国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

3種主要植物神經(jīng)遞質(zhì)對(duì)植物根系發(fā)育的影響

2012-03-31 05:16長江大學(xué)園藝園林學(xué)院湖北荊州434025
關(guān)鍵詞:生長素赤霉素神經(jīng)遞質(zhì)

吳 楚(長江大學(xué)園藝園林學(xué)院,湖北 荊州434025)

3種主要植物神經(jīng)遞質(zhì)對(duì)植物根系發(fā)育的影響

吳 楚(長江大學(xué)園藝園林學(xué)院,湖北 荊州434025)

動(dòng)物和植物體內(nèi)都存在神經(jīng)遞質(zhì),人們對(duì)動(dòng)物體內(nèi)的神經(jīng)遞質(zhì)進(jìn)行了深入而廣泛的研究,但對(duì)植物體內(nèi)神經(jīng)的功能卻知之甚少?;谏窠?jīng)遞質(zhì)的多樣性和功能的復(fù)雜性,就3種主要神經(jīng)遞質(zhì)乙酰膽堿、褪黑素和5-羥色胺對(duì)植物根系發(fā)育及其機(jī)理進(jìn)行了綜合評(píng)述。

神經(jīng)遞質(zhì);根系;發(fā)育

對(duì)于動(dòng)物而言,腦是神經(jīng)系統(tǒng)的中樞,神經(jīng)系統(tǒng)內(nèi)細(xì)胞之間的信息傳遞由神經(jīng)遞質(zhì)(neurotransmitters)在神經(jīng)突觸處完成,因而神經(jīng)遞質(zhì)在動(dòng)物體內(nèi)具有非常重要的功能,如感覺、運(yùn)動(dòng)、信息處理、生長發(fā)育等。動(dòng)物中常見的神經(jīng)遞質(zhì)有乙酰膽堿(acetylcholine,ACh)、褪黑素(melatonin,MEL)、5-羥色胺(5-hydroxytryptamine,5-HT)、多巴胺(dopamine)、去甲腎上腺素(noradrenaline)、谷氨酸、氨基乙酸以及組胺等。鑒于神經(jīng)遞質(zhì)在動(dòng)物體內(nèi)的重要作用,人們對(duì)其進(jìn)行了深入而廣泛的研究。

一百多年前,達(dá)爾文和他的兒子弗朗西施在《植物運(yùn)動(dòng)的動(dòng)力》一書中寫道:“可以毫不夸張地說,胚根的頂端賦予根以感覺,使之有能力知道相鄰部分的運(yùn)動(dòng),就像低等動(dòng)物的頭一樣;這個(gè)頭位于身體的前端,能感受來自感覺器官的信息,并能指導(dǎo)一些運(yùn)動(dòng)”。這句話表達(dá)了2個(gè)重要的信息,一是植物根尖可以被認(rèn)作是“腦”一樣的器官,具有感覺能力,并能控制其在土壤中的前進(jìn)方向;二是根尖代表了植物體的前端。然而,這句話并沒有引起人們的注意,直到最近才引起人們的高度注意[1]。這就是所謂的“根—腦”的假說[1-3]。

既然根尖具有類似“腦”一樣的功能,那么在植物體內(nèi)應(yīng)該存在類似信息傳遞物質(zhì)。事實(shí)上,上述這些神經(jīng)遞質(zhì)也存在于植物體內(nèi)[4-11]。然而,它們?cè)谥参矬w內(nèi)的功能尚不清楚。1998年Lam等[12]在《自然》雜志上發(fā)表了植物中存在谷氨酸受體基因的研究。隨后人們發(fā)現(xiàn)擬南芥中存在20種谷氨酸受體基因[13],它們被分成3組,即I組(AtGLR1.1~AtGLR1.4)、II組(AtGLR2.1~AtGLR2.9)、III組(AtGLR3.1~AtGLR3.7)。這些發(fā)現(xiàn)為人們進(jìn)一步研究神經(jīng)遞質(zhì)在植物中的作用奠定了重要基礎(chǔ),也為研究植物神經(jīng)遞質(zhì)在植物發(fā)育方面的作用帶來了希望。就目前的文獻(xiàn)來看,因神經(jīng)遞質(zhì)的多樣性,它們?cè)谥参矬w能的功能是多方面的。乙酰膽堿、褪黑素和5-羥色胺在調(diào)節(jié)植物根系發(fā)育方面具有作用,但它們影響植物根系發(fā)育的機(jī)理尚不清楚。

