耿飛飛
(陜西師范大學(xué) 教育學(xué)院,陜西 西安 710062)
小學(xué)數(shù)學(xué)教學(xué)與學(xué)生思維能力發(fā)展實驗的方案設(shè)計
耿飛飛
(陜西師范大學(xué) 教育學(xué)院,陜西 西安 710062)
小學(xué)數(shù)學(xué)教學(xué)與思維能力發(fā)展的實驗研究在主體間指導(dǎo)學(xué)習(xí)的理論框架下,運用試驗來探尋根據(jù)不同類型的數(shù)學(xué)知識,即概念性知識、原理性知識、程序性知識,設(shè)置清晰的教學(xué)目標(biāo)、選取合理的教學(xué)方式,即提問—歸納式、探究—發(fā)現(xiàn)式、講授—實踐式,旨在獲得知識的同時促進(jìn)能力尤其是思維能力的最優(yōu)化發(fā)展,并運用相關(guān)的測試題對學(xué)生的思維能力進(jìn)行測試,檢驗試驗的效果,同時也為主體間指導(dǎo)教學(xué)從理論走向?qū)嵺`找到落腳點。
小學(xué)數(shù)學(xué);知識教學(xué);思維能力;實驗設(shè)計
小學(xué)數(shù)學(xué)教學(xué)與思維能力發(fā)展的實驗研究在主體間指導(dǎo)學(xué)習(xí)的理論框架下,旨在根據(jù)不同類型的數(shù)學(xué)知識選取合理的教學(xué)方式來促進(jìn)思維能力的最大化發(fā)展,實現(xiàn)教學(xué)過程中知識與思維能力的統(tǒng)一,同時也為主體間指導(dǎo)教學(xué)從理論走向?qū)嵺`找到落腳點。
小學(xué)數(shù)學(xué)教學(xué)與學(xué)生思維能力發(fā)展實驗緣于郝文武教授主持并設(shè)計的主體間教育實驗。該實驗包括基礎(chǔ)教育教學(xué)實驗、基礎(chǔ)教育新學(xué)校建設(shè)實驗和教師教育運行機(jī)制、教育學(xué)專業(yè)改造等。本實驗就是在基礎(chǔ)教育教學(xué)實驗的框架內(nèi)逐步形成和發(fā)展的,它來自于對小學(xué)數(shù)學(xué)教學(xué)中知識與思維能力關(guān)系的反思。通過對小學(xué)數(shù)學(xué)課堂的觀察,學(xué)生作業(yè)、試卷的評閱發(fā)現(xiàn),有些學(xué)生掌握了知識,但思維能力卻沒有得到相應(yīng)的提升,而有些學(xué)生在掌握知識的過程中思維能力也得到了相應(yīng)的發(fā)展,思維能力發(fā)展也存在著差異,即有些學(xué)生達(dá)到了較高的水平,而有些學(xué)生只達(dá)到了中等甚至更低的水平。史中寧教授指出:“創(chuàng)新能力依賴于三方面:知識的掌握、思維的訓(xùn)練、經(jīng)驗的積累,三方面同等重要。關(guān)于‘知識的掌握’,我國的中小學(xué)數(shù)學(xué)教育是沒有問題的;關(guān)于‘經(jīng)驗的積累’,大概還差得很多;關(guān)于‘思維的訓(xùn)練’,我們做的也不夠,只能打五十分?!保?]如何做到知識教學(xué)促進(jìn)思維能力的最大化發(fā)展是教學(xué)所要關(guān)注和解決的問題。這需要深入分析各類數(shù)學(xué)知識的特點,根據(jù)不同類型的數(shù)學(xué)知識運用合理的教學(xué)方式,以期達(dá)到知識與思維能力發(fā)展的統(tǒng)一。
小學(xué)數(shù)學(xué)知識教學(xué)與學(xué)生思維能力發(fā)展的理論依據(jù)主要有以下幾個方面:
數(shù)學(xué)知識是思維能力發(fā)展的起點和基礎(chǔ),思維能力的提高依賴于對數(shù)學(xué)知識的概括、探索、準(zhǔn)確表達(dá),對知識的本質(zhì)理解等。同時,思維能力的提高有助于促進(jìn)知識的學(xué)習(xí)。經(jīng)驗告訴我們,思維發(fā)展好的學(xué)生學(xué)習(xí)新知識相對比較快,也容易進(jìn)行知識的遷移,數(shù)學(xué)學(xué)習(xí)成績也相對較好。
