何璇,梁華,邵一鳴
中國疾病預防控制中心性病艾滋病預防控制中心,北京 102206
自1981年確認首例艾滋病患者以來,艾滋病已迅速擴散至世界范圍,成為威脅人類健康的重大傳染病之一??共《靖腥镜牡?道防線——天然免疫已日趨成為研究熱點。γδ T 細胞作為天然免疫的重要組分,在抗人類免疫缺陷病毒(human immunodeficiency virus,HIV)的天然免疫甚至獲得性免疫中發(fā)揮了重要作用。
T細胞依據T細胞受體 (T cell receptor,TCR)的不同,分為αβ T細胞和γδ T細胞。與αβ T細胞不同,γδ T細胞不表達CD4和CD8,無需主要組織相容性復合物(major histocompatibility complex,MHC)限制即可直接識別抗原而發(fā)揮作用。γδ T 細胞主要分2個亞群:Vδ1亞群,集中分布于上皮組織中,可能參與呼吸道、腸道等黏膜免疫[1-4];Vδ2亞群,為外周血的主要γδ T細胞亞群,其中Vγ2Vδ2 亞型(也稱Vγ9Vδ2)是主要循環(huán)細胞,占血液T細胞的1%~5%,在抗微生物感染和抗腫瘤免疫方面發(fā)揮作用。已有多項研究表明,γδ T細胞不但可以直接識別并殺傷靶細胞,參與早期抗HIV的天然免疫,而且其分泌的各類細胞因子及抗原呈遞細胞(antigen-presenting cell, APC)有助于誘發(fā)獲得性免疫反應[5]。
Vγ9Vδ2 T細胞表面的TCR能直接識別低相對分子質量的非肽抗原,而無需抗原呈遞[6]。在HIV感染中,HIV復制能改變細胞代謝途徑,從而增加并釋放中間產物phosphometabolite (PM),使Vγ9Vδ2 T細胞持續(xù)激活。異戊烯焦磷酸單酯 (isopentenyl pyrophosphate,IPP) 是較常見的磷酸類抗原,為真核細胞中甲羥戊酸-膽固醇代謝途徑的中間產物,識別病變細胞或感染細胞釋放的危險信號[7],常用作Vγ9Vδ2 T細胞體外功能檢測的刺激劑。此外,體外實驗中Vγ9Vδ2 T細胞還能被一些非磷酸類物質激活,如烷基胺(alkylamine)、Ecto-F1-ATP合成酶(Ecto-F1-ATPase)[8]等。另外,有研究表明,Vγ9Vδ2 T細胞還能識別熱休克蛋白(heat shock protein,HSP)家族中的成員,這些蛋白可能是病變細胞或感染細胞過度表達的產物[1,9]。
除通過TCR識別非肽抗原外,γδ T細胞表面其他分子也參與γδ T細胞的激活,這類分子稱為“共刺激分子”(co-receptor)。包括4類:黏附配體(adhesion partner molecule)、Toll樣受體(Toll-like receptor,TLR)、天然殺傷受體(natural killer receptor,NKR)及Fc受體。黏附配體包括淋巴細胞功能相關抗原1(lymphocyte function-associated antigen 1,LFA-1)、胞內黏附分子﹝如細胞間黏附分子1(intercellular adhesion molecule 1,ICAM-1)、CD2/LFA-3等﹞[10,11]。TLR屬模式分子識別受體(pattern recognition receptor,PRR)家族成員,可廣泛識別病原體相關分子模式(pathogen-associated molecular pattern,PAMP)而參與γδ T細胞激活。如TLR3可使已被TCR激活的Vγ9Vδ2 T細胞上調一些基因,表達與細胞毒作用相關的蛋白[12,13]。大多數γδ T細胞,尤其是具細胞毒功能的Vγ9Vδ2 T細胞中有表達活化NKR(activating NKR,aNKR)和抑制NKR(inhibitory NKR,iNKR)的作用。