王嘉瑜,俞雪蓮,張曦
上海市疾病預(yù)防控制中心,上海 200336
流行性感冒(簡稱流感)是流感病毒(influenza virus) 引起的一種急性上呼吸道傳染病,傳染性強(qiáng)、傳播快、潛伏期短、發(fā)病率高。其中,甲型流感病毒由于抗原變異率高,極易造成大范圍流行。在1918~1919年流感大流行中,世界20億人口約一半被感染,死亡人數(shù)達(dá)2 000萬,高于第一次世界大戰(zhàn)中死亡人數(shù)的總和。1957年7月,H2N2亞洲流感(Asian influenza)在中國暴發(fā),隨即在全球流行;該病毒在美國造成約70 000人死亡。1968年,由亞洲流感病毒抗原轉(zhuǎn)變進(jìn)化的H3N2甲型流感病毒(香港流感)在美國造成約34 000人死亡。1997年,中國香港地區(qū)發(fā)生H5N1禽流感疫情,造成6人死亡。禽流感病毒感染人后,病死率近50%,引起廣泛關(guān)注。2009年4月,由四源基因重配[1]變異形成的新型甲型H1N1(pdm09)流感病毒(即2009甲型H1N1流感病毒)由于在人群中引起較高的發(fā)病率,對世界公共衛(wèi)生構(gòu)成了嚴(yán)重威脅。相較于季節(jié)性流感,新型甲型H1N1流感的易感人群為18歲以下,且青少年群體在重癥患者中占極大比例[2-7]。有研究指出[8],青少年患者的重癥感染可能與過度免疫應(yīng)答相關(guān)。因此,開展對流感及其相關(guān)細(xì)胞因子的研究,有助于分析外周血細(xì)胞因子表達(dá)水平與病毒致病能力的關(guān)系,了解流感病毒的致病機(jī)制,從而促進(jìn)對疾病的研究和防治。
天然免疫(innate immunity)是機(jī)體對抗病原體侵襲的第1道屏障。研究顯示[9],流感病毒進(jìn)入機(jī)體后首先入侵呼吸道上皮細(xì)胞,細(xì)胞經(jīng)歷凋亡/壞死后啟動機(jī)體天然免疫應(yīng)答,并產(chǎn)生趨化因子(chemokine),如單核細(xì)胞趨化蛋白1(monocyte chemoattractant protein 1,MCP-1)、調(diào)節(jié)激活正常T細(xì)胞表達(dá)和分泌因子(regulated upon activation,normal T cell expressed and secreted,RANTES)、白細(xì)胞介素8(interleukin 8,IL-8)等[10],介導(dǎo)中性粒細(xì)胞及巨噬細(xì)胞浸潤。Mogensen等[11]研究指出,外周血IL-1、IL-6、腫瘤壞死因子α(tumor necrosis factor α,TNF-α)和IL-8等炎性細(xì)胞因子的高表達(dá)已成為病毒感染的標(biāo)志。研究顯示,IL、TNF-α及趨化因子對介導(dǎo)炎癥反應(yīng)發(fā)生、調(diào)節(jié)免疫應(yīng)答強(qiáng)度起重要作用[12]。TNF-α可通過激活T細(xì)胞,促進(jìn)IL-1、IL-2、IL-6的產(chǎn)生及分泌[13]。IL-1是機(jī)體抗病毒感染早期產(chǎn)生的效應(yīng)分子,可合成急性反應(yīng)蛋白,并促進(jìn)IL-8的分泌[11,14]。IL-8是主要的炎性細(xì)胞因子,對中性粒細(xì)胞及T細(xì)胞有趨化作用。IL-6調(diào)節(jié)機(jī)體免疫應(yīng)答,參與機(jī)體抗感染防御[15]。IL-1、IL-6、IL-12、IL-23等在外周血含量上升將導(dǎo)致機(jī)體發(fā)熱、血管通透性增加及巨噬細(xì)胞招募等一系列炎性反應(yīng)產(chǎn)生。