數(shù)學(xué)教學(xué)首先是數(shù)學(xué)知識的教學(xué),但擁有了知識未必就促進(jìn)思維能力的發(fā)展。掌握知識的多少與思維水平的高低、思維能力的強(qiáng)弱并不是正相關(guān)。“知識增長和能力提高并非完全自然地一致,有時甚至很不平衡。知識教學(xué)和能力發(fā)展可能形成正向平衡和不平衡與負(fù)向平衡和不平衡幾種狀態(tài)。”[2]在知識與思維能力的發(fā)展上存在著以下幾種狀態(tài):兩者的正向平衡,即隨著知識的增長思維能力也在不斷地增強(qiáng),思維能力的增強(qiáng)與促進(jìn)知識的不斷豐富,知識與思維能力呈現(xiàn)正相關(guān);兩者的正向不平衡,即運用合理的教學(xué)方式以較少知識的獲得促進(jìn)思維水平的最大化發(fā)展,這是教學(xué)的理想狀態(tài)和教學(xué)的應(yīng)然追求;兩者的負(fù)向平衡,即知識教學(xué)水平低,學(xué)生知識掌握不系統(tǒng),相應(yīng)地思維能力水平也很低;兩者的負(fù)向不平衡,即知識掌握的很牢固,但思維水平不是很高,沒有達(dá)到相應(yīng)的水平,教學(xué)過程應(yīng)努力克服兩者的負(fù)向不平衡,在保證正向平衡的基礎(chǔ)上努力達(dá)到兩者的正向不平衡。
在主體間師生關(guān)系中,教師和學(xué)生時刻都是教學(xué)過程的主體,學(xué)生不僅是學(xué)習(xí)和實踐的主體,作為被教師教育和認(rèn)識的對象他們?nèi)匀皇侵黧w;教師在教育指導(dǎo)學(xué)生時是主體,在被學(xué)生認(rèn)識時也依然是主體,整個教學(xué)過程教師和學(xué)生一直都是以主體的地位而展現(xiàn)自我,以主體間的關(guān)系進(jìn)行著彼此之間的交往。
思維的發(fā)展需要啟迪,在知識促進(jìn)思維能力發(fā)展的教學(xué)中需要主體間的師生關(guān)系。在主體間師生關(guān)系中,教師始終把學(xué)生看作思維發(fā)展的主體,通過啟發(fā)、主動探究等方式提高學(xué)生學(xué)習(xí)的積極性、主動性、自主性、創(chuàng)造性;學(xué)生以主體的身份主動參與到教學(xué)中來,積極與教師交流、大膽質(zhì)疑,勇于提出自己的見解和思維過程,激發(fā)思維的活力,促進(jìn)思維積極的發(fā)展。在教師的指導(dǎo)下,學(xué)生對知識的認(rèn)識從未知到熟知,語言的表達(dá)從含糊到清晰,思維從無序到有序。同時,主體間的師生關(guān)系有助于教師思維過程與學(xué)生思維過程進(jìn)行平等的對話,教師能真正深入了解學(xué)生的想法,并給予恰當(dāng)?shù)闹笇?dǎo),而不是用自己的思維方式取代學(xué)生的思維方式;學(xué)生在整個學(xué)習(xí)中,作為主體有機(jī)會表達(dá)自己的思維過程,在教師的指導(dǎo)下實現(xiàn)思維的優(yōu)化發(fā)展。
教材是小學(xué)數(shù)學(xué)知識的主要載體。本文以心理學(xué)研究為基礎(chǔ)結(jié)合數(shù)學(xué)知識自身的特點對教材中涉及的知識進(jìn)行劃分。在此基礎(chǔ)上小學(xué)數(shù)學(xué)知識可分為事實性知識、概念性知識、原理性知識、程序性知識。事實性知識體現(xiàn)了對知識的人為規(guī)定性,此類知識約定成俗,不需要很強(qiáng)的思維能力,故在實驗設(shè)計中不強(qiáng)調(diào)此類知識。
