崔海清,李楠,楊立國,3,宋興良
(1.東北石油大學(xué)提高油氣采收率教育部重點(diǎn)實(shí)驗(yàn)室,黑龍江大慶163318;2.中石油大慶油田公司采油工程研究院,黑龍江大慶163453;3.中石油吉林油田公司,吉林松原138000)
變系數(shù)二階流體在偏心環(huán)空中非定常流壓力梯度的數(shù)值計(jì)算
崔海清1,李楠2,楊立國1,3,宋興良1
(1.東北石油大學(xué)提高油氣采收率教育部重點(diǎn)實(shí)驗(yàn)室,黑龍江大慶163318;2.中石油大慶油田公司采油工程研究院,黑龍江大慶163453;3.中石油吉林油田公司,吉林松原138000)
建立給定流量條件下變系數(shù)二階流體在內(nèi)管做軸向往復(fù)運(yùn)動的偏心環(huán)空中非定常流的瞬時壓力梯度方程,給出這種流動的時均壓力梯度公式及相應(yīng)的數(shù)值計(jì)算方法;以HPAM水溶液為例,對其在內(nèi)管做軸向往復(fù)運(yùn)動的偏心環(huán)空中非定常流的時均壓力梯度進(jìn)行數(shù)值計(jì)算和室內(nèi)試驗(yàn)。結(jié)果表明:環(huán)空偏心度對時均壓力梯度有明顯影響,內(nèi)管沖程和沖次對時均壓力梯度的影響不明顯;試驗(yàn)驗(yàn)證了時均壓力梯度公式及相應(yīng)數(shù)值計(jì)算方法的正確性。
變系數(shù)二階流體;偏心環(huán)空;軸向往復(fù)運(yùn)動;非定常流;壓力梯度
聚合物驅(qū)油技術(shù)自推廣應(yīng)用以來取得了明顯的驅(qū)油效果和較高的經(jīng)濟(jì)效益。聚驅(qū)與水驅(qū)相比,聚合物溶液具有特殊的流變性,可以顯著提高原油采收率。但是,聚驅(qū)抽油機(jī)井與水驅(qū)抽油機(jī)井相比存在抽油桿偏磨嚴(yán)重、示功圖肥大、泵效下降明顯、檢泵周期縮短等諸多問題,這些都與井筒中含聚合物溶液的產(chǎn)出液黏彈性有關(guān)。聚驅(qū)抽油機(jī)井產(chǎn)出液在井筒中的流動可視為變系數(shù)二階流體在內(nèi)管做軸向往復(fù)運(yùn)動的偏心環(huán)空中的非定常流動。Wang Yan等[1]給出了變系數(shù)二階流體做這種流動的內(nèi)管壓力分布;崔海清等[2]給出了變系數(shù)二階流體做這種流動的瞬時流量分布;李楠等[3]對變系數(shù)二階流體做這種流動的時均流量進(jìn)行了數(shù)值計(jì)算。然而,在聚驅(qū)抽油機(jī)井實(shí)際生產(chǎn)過程中,人們關(guān)心給定流量條件下環(huán)空時均壓力梯度的計(jì)算。常瑛等[4]利用待定系數(shù)法建立了Newton流體做這種流動時的時均壓力梯度公式,并對時均壓力梯度進(jìn)行了數(shù)值計(jì)算;徐國民等[5]采用數(shù)值方法對冪律流體做這種流動的時均壓力梯度進(jìn)行了計(jì)算。筆者在建立給定流量條件下變系數(shù)二階流體在內(nèi)管做軸向往復(fù)運(yùn)動的偏心環(huán)空中非定常流的瞬時壓力梯度方程的基礎(chǔ)上,給出這種流動的時均壓力梯度公式及相應(yīng)的數(shù)值計(jì)算方法,利用HPAM水溶液進(jìn)行數(shù)值計(jì)算,并用室內(nèi)試驗(yàn)驗(yàn)證本文中所建立的時均壓力梯度公式及相應(yīng)數(shù)值計(jì)算方法的正確性。
各向同性不可壓縮變系數(shù)二階流體[6-7]在無限長垂直偏心環(huán)空中做軸向非定常等溫層流流動;流體的密度為ρ;環(huán)空內(nèi)管半徑為Rin,外管半徑為Rout,環(huán)空偏心度為ec;環(huán)空外管靜止,內(nèi)管以速度U(t)做軸向往復(fù)運(yùn)動;環(huán)空中流體的流量Q0為常數(shù);作用在環(huán)空流體上的瞬時壓力梯度為P。
雙極坐標(biāo)系下變系數(shù)二階流體在內(nèi)管做軸向往復(fù)運(yùn)動的偏心環(huán)空中非定常流的運(yùn)動方程[1]為
其中
式中,w為流體的速度,m/s;雙極坐標(biāo)系下c、s及C的表達(dá)式可參見文獻(xiàn)[1];η為特征黏度,θ1為第一法向應(yīng)力差系數(shù),二者均為一階Rivlin-Ericksen張量的第二不變量I2的函數(shù);n為流性指數(shù);k為稠度系數(shù),Pa·sn;n1為物質(zhì)常數(shù),由試驗(yàn)確定;A1為物質(zhì)常數(shù),由試驗(yàn)確定,N·sn1+2/m2。初始條件[2]為