1 神經(jīng)遞質(zhì)對(duì)根系發(fā)育的影響

1.1 乙酰膽堿(ACh)對(duì)根系發(fā)育的影響

人們很早就觀察到乙酰膽堿在植物發(fā)育方面的作用。Kandeler[14]1972年發(fā)現(xiàn),在連續(xù)光照條件下,乙酰膽堿可阻止長日照植物膨脹浮萍(Lemnagibba)開花,但促進(jìn)短日照植物稀脈浮萍(L.perpusilla)開花。在根系發(fā)育方面,對(duì)兵豆(Lensculinaris)種子和24h齡幼苗采用乙酰膽堿處理(10-8~10-2mol/L),根的生長都被抑制,這與生長素處理(10-10~10-4mol/L)的結(jié)果一致,因此乙酰膽堿對(duì)根生長的影響與生長素的影響具有一定的相似性[15]。從乙酰膽堿處理的時(shí)間來看,因使用的是幼苗,可以看出被抑制生長的根應(yīng)該是主根,即外源乙酰膽堿能抑制幼苗主根的生長。后來的研究也表明,生長素處理能抑制幼苗主根生長而促進(jìn)側(cè)根發(fā)育[16-20]。這些結(jié)果表明乙酰膽堿與生長素在影響根系發(fā)育方面具有相似性,但目前尚不清楚二者之間是否存在某種關(guān)系。

0.1mol/L的CCC對(duì)小麥幼苗的根系和葉片進(jìn)行處理,可以抑制生長,但如果在培養(yǎng)介質(zhì)中加入10mmol/L的乙酰膽堿,則可以降低CCC對(duì)生長的抑制[21]。乙酰膽堿處理的歐洲赤松(Pinussylvestris)幼苗比對(duì)照含有更多的游離赤霉素[22],且乙酰膽堿對(duì)赤霉素含量的促進(jìn)作用可以為乙酰膽堿受體拮抗劑所抵消[23]。由此可見乙酰膽堿與赤霉素的生物合成有關(guān)。但乙酰膽堿促進(jìn)赤霉素生物合成的機(jī)理尚不清楚。赤霉素對(duì)根系的正常生長發(fā)育是非常重要的[24-28],那么,乙酰膽堿對(duì)赤霉素生物合成的影響勢(shì)必影響根系發(fā)育。在擬南芥中,GA4為具有生物活性的主要赤霉素形式[29],使用其生物合成途徑中各種酶的突變體以及赤霉素信號(hào)傳導(dǎo)途徑中主要成分的突變體(尤其是赤霉素受體突變體)可以很好地闡明乙酰膽堿與赤霉素之間的關(guān)系。

既然乙酰膽堿在植物體內(nèi)能作為一種信號(hào)分子對(duì)環(huán)境刺激做出反應(yīng)[30],而磷脅迫對(duì)植物根系發(fā)育又產(chǎn)生很大的影響[31-33],那么在磷脅迫下乙酰膽堿是否參與根系發(fā)育呢?回答這個(gè)問題需要進(jìn)行相關(guān)的實(shí)驗(yàn)。

在植物乙酰膽堿受體研究方面,盡管早在1979年Hoshino就提出在浮萍體內(nèi)存在毒蕈堿性乙酰膽堿受體[34],后來Tretyn等[35]也提出在小麥葉片中存在毒蕈堿性乙酰受體和煙堿性乙酰受體,有人甚至檢測(cè)到了乙酰膽堿的所謂結(jié)合位點(diǎn)[36-37],但幾十多年過去了,至今仍沒有一種植物乙酰膽堿受體被分離和鑒定。植物乙酰膽堿受體的分離鑒定及其基因的克隆將極大地有助于闡明乙酰膽堿在植物內(nèi)的功能。

1.2 褪黑素(MEL)對(duì)植物根系發(fā)育的影響

MEL是一種吲哚類胺,1958年首次在牛松果腺中發(fā)現(xiàn)[38]。它在動(dòng)物體內(nèi)是一種信號(hào)分子,涉及許多生理過程,如生理節(jié)律和光周期。在維管植物中1995年首次檢測(cè)到MEL[39],隨后在其他植物體內(nèi)也檢測(cè)到[9,40-44]。盡管人們?cè)噲D了解其在光周期和生理節(jié)律方面的作用[41,45-46],但目前人們對(duì)其在植物體內(nèi)的生理功能仍知之甚少[47-48]。在植物發(fā)育方面人們做了少量的工作。Murch等[49]使用生長素、5-HT和MEL的代謝抑制劑處理貫葉金絲桃(Hypericumperforatum)培養(yǎng)組織,發(fā)現(xiàn)內(nèi)源MEL含量增加,誘導(dǎo)根的生長,而5-HT(它是MEL的直接前體)累積,促進(jìn)莖的生長。5-HT和MEL的傳輸抑制劑能夠阻斷生長素對(duì)根系形成的促進(jìn)作用;根再生顯著下降與培養(yǎng)基質(zhì)中IAA和MEL含量下降一致,且內(nèi)源MEL含量的增加與根形成增加有關(guān),5-HT含量增加則與莖形成增加一致[50]。另一方面,抑制5-HT轉(zhuǎn)化為MEL的PCP能促進(jìn)細(xì)胞分裂素對(duì)莖的誘導(dǎo)[6]。由此可以看出,貫葉金絲桃組織培養(yǎng)的形態(tài)遺傳學(xué)能力似乎依賴于5-HT/MEL的適當(dāng)比例,這與生長素和其他植物激素(如細(xì)胞分裂素)的比例變化相似[6,51]。