這2種受體之間的平衡作用直接影響γδ T細胞功能。aNKR+γδ T細胞能識別MHCⅠ類缺陷細胞,如K562和Daudi細胞系,而發(fā)揮細胞殺傷效應,其殺傷機制稱為“missing self”假說[14]。γδ T細胞中iNKR具有抑制受體的功能,與各種人類白細胞抗原(human leukocyte antigen,HLA)Ⅰ類分子結合后,啟動殺傷細胞阻止信號,從而參與控制TCR介導的對保守自身抗原和外源性配體的免疫反應[15]。此外,NKR還協(xié)助Vδ2 T細胞穿越內皮細胞層[16]。與NK細胞一樣,Vγ9Vδ2 T細胞也能表達FcγRⅢ(CD16),且CD16的表達與Vγ9Vδ2 T細胞的效應細胞分化相關[17],并直接介導Vγ9Vδ2 T細胞發(fā)揮抗體依賴細胞介導的細胞毒性(antibody-dependent cell-mediated cytotoxicity,ADCC)作用。
γδ T細胞亞群根據表達的TCR不同,有不同的分布和功能。存在于外周血中的Vδ2 T細胞具細胞毒作用,能產生大量γ干擾素(interferon γ,IFN-γ)和腫瘤壞死因子α(tumor necrosis factor α,TNF-α);而存在于組織中的Vδ1 T細胞細胞毒作用較小,主要產生各種細胞因子,包括白細胞介素4(interleukin 4,IL-4)和IL-17[18,19]。當受抗原刺激時,γδ T細胞的2個細胞群表達與各自功能相關的趨化受體,可轉移到胞外組織的炎癥部位,發(fā)揮抗感染作用。激活后的γδ T細胞表達CC趨化因子受體7(chemokine CC motif receptor 7,CCR7),遷移到淋巴結,發(fā)揮抗HIV感染作用[20]。黏膜 Vγ9Vδ2 T細胞可在抗HIV感染早期發(fā)揮一定作用。恒河猴口腔注射猴免疫缺陷病毒(simian immunodeficiency virus,SIV)后,在較短時間內便可觀察到隨淋巴結歸巢受體表達增加黏膜γδ T細胞顯著增加[21]。
HIV感染期間,Vγ9Vδ2 T細胞通過非特異地識別HIV,直接或間接發(fā)揮抗病毒功能?;罨蟮腣γ9Vδ2 T細胞能分泌Th1類細胞因子,包括TNF-α、 IFN-γ。體外實驗中,經IPP刺激的Vγ9Vδ2 T細胞在4~12 h便可產生巨噬細胞炎性蛋白1α(macrophage inflammatory protein 1α,MIP-1α)、MIP-1β和淋巴細胞趨化因子(lymphotactin)[22]。同時,Vγ9Vδ2 T細胞還能表達多種β類趨化因子受體,包括CCR1、CCR5和CCR8[23]。另外,它們同NK細胞一樣,在“missing self”機制下,通過分泌穿孔素、顆粒酶或Fas/FasL凋亡途徑發(fā)揮細胞毒作用,直接殺傷HIV感染細胞[24-26]。在靈長類動物實驗中,受IL-2刺激擴增后的γδ T細胞能直接溶解SIV感染的靶細胞,殺傷機制與NK細胞相似[27]。這與Vγ9Vδ2 T細胞表達NK細胞類似受體有關。其次,激活的Vγ9Vδ2 T細胞能通過與HIV競爭CCR5共刺激分子或釋放抗病毒因子而阻止HIV復制[28,29]。在SIV黏膜感染恒河猴體內發(fā)現(xiàn)黏膜部位的γδ T細胞也具有類似功能[30]。除直接殺傷外,Vγ9Vδ2 T細胞可通過CD16行使ADCC作用。Poonia等發(fā)現(xiàn)在HIV感染精英控制者中,表達CD16的Vγ9Vδ2 T細胞群被高度激活。體外實驗證實,這些細胞可能通過ADCC作用殺傷被Env包被的靶細胞[31]。