單核-巨噬細(xì)胞招募至肺實質(zhì)及肺泡部位是適應(yīng)性免疫初始激活的關(guān)鍵。實際上,流感病毒感染引起的細(xì)胞或體液免疫是由T輔助細(xì)胞(T helper cell,Th細(xì)胞)通過分泌不同細(xì)胞因子所誘導(dǎo)的[16]。Th細(xì)胞根據(jù)其分泌細(xì)胞因子的不同可分為Th1細(xì)胞﹝γ干擾素(interferon γ,IFN-γ)、IL-1、IL-2、IL-6、IL-12、TNF-α﹞和Th2細(xì)胞(IL-4、IL-5、IL-10)2個亞群。外周血IL-2、IL-12等Th1類細(xì)胞因子表達(dá)上調(diào)可促使細(xì)胞毒性T淋巴細(xì)胞(cytotoxic T lymphocyte,CTL)分化,活化自然殺傷(nature killer,NK)細(xì)胞,清除流感病毒。IL-2 是T細(xì)胞生長因子(T cell growth factor,TCGF),可促使已活化的T細(xì)胞增殖、分化,成熟為效應(yīng)CTL,并刺激其他細(xì)胞因子(如TNF、IFN-γ)分泌。IL-12可引起Thl細(xì)胞分化,并抑制由IL-4介導(dǎo)的Th2細(xì)胞分化;此外,IL-12可刺激外周血T細(xì)胞、NK細(xì)胞分泌IFN-γ,抑制流感病毒復(fù)制。在體液免疫方面,IL-5等Th2類細(xì)胞因子有助于刺激B細(xì)胞生長和免疫球蛋白產(chǎn)生,阻斷病毒與細(xì)胞表面受體結(jié)合,激活補(bǔ)體或NK細(xì)胞,并最終清除病毒及受感染細(xì)胞。Th17細(xì)胞是一類新近被定義的Th細(xì)胞,其分泌的細(xì)胞因子(IL-6、IL-17、IL-21、IL-22)中,IL-17是主要效應(yīng)分子,可迅速啟動由中性粒細(xì)胞介導(dǎo)的炎癥反應(yīng),并促進(jìn)IL-1、TNF-α大量分泌[17];另一方面,IL-17的大量產(chǎn)生亦可導(dǎo)致患者嚴(yán)重的病理損傷[18-20]。
2009年11月,Bermejo-Martin等[21]報道了新型甲型H1N1流感重癥患者體內(nèi)Th1、Th17類細(xì)胞因子上升的現(xiàn)象,這是較早對新型甲型H1N1流感患者體內(nèi)細(xì)胞因子表達(dá)失調(diào)的研究。事實上,流感病毒感染機(jī)體后,一方面,呼吸道上皮細(xì)胞釋放趨化因子,誘導(dǎo)巨噬細(xì)胞等炎性細(xì)胞浸潤,并招募外周血T細(xì)胞滲透至感染的肺組織,抵抗病毒感染;另一方面,炎性細(xì)胞浸潤也會造成機(jī)體早期炎癥性病理損傷,加重疾病的嚴(yán)重程度。近期一項對輕、重癥新型甲型H1N1流感患者血清細(xì)胞因子表達(dá)水平的研究結(jié)果顯示[22],當(dāng)患者處于疾病早期,體內(nèi)IL-1、IL-12、IFN-γ、IL-6、TNF-α、IL-5、IL-10、IL-17、IL-23等細(xì)胞因子血清濃度均有所上升,這與此前的一些研究結(jié)果相符[21,23-25]。這一現(xiàn)象說明,在感染初期,病毒誘導(dǎo)天然免疫系統(tǒng)產(chǎn)生大量促炎細(xì)胞因子參與機(jī)體免疫應(yīng)答,高表達(dá)的IL-1、IL-6、IL-12和IL-23與發(fā)熱等流感樣癥狀相關(guān)。該研究進(jìn)一步指出[22],隨著病程進(jìn)展,患者體內(nèi)IL-6、IL-10表達(dá)水平顯著上升。IL-6作為重要的促炎細(xì)胞因子,介導(dǎo)組織炎癥反應(yīng),調(diào)節(jié)免疫應(yīng)答。IL-10作為抗炎細(xì)胞因子,調(diào)節(jié)炎癥反應(yīng)強(qiáng)度,誘導(dǎo)T細(xì)胞分化。與普通季節(jié)性流感相比,新型甲型H1N1流感重癥患者的適應(yīng)性免疫應(yīng)答相對處于抑制狀態(tài)。Lee等[26]研究顯示,新型甲型流感重癥患者體內(nèi)IL-17、IL-23表達(dá)水平略有上升,可能是由其他原因造成的[24,27]。一些研究指出,在新型甲型H1N1流感重癥肺炎患者體內(nèi),T細(xì)胞免疫應(yīng)答下調(diào)[ 28,29],Th17等T細(xì)胞亞群功能受損[30-32]。在某些程度上,造成病毒在體內(nèi)持續(xù)復(fù)制,病毒清除時間增加,從而導(dǎo)致炎性反應(yīng)持續(xù)增強(qiáng),使肺組織等損傷[22,28,33],導(dǎo)致并發(fā)癥。