MEL以類似IAA的方式促進(jìn)白羽扇豆(Lupinusalbus)下胚軸的生長[52]。MEL與IAA以相似的濃度梯度在白羽扇豆各個(gè)組織中分布。在高濃度下MEL成為一種抑制劑(可能是因?yàn)闈舛冗^高而成為有毒物質(zhì)),而在低濃度下它能誘導(dǎo)白羽扇豆下胚軸段的生長,但效果不如IAA。MEL促進(jìn)生長的最佳濃度為10μmol/L[52]。MEL還可促進(jìn)白羽扇豆幼苗側(cè)根和不定根的再生[53]。MEL處理幾種甜櫻桃根砧木的莖尖外植體,能促進(jìn)不定根的形成[54]。MEL也能促進(jìn)小麥、大麥、金絲雀杧草和燕麥的胚芽鞘的生長,但效果只有IAA的10%~55%[55]。在甘草(Glycyrrhizauralensis)根發(fā)育過程中,在3~6個(gè)月的發(fā)育期間MEL含量增加1倍[56],這似乎說明MEL與甘草根的發(fā)育有密切的關(guān)系。另一個(gè)實(shí)驗(yàn)結(jié)果表明,高濃度(100μmol/L)的外源MEL能抑制4d的芥菜(Brassicajuncea)幼苗主根的伸長[57]。由此可見,MEL和IAA對(duì)植物根系生長的抑制效果是相似的。這種相似性似乎說明MEL與生長素信之間存在某種關(guān)系,這種關(guān)系很可能在信號(hào)轉(zhuǎn)導(dǎo)方面,因?yàn)镸EL與IAA在結(jié)構(gòu)上也相似。

在白羽扇豆的下胚軸和根中,MEL處理可抑制乙烯生物合成途徑中最重要的酶ACC氧化酶的活性[58-59],這似乎又將MEL與乙烯的生物合成聯(lián)系起來了。在根系發(fā)育方面乙烯也具有作用[60-62]。在對(duì)側(cè)根形成產(chǎn)生影響時(shí),乙烯與生長素相互作用調(diào)節(jié)側(cè)根發(fā)育的起始和突出[63]。那么,MEL在植物根系發(fā)育過程中與生長素和乙烯之間的關(guān)系到底如何?對(duì)于這個(gè)問題的回答,也需要大量的實(shí)驗(yàn)。

盡管人們認(rèn)為MEL可能是一種潛在的植物信號(hào)分子[47-48,64-66],但目前仍不確定它是真正的信號(hào)分子,因?yàn)槠涫荏w一直沒有在植物體中被鑒定。動(dòng)物體內(nèi)存在MEL的受體[66-70],植物體內(nèi)是否也存在類似的MEL受體?對(duì)這個(gè)問題的回答需要證據(jù)。

1.3 5-羥色胺(5-HT)對(duì)根系發(fā)育的影響

雖然5-HT是MEL的生物合成前體,但在動(dòng)物體內(nèi)存在5-HT的受體[71-72],說明5-HT并不是僅僅作為MEL的生物合成前體起作用,而是具有獨(dú)特的生理作用。5-HT最早發(fā)現(xiàn)于植物果實(shí)中[73],在植物的種子和果實(shí)中大量存在,也對(duì)植物的形態(tài)產(chǎn)生影響[75]。在雜交楊(Populustremuloides×P.tremula)的葉片組織培養(yǎng)中,5-HT對(duì)根系的誘導(dǎo)比生長素強(qiáng)[75],而且5-HT能促進(jìn)側(cè)根的生長。在大麥種子中,5-HT則能引起有絲分裂指數(shù)增加,促進(jìn)根和子葉的生長[76],根長度的測(cè)定是在大麥種子萌發(fā)72h后進(jìn)行的,因此,5-HT對(duì)根的促進(jìn)作用應(yīng)該是對(duì)種子根生長的促進(jìn)作用。從另一個(gè)側(cè)面來看,5-HT對(duì)根發(fā)育具有很大的影響。色氨酸-5-羥化酶(EC 1.14.16.4)是5-HT生物合成途徑中的關(guān)鍵酶[6,8],在水稻根系中活性最大,且與5-HT含量密切相關(guān)[8]。p-CAP為該酶抑制劑,常常被用來清除哺乳動(dòng)物血清中5-HT[77],用它處理貫葉金絲桃培養(yǎng)組織,能抑制根的形成[50]。

目前人們對(duì)5-HT對(duì)根生長的影響機(jī)理尚不清楚。既然現(xiàn)在人們已經(jīng)將5-HT看著是一種普通的生長信號(hào)[78],在植物體內(nèi)是否存在5-HT受體呢?如果存在,那么它的作用機(jī)理肯定將受到極大的關(guān)注。

2 3種神經(jīng)遞質(zhì)影響生長發(fā)育的機(jī)理

在動(dòng)物體內(nèi),乙酰膽堿能夠促進(jìn)有絲分裂[79]。到目前為止,這種神經(jīng)遞質(zhì)是否也在植物體內(nèi)影響有絲分裂尚不清楚。如果它能在植物根部影響有絲分裂,那么它就有可能調(diào)節(jié)細(xì)胞周期而影響根系發(fā)育。