除自身活化后發(fā)揮直接抗病毒感染免疫應答外,γδ T細胞還能協(xié)助其他細胞激活和趨化。HIV感染后,激活的Vγ9Vδ2 T細胞產生大量前炎癥細胞因子和趨化因子,可協(xié)助中性粒細胞、巨噬細胞以及T細胞募集[32,33]。與Th17相似,Vγ9Vδ2 T細胞可通過釋放單核細胞趨化蛋白2(monocyte chemoattractant protein 2,MCP-2)激活中性粒細胞,在HIV感染早期對防止胃腸黏膜中病毒擴散發(fā)揮重要作用[34]。另外,激活的Vγ9VδT細胞能誘導樹突細胞成熟和活化,表明Vγ9Vδ2 T細胞可能具有佐劑作用,可增強抗原特異性αβ T細胞反應[35,36]。Vγ9Vδ2 T細胞與單核細胞相互作用能激活Th17,使中性粒細胞激活,并轉移到炎癥部位后發(fā)生反應[37]。以上研究表明,Vγ9Vδ2 T細胞與其他免疫細胞相互作用,直接參與早期抗微生物感染的免疫應答。γδ T細胞也具有一定的免疫調節(jié)作用。HIV感染者血清中新嘌呤和β2微球蛋白含量增加,與腸上皮淋巴細胞中大量存在的γδ T細胞呈負相關,表明腸上皮γδ T細胞具有限制非特異性免疫過度反應的能力[38]。
抗原刺激后的Vγ9Vδ2 T細胞具有APC功能,能上調MHCⅠ類和Ⅱ類分子表達。另外,共刺激分子CD40、CD83的表達增加也表明,γδ T細胞具有吞噬細胞、呈遞抗原以及激活αβ T細胞的能力[39,40]。上述研究結果均為體外研究,γδ T細胞在體內如何行使APC功能還有待進一步研究。
多項研究結果表明,Vγ9Vδ2 T細胞與HIV感染疾病進展有直接關系。與正常人相比,HIV感染者外周血中Vδ2 T細胞/Vδ1 T細胞比例明顯倒置[41],原因包括Vδ2 T細胞丟失和外周血中Vδ1 T細胞增加。有證據表明,Vγ9Vδ2 T細胞的丟失與病毒載量相關:性傳播途徑感染的HIV感染者,隨著HIV載量反彈,循環(huán)Vγ9Vδ2 T細胞丟失加重[42]。Li等通過研究146例血液污染事件中的HIV感染者,發(fā)現(xiàn)Vγ9Vδ2 T細胞數量與病毒載量呈顯著負相關,與CD4 T細胞數呈正相關[43]。該研究隨訪人群數量多,HIV感染時間和亞型基本一致,更加明確證實了Vγ9Vδ2 T 細胞數量減少與慢性HIV感染者的疾病進展緊密相關。而Vδ1 T細胞擴增與病毒載量升高呈正相關,并可能通過HIV消耗CD4+T細胞[44]。在HIV感染者血清中發(fā)現(xiàn),HIV Tat蛋白能干擾IFN-γ誘導蛋白10(IFN-γ-inducible protein 10,IP-10)/CXCL10、6Ckine/SLC/CCL21等的趨化活性[45],這很可能是γδ T細胞2個亞群在HIV感染者中分布發(fā)生變化的原因。另一研究結果也證實,Vδ1 T細胞數增加可能并不是針對HIV感染克隆擴增的結果,而是受趨化因子的影響,Vδ1 T細胞從各種組織中滲透到外周血中[34]。Vγ9Vδ2 T細胞丟失則可能是由于HIV入侵后,誘導細胞表面Fas表達增高,與Vγ9Vδ2 T細胞表面的FasL相互作用,使Vγ9Vδ2 T 細胞凋亡[46]。有趣的是,Riedel等發(fā)現(xiàn)HIV精英控制者能較好地維持Vδ2 T細胞數目,其Vδ2 T細胞數目甚至高于健康人[47],再次證實Vγ9Vδ2 T細胞在控制HIV感染方面起重要作用。
以上研究結果均顯示,HIV復制直接影響Vγ9Vδ2 T細胞內環(huán)境的穩(wěn)定。Vγ9Vδ2 T細胞在HIV復制期激活,當病毒血癥無法控制時迅速丟失,在艾滋病進展期以及HIV病毒血癥患者中丟失更為嚴重。由于HIV感染對γδ T細胞亞群有如此大的影響,且丟失細胞主要是Vδ2 T細胞亞群(包含大多數功能性細胞,即針對磷酸化抗原起反應的γδ T細胞[48]),提示該途徑可能是HIV在感染初期逃逸免疫系統(tǒng)的策略之一:降低功能性細胞群數量,從而逐步瓦解免疫系統(tǒng)。