1997年,在中國香港地區(qū)暴發(fā)的H5N1禽流感疫情因其高病死率而受到廣泛關(guān)注。研究顯示,由H5N1禽流感病毒介導(dǎo)的細(xì)胞因子失調(diào)與病毒的高致病性相關(guān)[34-36]。體外研究證實,與H3N2和H1N1流感病毒相比,H5N1流感病毒能更有效地誘導(dǎo)人原代巨噬細(xì)胞分泌炎性細(xì)胞因子[10],這可能與NS1蛋白結(jié)構(gòu)的不同相關(guān)。這一發(fā)現(xiàn)為甲型H5N1流感病例中出現(xiàn)的以炎性細(xì)胞因子過度表達(dá)及功能失調(diào)為特點的“細(xì)胞因子風(fēng)暴”(cytokine storm)現(xiàn)象提供了佐證。“細(xì)胞因子風(fēng)暴”是機(jī)體天然免疫系統(tǒng)由于某些原因致使多種炎性介質(zhì)(包括細(xì)胞因子、氧自由基、凝血因子等)表達(dá)上調(diào)的現(xiàn)象[37],患者血清中可檢測到炎性細(xì)胞因子(TNF-α、IL-1、IL-6等)及抗炎細(xì)胞因子(IL-10、IL-6等)表達(dá)均顯著上升,兩者相互作用往往導(dǎo)致廣泛的肺組織水腫、感染性肺炎、肺泡出血等癥狀,許多病例由此發(fā)展成急性呼吸窘迫綜合征(acute respiratory distress syndrome,ARDS),甚至死亡。
“細(xì)胞因子風(fēng)暴”最初由外周血 IL-6、TNF-α高表達(dá)引起[37]。上皮細(xì)胞發(fā)生凋亡后,被招募至感染部位的巨噬細(xì)胞被子代病毒感染而發(fā)生凋亡[38],同時誘導(dǎo)大量炎性細(xì)胞因子產(chǎn)生,引起機(jī)體發(fā)熱、厭食、關(guān)節(jié)痛、中性粒細(xì)胞增多、血流動力學(xué)異常改變等[39]。這些炎性細(xì)胞的大量出現(xiàn)會加重病情,引發(fā)嚴(yán)重的呼吸道功能失調(diào)及致死性的肺部病理損傷,并通過誘導(dǎo)包括T細(xì)胞、B細(xì)胞、中性粒細(xì)胞在內(nèi)的相關(guān)血液單核細(xì)胞活化并遷移至感染部位,促進(jìn)肺部免疫病理損傷。另外,由IL-1、TNF-α等誘導(dǎo)而高表達(dá)的IL-8、巨噬細(xì)胞炎性蛋白10(macrophage inflammatory protein 10,MIP-10)等趨化因子可活化中性粒細(xì)胞并遷移至感染部位,進(jìn)一步造成疾病惡化。IL-8屬于趨化因子CXC家族,是一種強(qiáng)力的中性粒細(xì)胞趨化和活化介質(zhì),可誘導(dǎo)其變形、趨化、脫顆粒,胞質(zhì)內(nèi)鈣短暫上升,生物活性脂類合成,整合素上調(diào),呼吸爆發(fā)等[40]。外周血IL-8表達(dá)水平在感染、創(chuàng)傷及某些自身免疫性疾病中明顯升高,且高濃度IL-8與病死率有關(guān)。有研究指出,中性粒細(xì)胞的炎性浸潤與病原體造成的肺部損傷相關(guān)[41],中性粒細(xì)胞產(chǎn)生的髓過氧化物酶和彈性蛋白酶會造成急性肺部損傷。外周血IL-8表達(dá)上調(diào),可激活中性粒細(xì)胞運動裝置,使其能定向游走,促使表達(dá)黏附分子,并促進(jìn)中性粒細(xì)胞溶酶體酶(髓過氧化物酶、彈性蛋白酶、β葡萄糖醛酸酶)釋放[42]。
綜上所述,細(xì)胞因子在機(jī)體抗流感免疫調(diào)節(jié)過程中發(fā)揮作用。研究證實,在此過程中,由細(xì)胞因子介導(dǎo)的免疫病理損傷確實存在。通過這方面的研究,可了解甲型流感病毒的致病原理,探索流感病毒如何致宿主嚴(yán)重呼吸道感染,揭示呼吸道感染性疾病的發(fā)病機(jī)制,為制定甲型流感防控措施提供一定的科學(xué)依據(jù)。
[1] 熊成龍,居麗雯,施強(qiáng),蔣露芳,姜慶五. H1N1流感病毒的遺傳進(jìn)化研究[J]. 中華疾病控制雜志,2009,13(3):219-224.