對(duì)于MEL在植物體內(nèi)的作用,早在1993年Hardeland[80]就提出,植物體內(nèi)存在MEL受體,該受體與酸性液泡膜上的GTP結(jié)合蛋白相結(jié)合,MEL與受體結(jié)合,從而導(dǎo)致H+流出增加。后來,Balzer等[81]又提出如下假設(shè):MEL在植物體內(nèi)的作用可能與其在哺乳動(dòng)物體內(nèi)的作用相似,即作為光和黑暗的化學(xué)信號(hào)分子、鈣調(diào)素結(jié)合因子或抗氧化劑起作用。但因缺少證據(jù),這2個(gè)假設(shè)中的一些重要部分仍沒有得到證實(shí),尤其是MEL受體至今仍沒有被分離和鑒定。

Hernandez-Ruiz等[52]證實(shí),MEL以相似于生長素的作用機(jī)理調(diào)節(jié)植物的生長發(fā)育,然而,這個(gè)機(jī)理并沒有得到充分的解釋。Roshchina[5]研究過幾種色氨酸衍生物(包括5-HT和MEL)在信號(hào)轉(zhuǎn)導(dǎo)中的作用,但其作用仍難以琢磨。令人感到有趣的是,生長素是植物生長發(fā)育的基本調(diào)節(jié)激素,而它又是植物體內(nèi)最重要的色氨酸衍生物。生長素在細(xì)胞之間的傳遞具有某些神經(jīng)遞質(zhì)的特征。一些特性表明生長素和神經(jīng)遞質(zhì)之間的相似性來源于神經(jīng)元細(xì)胞[82-84]。鑒于生長素能夠誘導(dǎo)快速的電信號(hào)反應(yīng)[85-86],從植物神經(jīng)生物學(xué)的觀點(diǎn)來看,其作用應(yīng)該與其他神經(jīng)遞質(zhì)具有可比性[83]。生長素的一個(gè)作用機(jī)理就是:含有豐富生長素的囊泡分泌生長素[87],在幾秒鐘內(nèi)在臨近細(xì)胞中誘發(fā)電信號(hào)[86]。這樣的電信號(hào)與神經(jīng)遞質(zhì)分子引起的電信號(hào)一樣[82]。這種在原生質(zhì)膜上的快速電信號(hào)可能是由生長素結(jié)合蛋白信號(hào)級(jí)聯(lián)放大所介導(dǎo)的[86-88]。這種信號(hào)級(jí)聯(lián)放大與生長素誘導(dǎo)的長達(dá)數(shù)分鐘至數(shù)小時(shí)的滯后反應(yīng)不同,因?yàn)檫@些反應(yīng)基于生長素受體起作用,涉及到生長素介導(dǎo)的轉(zhuǎn)錄調(diào)節(jié)因子的激活,被激活的轉(zhuǎn)錄因子隨后引起基因表達(dá)[99-90]。

在生長素影響生長發(fā)育方面,IAA的作用機(jī)理可能是介導(dǎo)細(xì)胞壁質(zhì)子溢出,這是通過原生質(zhì)膜H+-ATPase的激活或新合成。在MEL處理時(shí),在胚芽鞘生長促進(jìn)過程,培養(yǎng)介質(zhì)也出現(xiàn)輕微的酸化,這與IAA處理時(shí)所發(fā)生的一致[55]。這個(gè)結(jié)果可以讓人設(shè)想MEL可能與IAA共同作用[91]。盡管如此,MEL在這個(gè)過程中的作用需進(jìn)行更多的研究。

在動(dòng)物體內(nèi),存在幾種MEL受體如ML1和ML2[66])然而至今尚沒有發(fā)現(xiàn)植物體內(nèi)的MEL受體。在植物體內(nèi)已發(fā)現(xiàn)生長素受體TIR-1[92]和生長素結(jié)合蛋白ABP-1[93],因?yàn)镸EL與生長素具有相似的分子結(jié)構(gòu),一種大膽的假設(shè)就是MEL同TIR-1或ABP-1相互作用[47-48],但這個(gè)假設(shè)需要證實(shí)。

Posmyk等[10]在總結(jié)了許多研究結(jié)果后,提出了MEL在植物體內(nèi)的作用及其作用機(jī)理,但在這個(gè)作用機(jī)理圖中仍有很多不確定的地方。

目前人們關(guān)于5-HT的作用機(jī)理研究得很少,也沒有提出相應(yīng)的假設(shè),因此大量的研究是非常必要的。

上述關(guān)于幾種神經(jīng)遞質(zhì)在植物體內(nèi)作用機(jī)理,都沒有得到非常完滿的解釋和驗(yàn)證,因此,大量的額外實(shí)驗(yàn)是必需的。只有進(jìn)行更多嚴(yán)謹(jǐn)?shù)膶?shí)驗(yàn),才能充分了解神經(jīng)遞質(zhì)在植物生長發(fā)育方面的作用。