除了數量和分布,HIV感染還影響γδ T細胞功能。HIV感染者體內存留的Vγ9Vδ2 T細胞在TCR刺激后無法擴增,也無功能性反應,如IFN-γ、TNF-α的分泌或IL-2受體的表達[49,50]。在HIV感染不同階段,通過檢測HLA-D相關表達,發(fā)現(xiàn)CD4+T細胞數與Vγ9Vδ2 T細胞激活呈負相關[51]。HIV感染早期引起大量細胞因子如IL-15、IFN-α、TNF-α釋放[52],這些前炎癥因子導致CD3ζ表達下降,這可能是γδ T細胞無功能的原因[53]。這種無功能反應也是HIV逃逸免疫系統(tǒng)的策略之一,可直接造成γδ T細胞功能不可逆性的損傷。由于猴體中Vγ9Vδ2 T細胞與人體相近,類似現(xiàn)象在SIV感染恒河猴體內也有發(fā)現(xiàn)[54,55]。
近幾年來,研究學者逐漸意識到γδ T細胞在免疫臨床應用中的重要作用。正如前文所說,γδ T細胞能直接識別低相對分子質量的非肽抗原,故可利用非肽抗原激活γδ T細胞,使其發(fā)揮抗病毒感染效應。前文已經提到HIV感染直接影響Vγ9Vδ2 T細胞,使其數量下降,功能受損。有研究指出,接受高效抗反轉錄病毒治療(highly active antiretroviral therapy,HAART)后,尤其是HIV感染者體內病毒血癥得到控制時,無論Vδ2 T細胞/Vδ1 T細胞比例還是Vγ9Vδ2 T細胞功能都顯著恢復[56,57],表明γδ T細胞與抗病毒治療中病毒血癥的控制有關。如果能在HIV感染者體內注入非肽抗原協(xié)助Vγ9Vδ2 T細胞擴增和激活,或直接將Vγ9Vδ2 T細胞回輸體內,可能是治療HIV感染的有效方案。
控制HIV感染最有效的途徑是研制出有效的HIV疫苗。然而經過20多年研究,依然無有效的HIV疫苗上市。現(xiàn)今,除了研究如何使用疫苗誘導獲得性免疫反應外,如何協(xié)調宿主天然免疫和獲得性免疫聯(lián)合對抗HIV感染成為一個重要方向。有研究人員指出,Vγ9Vδ2 T細胞可能與淋巴壓力監(jiān)測系統(tǒng)相關[58],它們是已激活但處于靜止狀態(tài)的循環(huán)淋巴細胞群,無需抗原呈遞過程便能快速而有效地對危險信號進行識別,正是連接天然免疫和獲得性免疫的重要樞紐。在近期猴體實驗中,SIVgp120免疫后的恒河猴針對SIV黏膜途徑攻毒產生保護,其中黏膜γδ T 細胞比例有所增加,且γδ T 細胞能產生抗病毒因子,如調節(jié)激活正常T細胞表達和分泌因子(regulated upon activation, normal T cell expressed and secreted,RANTES)、MIP-1α 和MIP-1β[29]。因此,將γδ T細胞納入免疫激活策略,將為HIV疫苗的研制提供更多新的線索。
綜上所述,天然免疫成員γδ T細胞在抗HIV感染中起重要作用。本實驗室前期研究發(fā)現(xiàn),在HIV慢性感染期,Vγ9Vδ2 T細胞與疾病進展極其相關[44]。然而,依然存在很多問題有待解決:在HIV感染早期,γδ T細胞開始丟失的時間和丟失機制;如何增強γδ T細胞抗HIV感染作用,即加強對HIV感染細胞的殺傷能力,使HIV擴散在感染早期得以控制。對γδ T細胞作用機制的深入研究必將促進對HIV感染與宿主免疫系統(tǒng)之間相互作用的了解,進而為抗HIV感染藥物、抗病毒免疫制劑以及HIV疫苗的研究提供科學依據和研究方向。
[1] Kaufmann SH. Gamma/delta and other unconventional T lymphocytes: what do they see and what do they do [J]? Proc Natl Acad Sci USA, 1996, 93(6): 2272-2279.