概念性知識包括基本概念及概念之間的聯(lián)系,只有當(dāng)它是一個網(wǎng)絡(luò)的一個部分時才能稱為概念性知識。概念性知識是數(shù)學(xué)思維的細(xì)胞,是數(shù)學(xué)學(xué)習(xí)的基礎(chǔ),它反映了一類事物或數(shù)學(xué)對象的共同特征或本質(zhì)屬性,此類知識具有抽象性、概括性。概念性知識的學(xué)習(xí)既要對概念本身進(jìn)行理解,又要把握概念形成的過程,還需掌握相互聯(lián)系的概念形成的結(jié)構(gòu)體系。
原理性知識包括運算定律和定理類知識等,此類知識揭示了數(shù)與式、幾何圖形等的內(nèi)在規(guī)律,具有客觀性、確定性。“任何知識都有雙重意義,一是信息意義,即揭示了客體對象一定的性質(zhì)、屬性或規(guī)律;二是智能意義?!保?]任何知識的形成都包涵了人類的智力活動、思維過程,知識在呈現(xiàn)信息意義的同時,也以隱蔽的形式蘊涵著智能意義,即人類探索知識的智慧。原理性知識的學(xué)習(xí)一方面要理解、運用知識,另一方面要挖掘知識形成過程中人類的智能意義,進(jìn)行與前人相似的知識探索活動。
程序性知識是關(guān)于“如何做”的知識,通常以一系列步驟的形式出現(xiàn)。此類知識有一套明確的程序和規(guī)則,易于學(xué)生進(jìn)行操作,具有明確性、可操作性。程序性知識的學(xué)習(xí)一方面能靈活運用概念與規(guī)則進(jìn)行熟練地操作和運算。另一方面,還應(yīng)引導(dǎo)學(xué)生獲得操作程序背后的智能意義,即數(shù)學(xué)思想方法和認(rèn)知策略等,如異分母分?jǐn)?shù)相加減,不僅要學(xué)會如何通分、分子相加減,還要領(lǐng)悟如何把兩個不同的量進(jìn)行劃一的思想方法。
小學(xué)數(shù)學(xué)知識教學(xué)與學(xué)生思維能力發(fā)展的實驗旨在相關(guān)理論的支撐下,在實踐中尋求兩者之間的結(jié)合點,通過實驗來檢驗兩者相互轉(zhuǎn)化的成效,為教學(xué)提供依據(jù)。
不同類型的數(shù)學(xué)知識認(rèn)識、掌握、遷移、運用等可能有不同的規(guī)律,假設(shè)在教學(xué)過程中根據(jù)不同類型的知識設(shè)置清晰的教學(xué)目標(biāo),選取合理的教學(xué)方式。這樣學(xué)生在獲得知識的過程中也可促進(jìn)能力尤其是思維能力的積極發(fā)展。
該實驗中自變量是根據(jù)不同類型的知識運用合理的教學(xué)方式,因變量是學(xué)生思維能力的發(fā)展水平。
1.實驗法:本實驗以自然教學(xué)班為單位,無法真正的控制無關(guān)變量,故本實驗應(yīng)該是準(zhǔn)實驗,主要采用的設(shè)計方式是“不等組前后測設(shè)計”,即
實驗班:O1 X O2(O表示一次測試或觀察,X指操縱的實驗變量)
對比班:O3 O4
在實驗班進(jìn)行試驗變量的操控,即授課之前對所要學(xué)習(xí)的知識進(jìn)行類型的歸類,仔細(xì)分析知識的性質(zhì)及特點,結(jié)合學(xué)生的知識水平、起點能力設(shè)置清晰的教學(xué)目標(biāo)、選取合理的教學(xué)方式。對照班則仍按照原來的模式進(jìn)行教學(xué),一段時間后,運用相關(guān)的測試題對實驗班和對照班分別進(jìn)行測試,并對結(jié)果進(jìn)行分析以此對實驗變量進(jìn)行檢驗。
2.觀察法:以時間為單位深入課堂進(jìn)行自然觀察,以一節(jié)課為單位時間進(jìn)行觀察,主要觀察課堂中教師的問題設(shè)計、提問時機(jī)、問題類型、引導(dǎo)學(xué)生的語言表達(dá)、講授的方式等。同時觀察學(xué)生對問題思考的深度和廣度、語言表達(dá)能力、分析概括問題的能力、在新的情景中對問題的處理能力等,以及學(xué)生在教學(xué)過程中主體性的發(fā)揮和師生之間的關(guān)系。
3.測量法:運用設(shè)計的量表、試題等對被試學(xué)生進(jìn)行測量。
西安市某小學(xué)3-4年級(各兩個班級)數(shù)學(xué)教師和學(xué)生。