3 結(jié)語

植物與動(dòng)物一樣具有多種神經(jīng)遞質(zhì),這些神經(jīng)遞質(zhì)各自具有獨(dú)特的生理作用。盡管人們對(duì)這些神經(jīng)遞質(zhì)在動(dòng)物體內(nèi)進(jìn)行了深入而廣泛的研究,許多具體的細(xì)節(jié)得到了充分認(rèn)識(shí),但人們對(duì)它們?cè)谥参镏械纳碜饔脛t了解得少而淺顯。鑒于目前這種狀況,加強(qiáng)對(duì)神經(jīng)遞質(zhì)在植物體內(nèi)的作用進(jìn)行研究無疑是有必要的。

[1]Balu?ka F,Mancuso S,Volkmann D.Communication in Plants:Neuronal Aspects of Plant Life [M].Berlin-Heidelberg-New York:Springer,2006:19-35,37-51.

[2]Baluska F,Mancuso S,Volkmann D,et al.The “root-brain” hypothesis of Charles and Francis Darwin.Revival after more than 125 years [J].Plant Signal Behav,2009,4:1121-1127.

[3]Kutschera U,Nicklas K J.Evolutionary plant physiology:Charles Darwin’s forgotten synthesis [J].Naturwissenschaften,2009,96:1339-1354.

[4]Odjakova1 M,Hadjiivanova C.Aminal neurotransmitter substances in plants [J].Bulg J Plant Physiol,1997,23:94-102.

[5]Roshchina V V.Neurotransmitters in plant life [M].Plymouth:Science Publishers,2001.

[6]Murch S J,Saxena P K.Melatonin:a potential regulator of plant growth and development? [J]InvitroCell Dev Biol Plant,2002,38:531-536.

[7]Brenner E D,Stahlberg R,Mancuso S,et al.Plant neurobiology:an integrated view of plant signaling [J].Trends Plant Sci,2006,11:413-419.

[8]Kang S,Kang K,Lee K,et al.Characterization of tryptamine 5-hydroxylase and serotonin synthesis in rice plants [J].Plant Cell Rep,2007,26:2009-2015.

[9]Cole I B,Cao J,Alan A R,et al.Comparisons ofScutellariabaicalensis,ScutellarialaterifloraandScutellariaracemosa:genome size,antioxidant potential and phytochemistry [J].Planta Med,2008,74:474-481.

[10]Posmyk M M,Janas K M.Melatonin in plants [J].Acta Physiol Plant,2009,31:1-11.

[11]Paredes S D,Korkmaz A,Manchester L C,et al.Phytomelatonin:a review [J].J Exp Bot,2009,60:57-69.

[12]Lam H M,Chiu J,Hsieh M H,et al.Glutamate receptor genes in plants [J].Nature,1998,396:125-126.

[13]Chiu J C,Brenner E D,DeSalle R,et al.Phylogenetic and Expression Analysis of the Glutamate-Receptor-Like Gene Family inArabidopsisthaliana[J].Mol Biol Evol,2002,19:1066-1082.

[14]Kandeler R.Die Wirkung von Acetylcholin auf die photoperiodische steurung der blutenbildung bei Lemnaceen [J].Zeitschrift fur Pflanzenphysiologie,1972,67:86-92.

[15]Penel C,Darimont E,Greppin H,et al.Effect of acetylchoHne on growth and isoperoxidases of the lentil (Lensculinaris) root [J].Biologia Plantarum,1976,8:293-298.

[16]Vuylsteker C,Dewaele E,Rambour S.Auxin induced lateral root formation in chicory[J].Ann Bot,1998,81:449-454.

[17]Xie Q,Frugis G,Colgan D,et al.ArabidopsisNAC1 transduces auxin signal downstream of TIR1 to promote lateral root development [J].Genes Develop,2000,14:3024-3036.

[18]Woodward A W,Bartel B.Auxin:regulation,action,and interaction [J].Ann Bot,2005,95:707-735.

[19]Dubrovsky J G,Sauer M,Napsucialy-Mendivil S,et al.Auxin acts as a local morphogenetic trigger to specify lateral root founder cells [J].PNAS,2008,105:8790-8794.

[20]Bhalerao R P,Jan Eklof J,Ljung K,et al.Shoot-derived auxin is essential for early lateral root emergence inArabidopsisseedlings [J].Plant J,2002,29:325-332.

[21]Dekhuijzen H M.The effect of acetylcholine on growth and on growth inhibition by CCC in wheat seedlings [J].Planta,1973,111:149-156.

[22]Kopcewicz J,Porazinski Z.Influence of red and far-red irradiation on the acetylcholine and gibberellin content in scots pine seedlings [J].Bull Acad Polon Sci,1977,25:114-117.

[23]Kopcewicz J,Cymerski M.On the involvement of acetylcholine in phytochromemediated changes of gibberellin content in scots pine seedlings [J].Bull Acad Polon Sci,1980,28:247-252.