[2] Porcelli SA, Morita CT, Modlin RL. T-cell recognition of non-peptide antigens [J]. Curr Opin Immunol, 1996,8(4):510-516.
[3] Das H, Groh V, Kuijl C, Sugita M, Morita CT, Spies T, Bukowski JF. MICA engagement by human Vgamma2Vdelta2 T cells enhances their antigen-dependent effector function [J]. Immunity, 2001, 15(1): 83-93.
[4] Kabelitz D, Wesch D. Features and functions of gamma delta T lymphocytes: focus on chemokines and their receptors [J]. Crit Rev Immunol, 2003, 23(5-6): 339-370.
[5] Brandes M, Willimann K, Moser B. Professional antigen-presentation function by humam gamma delta T cells [J]. Science, 2005, 309(5732):264-268.
[6] De Libero G. Sentinel function of broadly reactive human gamma delta T cells [J]. Immunol Today, 1997, 18(1): 22-26.
[7] Gober H, Kistowska M, Angman L, Jen? P, Mori L, De Libero G. Human T cell receptor gamma delta cells recognize endogenous mevalonate metabolites in tumor cell [J]. J Exp Med, 2003, 197(2): 163-168.
[8] Vantourout P, Martinez LO, Fabre A, Collet X, Champagne E. Ecto-F1-ATPase and MHC-class I close association on cell membranes [J]. Mol Immunol, 2008, 45(2): 485-492.
[9] Kaufmann SH, Kabelitz D. Gamma/delta T lymphocytes and heat shock proteins [J]. Curr Top Microbiol Immunol, 1991, 167: 191-207.
[10] Kato Y, Tanaka Y, Tanaka H, Yamashita S, Minato N. Requirement of specific interactions for the activation of human gamma delta T cells by pamidronate [J]. J Immunol, 2003, 170(7): 3608-3613.
[11] Wang P, Malkovsky M. Different roles of the CD2 and LFA-1 T-cell co-receptors for regulating cytotoxic, proliferative, and cytokine responses of human Vgamma9/Vdelta2 T cells [J]. Mol Med, 2000, 6(3): 196-207.
[12] Beetz S, Wesch D, Marischen L, Welte S, Oberg HH, Kabelitz D. Innate immune functions of human gamma delta T cells [J]. Immunobiology, 2008, 213(3-4): 173-182.
[13] Pietschmann K, Beetz S, Welte S, Martens I, Gruen J, Oberg HH, Wesch D, Kabelitz D. Toll-like receptor expression and function in subsets of human gamma delta T lymphocytes [J]. Scand J Immunol, 2009, 70(3): 245-255.
[14] Moretta A, Bottino C, Vitale M, Pende D, Biassoni R, Mingari MC, Moretta L. Receptors for HLA class-I molecules in human natural killer cells [J].Annu Rev Immunol, 1996, 14: 619-648.
[15] Poccia F, Gougeon ML, Bonneville M, López-Botet M, Moretta A, Battistini L, Wallace M, Colizzi J, Malkovsky M. Innate T-cell immunity to nonpeptidic antigens [J]. Immunol Today, 1998, 19(6): 253-256.
[16] Poggi A, Zocchi MR, Costa P, Ferrero E, Borsellino G, Placido R, Galgani S, Salvetti M, Gasperini C, Ristori G, Brosnan CF, Battistini L. IL-12-mediated NKRP1A up-regulation and consequent enhancement of endothelial transmigration of Vdelta2+TCR gamma delta+T lymphocytes from healthy donors and multiple sclerosis patients [J]. J Immunol, 1999, 162(7): 4349-4354.
[17] Angelini DF, Borsellino G, Poupot M, Diamantini A, Poupot R, Bernardi G, Poccia F, Fournié JJ, Battistini L. FcgammaRIII discriminates between 2 subsets of Vgamma9Vdelta2 effector cells with different responses and activation pathways [J]. Blood, 2004, 104(6): 1801-1807.