[2] Maines TR, Jayaraman A, Belser JA, Wadford DA, Pappas C, Zeng H, Gustin KM, Pearce MB, Viswanathan K, Shriver ZH, Raman R, Cox NJ, Sasisekharan R, Katz JM, Tumpey TM. Transmission and pathogenesis of swine-origin 2009 A(H1N1) influenza viruses in ferrets and mice [J]. Science, 2009, 325(5939): 484-487.
[3] Munster VJ, de Wit E, van den Brand JM, Herfst S, Schrauwen EJ, Bestebroer TM, van de Vijver D, Boucher CA, Koopmans M, Rimmelzwaan GF, Kuiken T, Osterhaus AD, Fouchier RA.Pathogenesis and transmission of swine-origin 2009 A(H1N1) influenza viruses in ferrets [J]. Science, 2009, 325(5939): 481-483.
[4] Zeng R, Li C, Li N, Wei L, Cui Y. The role of cytokines and chemokines in severe respiratory syncytial virus infection and subsequent asthma [J]. Cytokine, 2011, 53(1): 1-7.
[5] World Health Organization. Epidemiological summary of pandemic influenza A(H1N1) 2009 virus—Ontario, Canada, June 2009 [J]. Wkly Epidemiol Rec, 2009, 84(47): 485-491.
[6] Jain S, Kamimoto L, Bramley AM, Schmitz AM, Benoit SR, Louie J, Sugerman DE, Druckenmiller JK, Ritger KA, Chugh R, Jasuja S, Deutscher M, Chen S, Walker JD, Duchin JS, Lett S, Soliva S, Wells EV, Swerdlow D, Uyeki TM, Fiore AE, Olsen SJ, Fry AM, Bridges CB, Finelli L, 2009 Pandemic Influenza A (H1N1) Virus Hospitalizations Investigation Team. Hospitalized patients with 2009 H1N1 influenza in the United States, April-June 2009 [J]. N Engl J Med, 2009, 361(20): 1935-1944.
[7] Rello J, Rodríguez A, Ibaez P, Socias L, Cebrian J, Marques A, Guerrero J, Ruiz-Santana S, Marquez E, Del Nogal-Saez F, Alvarez-Lerma F, Martínez S, Ferrer M, Avellanas M, Granada R, Maraví-Poma E, Albert P, Sierra R, Vidaur L, Ortiz P, Prieto del Portillo I, Galván B, León-Gil C, H1N1 SEMICYUC Working Group. Intensive care adult patients with severe respiratory failure caused by influenza A (H1N1)v in Spain [J]. Crit Care, 2009, 13(5): R148.
[8] Rothberg MB, Haessler SD. Complications of seasonal and pandemic influenza [J]. Crit Care Med, 2010, 38(4 Suppl): e91-e97.
[9] Julkunen I, Melén K, Nyqvist M, Pirhonen J, Sareneva T, Matikainen S. Inflammatory responses in influenza A virus infection [J]. Vaccine, 2000, 19(Suppl 1): S32-S37.
[10] Chan MC, Cheung CY, Chui WH, Tsao SW, Nicholls JM, Chan YO, Chan RW, Long HT, Poon LL, Guan Y, Peiris JS. Proinflammatory cytokine responses induced by influenza A (H5N1) viruses in primary human alveolar and bronchial epithelial cells [J]. Respir Res, 2005, 6: 135.
[11] Mogensen TH, Paludan SR. Molecular pathways in virus-induced cytokine production [J]. Microbiol Mol Biol Rev, 2001, 65(1): 131-150.
[12] Janeway CA, Travers P, Walport M, Schlomchik MJ. Immunobiology: The Immune System in Health and Disease [M]. 5th ed. New York and London: Garland Publishing Inc., 2005.
[13] Vohra N, Verhaegen M, Martin L, Mackay A, Pilon-Thomas S. TNF-alpha-treated DC exacerbates disease in a murine tumor metastasis model. Cancer Immunol Immunother, 2010, 59(5): 729-736.