式中,wP(ξ,ζ)為雙極坐標(biāo)系下變系數(shù)二階流體在偏心環(huán)空中Poiseuille流的速度分布,可以通過數(shù)值方法求得[8-10]。
邊界條件[1]為
其中
式中,S和f為內(nèi)管沖程和沖次
由式(1)得
則
由變系數(shù)二階流體在內(nèi)管做軸向往復(fù)運(yùn)動的偏心環(huán)空中非定常流的瞬時流量公式[10]有
將式(7)代入式(8)可得
令Q=Q0,有
式(10)即為給定流量條件下變系數(shù)二階流體在內(nèi)管做軸向往復(fù)運(yùn)動的偏心環(huán)空中非定常流的瞬時壓力梯度方程,對其進(jìn)行數(shù)值求解即可得到給定流量Q0條件下的瞬時壓力梯度P。
時均壓力梯度ˉP的計(jì)算公式為
式中,T為計(jì)算時間周期。
利用有限體積法(FVM)對由式(1)~(5)構(gòu)成的變系數(shù)二階流體在內(nèi)管做軸向往復(fù)運(yùn)動的偏心環(huán)空中非定常流的控制方程進(jìn)行數(shù)值求解。其中,在對上述控制方程進(jìn)行離散時,時間積分方案采用全隱模式,并利用交替方向隱式迭代法(ADIIP)求解離散方程組,得到一個周期T內(nèi)時間節(jié)點(diǎn)tK時計(jì)算域上網(wǎng)格節(jié)點(diǎn)(ξi,ζj)處的速度場離散解由,根據(jù)零點(diǎn)定理確定瞬時壓力梯度方程(10)的有根區(qū)間,并采用快速弦截法對該方程進(jìn)行數(shù)值求解,得到一個周期T內(nèi)時間節(jié)點(diǎn)tK時的瞬時壓力梯度PK。最后,由PK采用復(fù)化梯形法對式(11)進(jìn)行數(shù)值計(jì)算即可得到時均壓力梯度Pˉ。
根據(jù)上述時均壓力梯度公式(11)及相應(yīng)的數(shù)值計(jì)算方法,以質(zhì)量分?jǐn)?shù)0.1%的HPAM水溶液為例,對給定流量條件下其在內(nèi)管做軸向往復(fù)運(yùn)動的偏心環(huán)空中非定常流的時均壓力梯度進(jìn)行數(shù)值計(jì)算。HPAM水溶液n=0.7408、k=0.1117 Pa·sn、n1=-1.4569、A1=0.7822 N·sn1+2/m2、ρ=999.0 kg/m3。Rin=0.010 m,Rout=0.035 m。離散步長Δξ=(ξout-ξin)/20,Δζ=π/40,Δt=T/20。
不同環(huán)空偏心度(ec)、內(nèi)管沖程(S)和沖次(f)下HPAM水溶液在內(nèi)管做軸向往復(fù)運(yùn)動的偏心環(huán)空中非定常流的時均壓力梯度與流量的關(guān)系曲線如圖1所示。
圖1 時均壓力梯度與流量的關(guān)系曲線Fig.1 Relation curves between time average pressure gradient and flow rate
從圖1可以看出:環(huán)空偏心度對時均壓力梯度的影響明顯,且流量越大環(huán)空偏心度的影響越明顯;3種沖程和沖次下的3條曲線差異不大,說明內(nèi)管沖程和沖次對時均壓力梯度的影響不明顯。
試驗(yàn)裝置如圖2所示。
圖2 試驗(yàn)裝置流程簡圖Fig.2 Flow chart of experimental apparatus
可調(diào)速電動機(jī)帶動下做軸向往復(fù)運(yùn)動的實(shí)心不銹鋼環(huán)空內(nèi)管外半徑為0.010 m,有機(jī)玻璃環(huán)空外管內(nèi)半徑為0.035 m,上下兩個測壓孔之間距離L=2.0 m。分別采用DP5E型壓力傳感器和LWGY/FI-TBS型電子流量計(jì)測量壓差Δp和流量Q。
試驗(yàn)所用液體是用普通自來水和大慶煉化公司生產(chǎn)的相對分子質(zhì)量為2.5×107的HPAM干粉經(jīng)充分?jǐn)嚢?、靜置、穩(wěn)定后配制成的質(zhì)量分?jǐn)?shù)為0.1%的HPAM水溶液,其密度ρ、流性指數(shù)n、稠度系數(shù)k、物質(zhì)常數(shù)n1和A1均與數(shù)值計(jì)算所用的參數(shù)值相同,液體溫度為15.9℃。