[18] Morita CT, Verma S, Aparicio P, Martinez C, Spits H, Brenner MB. Functionally distinct subsets of human gamma/delta T cells [J]. Eur J Immunol, 1991, 21(12): 2999-3007.
[19] Fenoglio D, Poggi A, Catellani S, Battaglia F, Ferrera A, Setti M, Murdaca G, Zocchi MR. Vdelta1 T lymphocytes producing IFN-gamma and IL-17 are expanded in HIV-1-infected patients and respond to Candida albicans.[J]. Blood, 2009, 113(26): 6611-6618.
[20] Brandes M, Willimann K, Lang AB, Nam KH, Jin C, Brenner MB, Morita CT, Moser B. Flexible migration program regulates gamma delta T-cell involvement in humoral immunity [J]. Blood, 2003,102(10): 3693-3701.
[21] Kosub DA, Durudas A, Lehrman G, Milush JM, Cano CA, Jain MK, Sodora DL. Gamma/delta T mRNA levels decrease at mucosal sites and increase at lymphoid sites following an oral SIV infection of macaques [J]. Curr HIV Res, 2008, 6(6): 520-530.
[22] Poccia F, Gougeon ML, Agrati C, Montesano C, Martini F, Pauza CD, Fisch P, Wallace M, Malkovsky M. Innate T-cell immunity in HIV infection: the role of Vgamma9Vdelta2 T lymphocytes[J]. Curr Mol Med, 2002, 2(8): 769-781.
[23] Agrati C, D’Offizi G, Gougeon ML, Malkovsky M, Sacchi A, Casetti R, Bordoni V, Cimini E, Martini F. Innate gamma/delta T-cells during HIV infection: Terra relatively Incognita in novel vaccination strategies [J]? AIDS Rev, 2011, 13(1): 3-12.
[24] Poccia F, Cipriani B, Vendetti S, Colizzi V, Poquet Y, Battistini L, López-Botet M, Fournié JJ, Gougeon ML. CD94/NKG2 inhibitory receptor complex modulates both anti-viral and anti-tumoral responses of polyclonal phosphoantigen-reactive Vgamma9Vdelta2 T lymphocytes [J]. J Immunol, 1997, 159(12): 6009-6017.
[25] Halary F, Peyrat MA, Chamagne E, López-Botet M, Moretta A, Moretta L, Vié H, Fournié JJ, Bonneville M. Control of self-reactive cytotoxic T lymphocytes expressing gamma delta T cell receptors by natural killer inhibitory receptors [J]. Eur J Immunol, 1997, 27(11):2812-2821.
[26] Bakker AB, Phillips JH, Figdor CG, Lanier LL. Killer cell inhibitory receptors for MHC class I molecules regulate lysis of melanoma cells mediated by NK cells, gamma delta T cells, and antigen-specific CTL [J]. J Immunol, 1998, 160(11): 5239-5245.
[27] Wallace M, Gan YH, Pauza CD, Malkovsky M. Antiviral activity of primate gamma delta T lymphocytes isolated by magnetic cell sorting [J]. J Med Primatol, 1994, 23(2-3): 131-135.
[28] Poccia F, Battistini L, Cipriani B, Mancino G, Martini F, Gougeon ML, Colizzi V. Phosphoantigen-reactive Vgamma9Vdelta2 T lymphocytes suppress in vitro human immunodeficiency virus type 1 replication by cell-released antiviral factors including CC chemokines [J]. J Infect Dis, 1999, 180(3): 858-861.
[29] Biswas P, Ferrarini M, Mantelli B, Fortis C, Poli G, Lazzarin A, Manfredi AA. Double-edged effect of Vgamma9/Vdelta2 T lymphocytes on viral expression in an in vitro model of HIV-1/mycobacteria co-infection [J]. Eur J Immunol, 2003, 3(1): 252-263.