[14] Evans SW, Whicher JT. The cytokines: physiological and pathophysiological aspects [J]. Adv Clin Chem, 1993, 30: 1-88.
[15] Biffl WL, Moore EE, Moore FA, Peterson VM. Interleukin-6 in the injured patient. Marker of injury or mediator of inflammation [J]? Ann Surg, 1996, 224(5): 647-664.
[16] 柳愛華,寶福凱. 近年來固有免疫中的一些重要進(jìn)展[J]. 自然雜志,2009,31:218-222.
[17] Aggarwal S, Gurney AL. IL-17: prototype member of an emerging cytokine family [J]. J Leukoc Biol, 2002, 71(1): 1-8.
[18] Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT. Interleukin 17-producing CD4+effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages [J]. Nat Immunol, 2005, 6(11): 1123-1132.
[19] Miossec P, Korn T, Kuchroo VK. Interleukin-17 and type 17 helper T cells [J]. N Engl J Med, 2009, 361(9): 888-898.
[20] Kolls JK, Lindén A. Interleukin-17 family members and inflammation [J]. Immunity, 2004, 21(4): 467-476.
[21] Bermejo-Martin JF, Ortiz de Lejarazu R, Pumarola T, Rello J, Almansa R, Ramírez P, Martin-Loeches I, Varillas D, Gallegos MC, Serón C, Micheloud D, Gomez JM, Tenorio-Abreu A, Ramos MJ, Molina ML, Huidobro S, Sanchez E, Gordón M, Fernández V, Del Castillo A, Marcos MA, Villanueva B, López CJ, Rodríguez-Domínguez M, Galan JC, Cantón R, Lietor A, Rojo S, Eiros JM, Hinojosa C, Gonzalez I, Torner N, Banner D, Leon A, Cuesta P, Rowe T, Kelvin DJ. Th1 and Th17 hypercytokinemia as early host response signature in severe pandemic influenza [J]. Crit Care, 2009, 13(6):R201.
[22] Yu X, Zhang X, Zhao B, Wang J, Zhu Z, Teng Z, Shao J, Shen J, Gao Y, Yuan Z, Wu F. Intensive cytokine induction in pandemic H1N1 influenza virus infection accompanied by robust production of IL-10 and IL-6 [J]. PLoS One, 2011, 6(12): e28680.
[23] Lee N, Chan PK, Wong CK, Wong KT, Choi KW, Joynt GM, Lam P, Chan MC, Wong BC, Lui GC, Sin WW, Wong RY, Lam WY, Yeung AC, Leung TF, So HY, Yu AW, Sung JJ, Hui DS. Viral clearance and inflammatory response patterns in adults hospitalized for pandemic 2009 influenza A (H1N1) virus pneumonia [J]. Antivir Ther, 2011, 16(2): 237-247
[24] To KK, Hung IF, Li IW, Lee KL, Koo CK, Yan WW, Liu R, Ho KY, Chu KH, Watt CL, Luk WK, Lai KY, Chow FL, Mok T, Buckley T, Chan JF, Wong SS, Zheng B, Chen H, Lau CC, Tse H, Cheng VC, Chan KH, Yuen KY. Delayed clearance of viral load and marked cytokine activation in severe cases of pandemic H1N1 2009 influenza virus infection [J]. Clin Infect Dis, 2010, 50(6): 850-859
[25] Hagau N, Slavcovici A, Gonganau DN, Oltean S, Dirzu DS, Brezoszki ES, Maxim M, Ciuce C, Mlesnite M, Gavrus RL, Laslo C, Hagau R, Petrescu M, Studnicska DM. Clinical aspects and cytokine response in severe H1N1 influenza A virus infection [J]. Crit Care, 2010, 14(6): R203.
[26] Lee N, Wong CK, Chan PK, Chan MC, Wong RY, Lun SW, Ngai KL, Lui GC, Wong BC, Lee SK, Choi KW, Hui DS. Cytokine response patterns in severe pandemic 2009 H1N1 and seasonal influenza among hospitalized adults [J]. PLoS One, 2011, 6(10): e26050.
[27] McGill J, Heusel JW, Legge KL. Innate immune control and regulation of influenza virus infections [J]. J Leukoc Biol, 2009, 86(4): 803-812.
[28] Arankalle VA, Lole KS, Arya RP, Tripathy AS, Ramdasi AY, Chadha MS, Sangle SA, Kadam DB. Role of host immune response and viral load in the differential outcome of pandemic H1N1 (2009) influenza virus infection in Indian patients [J]. PLoS One, 2010, 5(10): e13099.