試驗(yàn)時流量的變化由大到小,試驗(yàn)液體的溫度變化控制在±1℃。根據(jù)試驗(yàn)數(shù)據(jù)繪制的0.1%的HPAM水溶液在內(nèi)管做軸向往復(fù)運(yùn)動的偏心環(huán)空中非定常流的實(shí)測時均壓差與時均流量的雙對數(shù)關(guān)系曲線見圖3。
圖3 0.1%的HPAM水溶液實(shí)測時均壓差與流量的關(guān)系曲線Fig.3 Relation curve between measured time average pressure difference and flow rate of 0.1%HPAM aqueous solution
給定流量條件下視為變系數(shù)二階流體0.1%的HPAM水溶液在內(nèi)管做軸向往復(fù)運(yùn)動的偏心環(huán)空中非定常流的計(jì)算時均壓力梯度Pˉ和實(shí)測時均壓力梯度見表1(其沖程、沖次和偏心度同圖3)。其中,
表1 計(jì)算與實(shí)測時均壓力梯度對比Table 1 Comparison between calculated and measured time average pressure gradient
(1)環(huán)空偏心度對時均壓力梯度的影響明顯,內(nèi)管沖程和沖次對時均壓力梯度的影響不明顯。
(2)HPAM水溶液在內(nèi)管做軸向往復(fù)運(yùn)動的偏心環(huán)空中非定常流的室內(nèi)試驗(yàn)驗(yàn)證了本文中給出的時均壓力梯度公式及相應(yīng)數(shù)值計(jì)算方法的正確性。
[1]WANG Yan,CUI Hai-qing,YANG Yuan-jian,et al.Pressure distribution on the wall of the inner cylinder reciprocating axially to the unsteady flow of viscoelastic fluid in eccentric annulus[J].Journal of Hydrodynamics(Ser B),2006,18(5):606-612.
[2]崔海清,張小寧,李楠.二階流體在內(nèi)管做軸向往復(fù)運(yùn)動的偏心環(huán)空中非定常流的流量分布[J].大慶石油學(xué)院學(xué)報(bào),2007,31(3):21-24.CUI Hai-qing,ZHANG Xiao-ning,LI Nan.Flow rate distribution of the non-steady flow of second-order fluid in eccentric annulus with inner cylinder reciprocating axially[J].Journal of Daqing Petroleum Institute,2007,31(3):21-24.
[3]李楠,宋興良,張小寧.粘彈性流體在內(nèi)管做軸向往復(fù)運(yùn)動的偏心環(huán)空中非定常流的平均流量計(jì)算[J].大慶石油學(xué)院學(xué)報(bào),2009,33(2):44-47.LI Nan,SONG Xing-liang,ZHANG Xiao-ning.Numerical calculation of average flow rate of the unsteady flow of a viscoelastic fluid in eccentric annulus with the inner cylinder reciprocating axially[J].Journal of Daqing Petroleum Institute,2009,33(2):44-47.
[4]常瑛,包志晶,崔海清,等.流體在內(nèi)管做軸向往復(fù)運(yùn)動偏心環(huán)空中非定常流的壓力梯度[J].大慶石油學(xué)院學(xué)報(bào),2007,31(6):40-43.CHANG Ying,BAO Zhi-jing,CUI Hai-qing,et al.Pressure gradient of unsteady flow of fluid in eccentric annulus with inner cylinder reciprocating axially[J].Journal of Daqing Petroleum Institute,2007,31(6):40-43.