[30] Lehner T, Mitchell E, Bergmeier L, Singh M, Spallek R, Cranage M, Hall G, Dennis M, Villinger F, Wang Y. The role of gamma delta T cells in generating antiviral factors and beta-chemokines in protection against mucosal simian immunodeficiency virus infection [J]. Eur J Immunol, 2000, 30(8): 2245-2256.
[31] Poonia B, Riedel D, Cairo C, Sajadi M, Armstrong C, Pauza D. γδ T cells are ADCC effectors in elite HIV controllers [R/OL]. http://www.retrovirology.com/content/7/S1/O7.
[32] Bosimenu R, Feng L, Xia YY, Chang JC, Havran WL. Chemokine expression by intraepithelial gamma delta T cells. Implications for the recruitment of inflammatory cells to damaged epithelia [J]. J Immunol, 1996, 157(3): 985-992.
[33] MacKay CR. Chemokines: immunology’s high impact factors [J]. Nat Immunol, 2001, 2(2):95-101.
[34] Agrati C, Cimini E, Sacchi A, Bordoni V, Gioia C, Casetti R, Turchi F, Tripodi M, Martini F. Activated Vgamma9Vdelta2 T cells trigger granulocyte functions via MCP-2 release [J]. J Immunol, 2009, 182(1): 522-529.
[35] Martino A, Poccia F. Gamma delta T cells and dendritic cells: close partner and biological adjuvants for new therapies [J]. Curr Mol Med, 2007, 7(7): 658-673.
[36] Conti L, Casetti R, Cardone M, Varano B, Martino A, Belardelli F, Poccia F, Gessani S. Reciprocal activating interaction between dendritic cells and pamidronate-stimulated gamma delta T cells: role of CD86 and inflammatory cytokines [J]. J Immunol, 2005, 174(1): 252-260.
[37] Eberl M, Roberts GW, Meuter S, Williams JD, Topley N, Moser B. A rapid crosstalk of human gamma delta T cells and monocytes drives the acute inflammation in bacterial infections [J]. PLoS Pathog, 2009, 5(2): e1000308.
[38] Nilssen D, Muller F, Oktedalen O, Fr?land SS, Fausa O, Halstensen TS, Brandtzaeg P. Intraepithelial gamma/delta T cells in duodenal mucosa are related to the immune state and survival time in AIDS [J]. J Virol, 1996, 70(6): 3545-3550.
[39] Brandes M, Willimann K, Bioley G, Lévy N, Eberl M, Luo M, Tampé R, Lévy F, Romero P, Moser B. Cross-presenting human gamma delta T cells induce robust CD8+alpha beta T cell responses [J]. Proc Natl Acad Sci USA, 2009, 106(7): 2307-2312.
[40] Wu Y, Wu W, Wong WM, Ward E, Thrasher AJ, Goldblatt D, Osman M, Digardz P, Canaday DH, Gustafsson K. Human gamma delta T cells: a lymphoid lineage capable of professional phagocytosis [J]. J Immunol, 2009, 183(9), 5622-5629.
[41] Autran B, Triebel F, Katlama C, Rozenbaum W, Hercend T, Debre P. T cell receptor gamma/delta+lymphocyte subsets during HIV infection [J]. Clin Exp Immunol, 1989, 75(2): 206-210.
[42] Martini F, Poccia F, Goletti D, Carrara S, Vincenti D, D’Offizi G, Agrati C, Ippolito G, Colizzi V, Pucillo LP, Montesano C. Acute human immunodeficiency virus replication causes a rapid and persistent impairment of Vgamma9Vdelta2 T cells in chronically infected patients undergoing structured treatment interruption [J]. J Infect Dis, 2002, 186(6): 847-850.
[43] Li H, Peng H, Ma P, Ruan Y, Su B, Ding X, Xu C, Pauza CD, Shao Y. Association between Vgamma2Vdelta2 T cells and disease progression after infection with closely-related strains of HIV-1 in China [J]. Clin Infect Dis, 2008, 46(9): 1466-1472.
[44] Sindhu ST, Ahmad R, Morisset R, Ahmad A, Menezes J. Peripheral blood cytotoxic gamma delta T lymphocytes from patients with human immunodeficiency virus type 1 and AIDS lyse uninfected CD4+T cells, and their cytocidal potential correlates with viral load [J]. J Virol, 2003, 77(3): 1848-1855.