[29] Bermejo-Martin JF, Martin-Loeches I, Rello J, Antón A, Almansa R, Xu L, Lopez-Campos G, Pumarola T, Ran L, Ramirez P, Banner D, Ng DC, Socias L, Loza A, Andaluz D, Maravi E, Gómez-Sánchez MJ, Gordón M, Gallegos MC, Fernandez V, Aldunate S, León C, Merino P, Blanco J, Martin-Sanchez F, Rico L, Varillas D, Iglesias V, Marcos Má, Gandía F, Bobillo F, Nogueira B, Rojo S, Resino S, Castro C, Ortiz de Lejarazu R, Kelvin D. Host adaptive immunity deficiency in severe pandemic influenza [J]. Crit Care, 2010,14(5): R167.
[30] Agrati C, Gioia C, Lalle E, Cimini E, Castilletti C, Armignacco O, Lauria FN, Ferraro F, Antonini M, Ippolito G, Capobianchi MR, Martini F. Association of profoundly impaired immune competence in H1N1v-infected patients with a severe or fatal clinical course [J]. J Infect Dis, 2010, 202(5): 681-689.
[31] Jiang TJ, Zhang JY, Li WG, Xie YX, Zhang XW, Wang Y, Jin L, Wang FS, Zhao M. Preferential loss of Th17 cells is associated with CD4 T cell activation in patients with 2009 pandemic H1N1 swine-origin influenza A infection [J]. Clin Immunol, 2010, 137(3): 303-310.
[32] Giamarellos-Bourboulis EJ, Raftogiannis M, Antonopoulou A, Baziaka F, Koutoukas P, Savva A, Kanni T, Georgitsi M, Pistiki A, Tsaganos T, Pelekanos N, Athanassia S, Galani L, Giannitsioti E, Kavatha D, Kontopidou F, Mouktaroudi M, Poulakou G, Sakka V, Panagopoulos P, Papadopoulos A, Kanellakopoulou K, Giamarellou H. Effect of the novel influenza A (H1N1) virus in the human immune system [J]. PLoS One, 2009, 4(12): e8393.
[33] Lee N, Wong CK, Chan PK, Lun SW, Lui G, Wong B, Hui DS, Lam CW, Cockram CS, Choi KW, Yeung AC, Tang JW, Sung JJ. Hypercytokinemia and hyperactivation of phospho-p38 mitogen-activated protein kinase in severe human influenza A virus infection [J]. Clin Infect Dis, 2007, 45(6): 723-731.
[34] Seo SH, Hoffmann E, Webster RG. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses [J]. Nat Med, 2002, 8(9): 950-954.
[35] Cheung CY, Poon LL, Lau AS, Luk W, Lau YL, Shortridge KF, Gordon S, Guan Y, Peiris JS. Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease [J]? Lancet, 2002, 360 (9348): 1831-1837.
[36] Lipatov AS, Andreansky S, Webby RJ, Hulse DJ, Rehg JE, Krauss S, Perez DR, Doherty PC, Webster RG, Sangster MY. Pathogenesis of Hong Kong H5N1 influenza virus NS gene reassortants in mice: the role of cytokines and B- and T-cell responses [J]. J Gen Virol, 2005, 86(Pt 4): 1121-1130.
[37] Petrosino AL, MPH, CHES (Northwest Ohio Consortium for Public Health). Cytokine storm and the influenza pandemic [J/OL]. http://www.cytokinestorm.com/
[38] 呂進(jìn),王希良. 流感病毒感染介導(dǎo)的免疫病理損傷研究進(jìn)展[J]. 生物化學(xué)與生物物理進(jìn)展,2009, 36(8):961-967.
[39] Moshage H. Cytokines and the hepatic acute phase response [J]. J Pathol, 1997, 181 (3): 257-266.
[40] Baggiolini M, Dewald B, Moser B. Human chemokines: an update [J]. Annu Rev Immunol, 1997, 15: 675-705.
[41] Martin TR, Goodman RB. Chemokines in acute lung injury[M]. In: Lenfant C. ed. Chemokines in the Lung. New York: Marcel Dekker, Inc., 2003: 189-220.
[42] Mukaida N, Shiroo M, Matsushima K. Genomic structure of the human monocyte-derived neutrophil chemotactic factor IL-8 [J]. J Immunol, 1989, 143(4): 1366-1371.