[5]徐國民,李楠,崔海清.冪律流體在內(nèi)管做軸向往復(fù)運(yùn)動的偏心環(huán)空中非定常流壓力梯度的數(shù)值計(jì)算[J].大慶石油學(xué)院學(xué)報(bào),2009,33(1):21-23.XU Guo-min,LI Nan,CUI Hai-qing.Numerical calculation of pressure gradient of power-law fluid in eccentric annulus with the inner cylinder reciprocating axially[J].Journal of Daqing Petroleum Institute,2009,33(1):21-23.
[6]NORIYASU Mori,TAKAAKI Eguchi,KIYOJI Nakamura.Pressure flow of non-Newtonian fluids between eccentric double cylinders with the inner cylinder rotating.Part 1:numerical calculation[J].Journal of the Textile Machinery Society of Japan,1987,33(2):46-53.
[7]NORIYASU Mori,MITSUHIRO Yagami,TAKAAKI Eguchi.Pressure flow of non-Newtonian fluids between eccentric double cylinders with the inner cylinder rotating.Part 2:experiment[J].Journal of the Textile Machinery Society of Japan,1987,33(3):73-77.
[8]崔海清,孫智,高濤.非Newton流體在內(nèi)管做軸向往復(fù)運(yùn)動的偏心環(huán)空中非定常流的速度分布[J].水動力學(xué)研究與進(jìn)展:A輯,2003,18(6):711-715.CUI Hai-qing,SUN Zhi,GAO Tao.Velocity distribution of non-Newtonian fluid in eccentric annuli with inner cylinder reciprocating axially[J].Journal of Hydrodynamics(ser A),2003,18(6):711-715.
[9]楊元建,崔海清,高濤,等.冪律流體在內(nèi)管做軸向往復(fù)運(yùn)動的偏心環(huán)空中非定常流的流量分布[J].大慶石油學(xué)院學(xué)報(bào),2004,28(6):17-19.YANG Yuan-jian,CUI Hai-qing,GAO Tao,et al.Flow rate distribution of the unsteady flow of power law fluid in eccentric annuli with inner cylinder reciprocating axially[J].Journal of Daqing Petroleum Institute,2004,28(6):17-19.
[10]崔海清,楊元建,高濤,等.冪律流體在內(nèi)管做軸向往復(fù)運(yùn)動的偏心環(huán)空中非定常流的流量計(jì)算[J].石油學(xué)報(bào),2005,26(3):106-109.CUI Hai-qing,YANG Yuan-jian,GAO Tao,et al.Flow rate calculation of the unsteady flow of power law fluid in eccentric annuli with inner cylinder in axially reciprocating motion[J].Acta Petrolei Sinica,2005,26(3):106-109.
(編輯 李志芬)
Numerical calculation of pressure gradient of unsteady flow of the second-order fluid with variable coefficients in eccentric annulus
CUI Hai-qing1,LI Nan2,YANG Li-guo1,3,SONG Xing-liang1
(1.Enhanced Oil and Gas Recovery Key Laboratory of Ministry of Education,Northeast Petroleum University,
Daqing 163318,China;2.Production Engineering&Research Institute,Daqing Oilfield Company,PetroChina,Daqing 163453,China;3.Jilin Oilfield Company,PetroChina,Songyuan 138000,China)
An equation of instantaneous pressure gradient for the unsteady flow of the second-order fluid with variable coefficients in eccentric annulus with the inner cylinder reciprocating axially under the precondition of a known flow rate was established.And a formula of time average pressure gradient and correspondent numerical method were presented.Using the HPAM aqueous solution,the time average pressure gradients of the unsteady flow of the fluid in eccentric annulus with the inner cylinder reciprocating axially were numerically calculated,and the correspondent experiments were carried out.The results show that the influence of the annulus eccentricity on the time average pressure gradient is obvious,while the influences of the stroke and the stroke-frequency of the inner cylinder on the time average pressure gradient are not obvious.The correctness of the formula of time average pressure gradient and the correspondent numerical method was tested and verified through experimental results.
second-order fluid with variable coefficients;eccentric annulus;reciprocating axially;unsteady flow;pressure gradient
TE 355.5
A
10.3969/j.issn.1673-5005.2011.01.011
2010-06-24
國家自然科學(xué)基金項(xiàng)目(50674019);黑龍江省自然科學(xué)基金項(xiàng)目(A200501)
崔海清(1949-),男(漢族),黑龍江哈爾濱人,教授,博士,博士生導(dǎo)師,主要從事石油工程非Newton流體力學(xué)方面的研究。
1673-5005(2011)01-0061-04