YD,et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science,2008,320(5882):1496-1501.

[35]Hartman JW,Tang JE,Wilkinson SB,et al. Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young,novice,male weightlifters. Am J Clin Nutr,2007,86(13):373-381.

[36]Bodine SC,Stitt TN,Gonzalez M,et al. Akt/Mtor pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol,2001,3(2):1014-1019.

[37]Hornberger TA,Armstrong DD,Koh TJ,et al. Intracellular signaling specificity in response to uniaxial vs.multiaxial stretch:implications for mechanotransduction.Am J Physiol Cell Physiol,2005,288(1):C185-C194.

[38]Hornberger TA,Chien S. Mechanical stimuli and nutrients regulate rapamycin-sensitive signaling through distinct mechanisms in skeletal muscle. J Cell Biochem,2006,97(6):1207-1216.

[39]Hornberger TA,Stuppard R,Conley KE,et al. Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-,protein kinase B- and growth factor-independent mechanism. Biochem J,2004,380(15):795-804.

[40]Hornberger TA,Chu WK,Mak YW,et al. The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle. Proc Natl Acad Sci USA,2006,103(12):4741-4746.

[41]Sun Y,F(xiàn)ang Y,Yoon MS,et al. Phospholipase D1 is an effector of Rheb in the mTOR pathway. Proc Natl Acad Sci USA,2008,105(24):8286-8291.

[42]Thomson DM,Brown JD,F(xiàn)illmore N,et al. AMP-activated protein kinase response to contractions and treatment with the AMPK activator AICAR in young adult and old skeletal muscle. J Physiol, 2009,587(9):2077-2086.

[43]Miyazaki M,Esser K. Cellular mechanisms regulating protein synthesis and skeletal muscle hypertrophyin animals. J Appl Physiol,2009,106(4):1367-1373.

猜你喜歡
骨骼肌磷酸化氨基酸
T69E模擬磷酸化修飾對(duì)Bcl-2與Nur77相互作用的影響
ITSN1蛋白磷酸化的研究進(jìn)展
月桂酰丙氨基酸鈉的抑菌性能研究
毛蕊花苷對(duì)遞增負(fù)荷運(yùn)動(dòng)小鼠骨骼肌損傷的保護(hù)作用
UFLC-QTRAP-MS/MS法同時(shí)測(cè)定絞股藍(lán)中11種氨基酸
磷酸化肽富集新方法研究進(jìn)展
HPLC法同時(shí)測(cè)定阿膠強(qiáng)骨口服液中4種氨基酸
8-羥鳥(niǎo)嘌呤可促進(jìn)小鼠骨骼肌成肌細(xì)胞的增殖和分化
骨骼肌細(xì)胞自噬介導(dǎo)的耐力運(yùn)動(dòng)應(yīng)激與適應(yīng)
MAPK抑制因子對(duì)HSC中Smad2/3磷酸化及Smad4核轉(zhuǎn)位的影響