[24]Butcher D N,Clark J A,Lenton J R.Gibberellins and the growth of excised tomato roots:comparison of gib-1 mutant and wild type and responses to applied GA3and 2S,3S paclobutrazol [J].J Exp Bot,1990,41:715-722.

[25]Barlow P W,Brain P,Parker J S.Cellular growth in roots of a gibberellin-deficient mutant of tomato (LycopersiconesculentumMill.) and its wild type [J].J Exp Bot,1991,42:339-351.

[26]Baluska F,Parker J S,Barlow P W.A role for gibberellic acid in orienting microtubules and regulating cell growth polarity in the maize root cortex [J].Planta,1993,191:149-157.

[27]Bidadi H,Yamaguchi S,Asahina M,et al.Effects of shoot-applied gibberellin/gibberellin-biosynthesis inhibitors on root growth and expression of gibberellin biosynthesis genes inArabidopsisthaliana[J].Plant Root,2010,4:4-11.

[28]Yaxley J R,Ross J J,Sherriff L J,et al.Gibberellin biosynthesis mutations and root development in pea [J].Plant Physiol,2001,125:627-633.

[29]Yamaguchi S.Gibberellin biosynthesis inArabidopsis[J].Phytochemistry Reviews,2006,5:39-47.

[30]Momonoki Y S,Oguri S,Whallon J H.Acetylcholine as a signaling system to environmental stimuli in plants.II.Ca2+movement in the coleoptile node cells of heat-stressedZeamaysseedlings [J].Jpn J Crop Sci,1997,66:682-690.

[31]Williamson L C,Ribrioux S P C P,Fitter A H,et al.Phosphate Availability Regulates Root System Architecture inArabidopsis[J].Plant Physiol,2001,126:875-882.

[32]Wu C,Wei X,Sun H-L,et al.Phosphate availability alters lateral root anatomy and root architecture ofFraxinusmandshuricaRupr.Seedlings [J].Journal of Integrative Plant Biology,2005,47:292-301.

[33]Lopez-Bucio J,Hernandez-Abreu E,Sanchez-Calderon L,et al.Phosphate availability alters architecture and causes changes in hormone sensitivity in theArabidopsisroot system [J].Plant Physiol,2002,129:244-256.

[34]Hoshino T.Stimulation of acetylcholine action by B-indole acetic acid in inducing diurnal change of floral response to chilling under continuous light inLemnagibbaG3 [J].Plant Cell Physiol,1979,20:43-50.

[35]Tretyn A,Kendrick R E.Acetylcholine in plants:presence,metabolism and mechanism of action [J].Bot Rev,1991,57:33-73.

[36]Boss W E,Marre D.Second Messengers in Plant Growth and Development [M].New York:Liss,1989:257-287.

[37]Smith H.Current Advances in Plant Sciences [M].Oxford:Sciences engineering medical and data Ltd,1974:1-22.

[38]Lerner A B,Case J D,Takahashi Y.Isolation of melatonin,a pineal factor that lightness melanocytes [J].J Am Soc,1958,80:2587.

[39]Dubbels R,Reiter R J,Klenke E,et al.Melatonin in edible plants identified by radioimmunoassay and high performanceliquid chromatography-mass spectrometry [J].J Pineal Res,1995,18:28-31.

[40]Manchester L C,Tan D X,Reiter R J,et al.High levels of melatonin in the seeds of edible plants-possible function in germ tissue protection [J].Life Sci,2000,67:3023-3029.

[41]Van Tassel D L,Roberts N,Lewy A,et al.Melatonin in plant organs [J].J Pineal Res,2001,31:8-15.

[42]Burkhardt S,Tan D-X,Manchester L C,et al.Detection and quantification of the antioxidant melatonin in Montmorency and Balaton tart cherries (Prunuscerasus) [J].J Agric Food Chem,2001,49:4898-4902.

[43]Okazaki M,Higuchi K,Hanawa Y,et al.Cloning and characterization of aChlamydomonasreinhardtiicDNA arylalkylamine N-acetyltransferase and its use in the genetic engineering of melatonin content in the Micro-Tom tomato [J].J Pineal Res,2009,46:373-382.

[44]Murch S J,Hall B A,Le C H,et al.Changes in the levels of indoleamine phytochemicals during véraison and ripening of wine grapes [J].J Pineal Res,2010,49:95-100.

[45]Wolf K,Kolar J,Witters E,et al.Daily profile of melatonin levels inChenopodiumrubrumL.depends on photoperiod [J].J Plant Physiol,2001,158:1491-1493.

[46]Kolar J,Machackova I,Eder J,et al.Melatonin:Occurence and daily rhythm inChenopodiumrubrum[J].Phytochemistry,1997,44:1407-1413.

[47]Kolar J,Machackova I.Melatonin in higher plants:occurrence and possible functions [J].J Pineal Res,2005,39:333-341.

[48]Arnao M B,Hernandez-Ruiz J.The physiological function of melatonin in plants [J].Plant Signal Behav,2006,1:89-95.

[49]Murch S J,Simmons C B,Saxena P K.Melatonin in feverfew and other medicinal plants [J].Lancet,1997,350:1598-1599.