[45] Poggi A, Carosio R, Fenoglio D, Brenci S, Murdaca G, Setti M, Indiveri F, Scabini S, Ferrero E, Zocchi MR. Migration of Vdelta1 and Vdelta2 T cells in response to CXCR3 and CXCR4 ligands in healthy donors and HIV-1-infected patients: competition by HIV-1 Tat [J]. Blood, 2004, 103(6): 2205-2213.
[46] Gan YH, Lui SS, Malkovsky M. Differential susceptibility of naive and activated human gamma delta T cells to activation-induced cell death by T-cell receptor cross-linking [J]. Mol Med, 2001, 7(9): 636-643.
[47] Riedel DJ, Sajadi MM, Armstrong CL, Cummings JS, Cairo C, Redfield RR, Pauza CD. Natural viral suppressors of HIV-1 have a unique capacity to maintain gamma delta T cells [J]. AIDS, 2009, 23(15): 1955-1964.
[48] Enders PJ, Yin C, Martini F, Evans PS, Propp N, Poccia F, Pauza CD. HIV-mediated gamma delta T cell depletion is specific for Vgamma2+cells expressing the Jgamma1.2 segment [J]. AIDS Res Hum Retroviruses, 2003, 19 (1): 21-29.
[49] Poccia F, Boullier S, Lecoeur H, Cochet M, Poquet Y, Colizzi V, Fournie JJ, Gougeon ML. Peripheral Vgamma9/Vdelta2 T cell deletion and anergy to nonpeptidic mycobacterial antigens in asymptomatic HIV-1-infected persons [J]. J Immunol, 1996, 157(1): 449-461.
[50] Montesano C, Gioia C, Martini F, Agrati C, Cairo C, Pucillo LP, Colizzi V, Poccia F. Antiviral activity and anergy of gamma delta T lymphocytes in cord blood and immuno-compromised host [J]. J Biol Regul Homeost Agents, 2001, 15(3): 257-264.
[51] Norazmi MN, Arifin H, Jamaruddin MA. Increased level of activated gamma delta lymphocytes correlates with disease severity in HIV infection [J]. Immunol Cell Biol, 1995, 73(3): 245-248.
[52] Stacey AR, Norris PJ, Qin L, Haygreen EA, Taylor E, Heitman J, Lebedeva M, DeCamp A, Li D, Grove D, Self SG, Borrow P. Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections [J]. J Virol, 2009, 83(8): 3719-3733.
[53] Isom?ki P, Panesar M, Annenkov A, Clark JM, Foxwell BM, Chernajovsky Y, Cope AP. Prolonged exposure of T cells to TNF down-regulates TCR zeta and expression of the TCR/CD3 complex at the cell surface [J]. J Immunol, 2001, 166(9): 5495-5507.
[54] Gan YH, Pauza CD, Malkovsky M. Gamma delta T cells in rhesus monkeys and their response to simian immunodeficiency virus(SIV) infection [J]. Clin Exp Immunol, 1995, 102(2): 251-255.
[55] Malkovsky M, Wallace M, Fournié JJ, Fisch P, Poccia F, Gougeon ML. Alternative cytotoxic effector mechanisms in infections with immunodeficiency viruses: gamma delta T lymphocytes and nature killer cells [J]. AIDS, 2000, 14(Suppl 3): S175- S186.
[56] Bordon J, Evans PS, Propp N, Davis CE Jr, Redfield RR, Pauza CD. Association between longer duration of HIV-suppressive therapy and partial recovery of the Vgamma2 T cell receptor repertoire [J]. J Infect Dis, 2004, 189(8): 1482-1486.
[57] Martini F, Urso R, Gioia C, De Felici A, Narciso P, Amendola A, Paglia MG, Colizzi V, Poccia F. Gamma delta T-cell anergy in human immunodeficiency virus-infected persons with opportunistic infections and recovery after highly active antiretroviral therapy [J]. Immunology, 2000, 100(4): 481-486.
[58] Hayday AC. Gamma delta T cells and the lymphoid stress-surveillance response [J]. Immunity, 2009, 31(2): 184-196.