1.研究對象選擇在小學(xué)階段,主要是因為小學(xué)是基礎(chǔ)教育階段,為學(xué)生以后的發(fā)展不僅提供知識基礎(chǔ),也影響學(xué)生的思維習(xí)慣、思維風(fēng)格等。小學(xué)生具有很強(qiáng)的可塑性,這一階段如果具有較強(qiáng)的思維能力,對進(jìn)一步的學(xué)習(xí)無疑具有積極的促進(jìn)作用。
2.各個學(xué)科對學(xué)生思維能力的發(fā)展都有一定的促進(jìn)作用,之所以選擇數(shù)學(xué)學(xué)科,是因為思維是數(shù)學(xué)的靈魂,是數(shù)學(xué)教育的核心問題?!半m然也有其他學(xué)科或其他方式可以培養(yǎng)人的思維,但在深度、廣度、系統(tǒng)性等方面,是無法與數(shù)學(xué)相比的。”[4]
3.選擇3-4年級的學(xué)生作為研究對象,一方面基于皮亞杰認(rèn)知發(fā)展階段理論,3-4年級的學(xué)生主要處于具體運算階段,但已開始向形式運算階段過渡,在4年級尤其明顯。這一階段的學(xué)生能借助具體的實物進(jìn)行抽象思維,已具有形象思維能力和初步的抽象思維能力。另一方面選擇3-4年級各兩個班級,是為了進(jìn)行橫向和縱向的分析比較。每個年級中的兩個班級一個是實驗班、另一個是對照班,在實驗中可進(jìn)行橫向的比較;實驗的跨度約為2年,可對3、4年級進(jìn)行追蹤研究,進(jìn)行縱向的比較分析。
1.在借鑒已有思維能力測試題的基礎(chǔ)上,根據(jù)學(xué)生、教學(xué)的實際情況自編思維能力測試題。
2.制定課堂觀察表。
3.?dāng)z像機(jī)一臺,錄音筆一支。
1.在西安市選取一所小學(xué),同時在3-4年級中各選取兩個班級,一個為實驗班,一個為對照班。為了減少無關(guān)變量的影響在同一年級中選取非同一位數(shù)學(xué)教師所教的兩個班級。
2.實驗之前,先對各個班級進(jìn)行課堂觀察,收集課堂教學(xué)錄像1-2節(jié),了解各班教師上課的基本情況和個人風(fēng)采,學(xué)生的課堂反應(yīng),師生之間的關(guān)系等。“數(shù)學(xué)思維能力的五種基本的復(fù)雜成分:數(shù)學(xué)概括、數(shù)學(xué)抽象、數(shù)學(xué)語言、數(shù)學(xué)推理和化歸?!保?]運用自編試題,分別對學(xué)生思維能力的成分進(jìn)行測試,作為前測的研究資料。
3.試驗實施階段
(1)知識觀的轉(zhuǎn)變
數(shù)學(xué)知識具有抽象性、客觀性,如何看待知識既支配教師的教學(xué)理念,又影響教師的教學(xué)行為。如把知識看成是靜態(tài)的客觀存在,教學(xué)則注重對知識的傳授,教學(xué)過程表現(xiàn)出“去過程性”、“去情景化”等特征。研究者可通過訪談的形式了解實驗班教師對數(shù)學(xué)知識的看法,并努力與教師一起從教育學(xué)的立場看數(shù)學(xué)知識,賦予知識過程性、動態(tài)性、意義性等,并把這種理念貫穿與整個教學(xué)過程之中。
(2)制定教學(xué)目標(biāo)
課前研究者與實驗班教師對教學(xué)內(nèi)容進(jìn)行研究,分析知識的類型及新舊知識之間的關(guān)系,在整個知識系統(tǒng)中本節(jié)課要學(xué)知識的地位和作用;通過知識的學(xué)習(xí)所要達(dá)到的能力尤其是思維能力的水平,以此制定清晰、易于操作、檢測的教學(xué)目標(biāo),避免目標(biāo)的模糊性。在教學(xué)目標(biāo)的制定中,以布盧姆的“知識分類與目標(biāo)導(dǎo)向”為依據(jù),“目標(biāo)陳述須注意兩點:一是陳述學(xué)習(xí)后學(xué)生的行為或作業(yè)變化;二是目標(biāo)中包含行為發(fā)生的條件?!保?]以這種方式進(jìn)行陳述,便于檢測目標(biāo)是否達(dá)成。