[50]Murch S J,Campbell S S B,Saxena P K.The role of serotonin and melatonin in plant morphogenesis:regulation of auxin-induced root organogenesis ininvitro-cultured explants of St.John’s wort (HypericumperforatumL.) [J].InVitroCell Dev Biol-Plant,2001,37:786-793.

[51]Jones M P,Cao J,O’Brien R,et al.The mode of action of thidiazuron:auxins,indoleamines,and ion channels in the regeneration ofEchinaceapurpureaL [J].Plant Cell Rep,2007,26:1481-1490.

[52]Hernandez-Ruiz J,Cano A,Arnao M B.Melatonin:a growth stimulating compound present in lupin tissue [J].Planta,2004,220:140-144.

[53]Arnao M B,Hernandez-Ruiz J.Melatonin promotes adventitious and lateral root regeneration in etiolated hypocotyls ofLupinusalbusL [J].J Pineal Res,2007,42:147-152.

[54]Sarropoulou V N,Therios I N,Dimassi-Theriou K N.Melatonin promotes adventitious root regeneration in in vitro shoot tip explants of the commercial sweet cherry rootstocks CAB-6P (PrunuscerasusL.),Gisela 6 (P.cerasus×P.canescens),and MxM 60 (P.avium×P.mahaleb) [J].J Pineal Research,2012,52:38-46.

[55]Hernandez-Ruiz J,Cano A,Arnao M B.Melatonin acts as a growth-stimulating compound in some monocot species [J].J Pineal Res,2005,39:137-142.

[56]Afreen F,Zobayed S M A,Kozai T.Melatonin in Glycyrrhiza uralensis:Response of plant roots to spectral quality of light and UV?B radiation [J].J Pineal Res,2006,41:108-15.

[57]Chen Q,Qi W B,Reiter R J,et al.Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings ofBrassicajuncea[J].J Plant Physiol,2009,166:324-328.

[58]Arnao M,Hernandez-Ruiz J.Inhibition of ACC oxidase activity by melatonin and indole-3-acetic acid in etiolated lupin hypocotyls [J].Advances in Plant Ethylene Research,2007,2:101-103.

[59]Arnao M B,Hernandez-Ruiz J.Melatonin in plants --more studies are necessary [J].Plant Signal Behav,2007,2:5,381-382.

[60]Buer C S,Wasteneys G O,Masle J.Ethylene modulates root-wave responses inArabidopsis[J].Plant Physiol,2003,132:1085-1096.

[61]Hahn A,Zimmermann R,Wanke D,et al.The root cap determines ethylene-dependent growth and development in maize roots [J].Mol Plant,2008,1:359-367.

[62]Zaid H,Morabet R E,Diem H G,et al.Does ethylene mediate cluster root formation under iron deficiency? [J].Ann Bot,2003,92:673-677.

[63]Ivanchenko M G,Muday G K,Dubrovsky J G.Ethylene-auxin interactions regulate lateral root initiation and emergence inArabidopsisthaliana[J].Plant J,2008,55:335-347.

[64]Kim Y J,Lee Y N,Oh Y J,et al.What is the role for melatonin in plants? - Review on the current status of phytomelatonin research [J].J Nano Bio Tech,2007,4:9-14.

[65]Park W J.Melatonin as an endogenous plant regulatory signal:debates and perspectives [J].J Plant Biol,2011,54:143-149.

[66]Reppert S M,Weaver D R,Godson C.Melatonin receptors step into the light:cloning and classification of subtypes[J].Trends Pharmacol Sci,1996,17:100-102.

[67]Reppert S M.Melatonin receptors:molecular biology of a new family of G protein-coupled receptors [J].J Biol Rhythms,1997,12:528-31.

[68]Sugden D,Davidson K,Hough K A,et al.Melatonin,melatonin receptors and melanophores:a moving story[J].Pigment Cell Res,2004,17:454-460.

[69]Morgan P J,Barrett P,Howell H E,et al.Melatonin receptors:localization,molecular pharmacology and physiological significance [J].Neurochem,1994,24:101-146.

[70]Nickelsen T,Samel A,Vejvoda M,et al.Chronobiotic effects of the melatonin agonist LY 156735 following a simulated 9h time shift:results of a placebo-controlled trial [J].Chronobiology International,2002,19:915-936.

[71]Stark A D,Jordan S,Allers K A,et al.Interaction of the novel antipsychotic aripiprazole with 5-HT1A and 5-HT2A receptors:functional receptor-binding andinvivoelectrophysiological studies [J].Psychopharmacology,2007,190:373-382.

[72]Thompson A J,Sullivan N L,Lummis S C R.Characterization of 5-HT3 receptor mutations identified in schizophrenic patients [J].J Mol Neurosci,2006,30:273-281.

[73]Bowden K,Brown B G,Batty J E.5-Hydroxytryptamine:its occurrence in cowhage [J].Nature,1954,174:925-926.

[74]O’Neill S D,van Tassel D L.Methods for controlling flowering in plants [P].United States Patent,N 5 300,481.Date of Patent,5 April,1994,1-10.

[75]Regula I,Kolevska-Pleticapic B,Kranik-Rasol M.Presence of serotonin inJuglansailanthifoliavar.ailanthifoliaCarr and its physiological effects on plants [J].Acta Botanica Croatica,1989,48:57-62.

[76]Csaba G,Pal K.Effect of insulin triodothyronine and serotinin on plant seed development [J].Protoplasma,1982,110:20-22.

[77]Yamada J,Sugimoto Y,Inoue K.Selective serotonin reuptake inhibitors fluoxetine and fluvoxamine induce hyperglycemia by different mechanisms [J].Eur J Pharmacol,1999,382:211-215.

[78]Lin L.Shengmingde huaxue [J].Chemistry Life,1993,13:19-20.

[79]Morgan J I,Wigham C G,Perris A D.The promotion of mitosis in cultured thymic lymphocytes by acetylcholine and catecholamines [J].J Pharmacy Phyarmacology,1984,36:511-515.

[80]Hardeland R.The presence and function of melatonin and structurally related indoleamines in a dinoflagellate,and a hypothesis on the evolutionary significance of these tryptophan metabolites in unicellular [J].Experientia,1993,49:614-622.

[81]Balzer I,Hardeland R.Melatonin in algae and higher plants:possible new roles as a phytohormone and antioxidant [J].Bot Acta,1996,109:180-183.

[82]Baluska F,Samaj J,Menzel D.Polar transport of auxin:carrier-mediated flux across the plasma membrane or neurotransmitter-like secretion? [J]Trends Cell Biol,2003,13:282-285.

[83]Baluska F,Mancuso S,Volkmann D,et al.Root apices as plant command centers:the unique ‘brain-like’ status of the root apex transition zone [J].Biologia,2004,59:9-17.

[84]Baluska F,Volkmann D,Menzel D.Plant synapses:actinbased adhesion domains for cell-to-cell communication [J].Trends Plant Sci,2005,10:106-111.

[85]Felle H,Peters W,Palme K.The electrical response of maize to auxin [J].Biochim Biophys Acta,1991,1064:199-204.

[86]Steffens B,Feckler Ch,Palme K,et al.The auxin signal for protoplast swelling is perceived by extracellular ABP1 [J].Plant J,2001,27:591-599.

[87]Schlicht M,Strnad M,Scanlon M J,et al.Auxin immunolocalization implicates a vesicular neurotransmitter-like mode of polar auxin transport in root apices [J].Plant Signal Behav,2006,1:122-133.

[88]Bauly J M,Sealy I M,Macdonald H,et al.Overexpression of auxin-binding protein enhances the sensitivity of guard cells to auxin [J].Plant Physiol,2000,124:1229-1238.

[89]Yamagami M,Haga K,Napier R M,et al.Two distinct signaling pathways participate in auxin-induced swelling of pea epidermal protoplasts [J].Plant Physiol,2004,134:735-747.

[90]Parry G,Estelle M.Auxin receptors:a new role for F-box proteins [J].Curr Opin Cell Biol,2006,18:152-156.

[91]Hager A.Role of the plasma membrane H+-ATPase in auxin-induced elongation growth:Historical and new aspects[J].J Plant Res,2003,116:483-505.

[92]Dharmasiri N,Dharmasiri S,Estelle M.The F-box protein TIR1 is an auxin receptor [J].Nature,2005,435:441-445.

[93]Edgerton M D,Tropsha A,Jones A M.Modelling the auxin-binding site of auxin-binding protein-1 of maize [J].Phytochemistry,1994,35:1111-1123.

Q945.4

A

1673-1409(2012)06-S029-07

2012-03-08

湖北省教育廳資助項(xiàng)目(B20101301)。

吳 楚(1965-),男,湖北天門人,博士,教授,主要從事植物營養(yǎng)與根系發(fā)育研究。

10.3969/j.issn.1673-1409(S).2012.06.008

猜你喜歡
生長素赤霉素神經(jīng)遞質(zhì)
不同濃度赤霉素處理對(duì)分蘗洋蔥實(shí)生苗生長發(fā)育的影響
槐黃丸對(duì)慢傳輸型便秘大鼠結(jié)腸神經(jīng)遞質(zhì)及SCF/c-kit通路的影響
度洛西汀治療對(duì)抑郁癥患者血清神經(jīng)遞質(zhì)及神經(jīng)功能相關(guān)因子的影響
基于科學(xué)思維培養(yǎng)的“生長素的調(diào)節(jié)作用”復(fù)習(xí)課教學(xué)設(shè)計(jì)
快樂不快樂神經(jīng)遞質(zhì)說了算
探究生長素對(duì)植物生長的兩重性作用
生長素的生理作用研究
淺談生長素對(duì)植物的作用
低溫及赤霉素處理對(duì)絲綿木種子萌發(fā)的影響
怡神助眠湯治療失眠癥的療效及對(duì)腦內(nèi)神經(jīng)遞質(zhì)的影響