(3)教學(xué)方式的選取
概念類知識的抽象性、概括性規(guī)定了教學(xué)過程,即是在對具體事物不斷抽象概括中摒棄與研究對象無關(guān)的非本質(zhì)因素,達(dá)到對共同特征或本質(zhì)因素的理解和把握;提問—歸納是對此類知識教學(xué)方式的建構(gòu)。小學(xué)生的心理發(fā)展特點決定了學(xué)生已具有一定的抽象能力,但還沒形成很強(qiáng)的抽象能力。在學(xué)生對概念的形成過程中,需要教師設(shè)置不同的問題,通過不斷向?qū)W生提問,層層逼近,引導(dǎo)學(xué)生把握關(guān)鍵性因素;在此基礎(chǔ)上,進(jìn)行概括,歸納出知識。課前研究者與教師先分析所學(xué)概念的關(guān)鍵性特征,圍繞此特征設(shè)置不同類型的問題引導(dǎo)學(xué)生不斷聚合思維,直至達(dá)到對概念的理解和把握。不同的概念之間相互聯(lián)系形成系統(tǒng)結(jié)構(gòu),研究者和教師可通過對習(xí)得概念的繼續(xù)抽象來教授新概念,并及時引導(dǎo)學(xué)生歸納總結(jié)概念之間的關(guān)系,形成概念的網(wǎng)狀結(jié)構(gòu)。
原理類知識是經(jīng)前人無數(shù)次探索凝練而成的,教學(xué)過程即是讓學(xué)生理解、掌握、運用相應(yīng)的規(guī)律、定理等,教材對此類知識的呈現(xiàn)具有簡約性,遮蓋了探索過程的曲折,如何使學(xué)生掌握知識成為教學(xué)的關(guān)鍵。此類知識具有客觀性、確定性,教學(xué)是講解、記憶還是探索、發(fā)現(xiàn)取決于教師的價值選擇;不同方式的選取對學(xué)生思維能力的促進(jìn)也不同。講解、記憶式結(jié)果也能掌握運用知識,但缺失了對知識形成過程的智慧體驗;探究—發(fā)現(xiàn)是對此類知識教學(xué)方式的建構(gòu)。授課之前,研究者和教師先探尋知識產(chǎn)生的過程,教學(xué)中創(chuàng)設(shè)情境,讓學(xué)生在動手操作、合作交流中重蹈前人探索知識的關(guān)鍵性步子,與前人、教師的思維過程進(jìn)行對話,探究知識產(chǎn)生的過程,感受知識產(chǎn)生中的智慧。課堂中教師需適時引導(dǎo)學(xué)生用清晰、準(zhǔn)確的語言表達(dá)出自己的思維過程,概括出探究發(fā)現(xiàn)的知識。
程序性知識的教學(xué)是讓學(xué)生掌握相應(yīng)的規(guī)則、步驟,并能熟練運用知識解決問題。教學(xué)中采取何種方式既能使學(xué)生高效地掌握知識又能促進(jìn)思維能力的發(fā)展?讓學(xué)生在短時間內(nèi)掌握人類總結(jié)的簡潔的程序知識,講授法成為實現(xiàn)目標(biāo)的首選。程序性知識掌握的目的是能熟練運用知識,達(dá)到自動化階段,這一過程必須進(jìn)行實踐與訓(xùn)練,講授—實踐式是對此類知識教學(xué)方式的建構(gòu)。這里運用講授法不是教師直接講授,講授并非讓學(xué)生被動地接受知識,而是在學(xué)生進(jìn)行自主活動后對知識有一定探索基礎(chǔ)上的講授,在學(xué)生感知、體驗的基礎(chǔ)上加強(qiáng)新舊知識之間的聯(lián)系,促進(jìn)學(xué)生進(jìn)行有意義的接受學(xué)習(xí)。研究者和教師還需挖掘知識背后的思想方法,在教學(xué)中指導(dǎo)學(xué)生運用相應(yīng)的思想方法對問題進(jìn)行整理化歸。
(4)教學(xué)評價的設(shè)計
教學(xué)評價的設(shè)計減少對知識記憶的考查,更多傾向于對知識運用、分析、綜合、創(chuàng)新等體現(xiàn)能力尤其是思維能力的考查。一方面,在課堂教學(xué)中根據(jù)制定的目標(biāo)及時對學(xué)生進(jìn)行檢測;另一方面,在單元內(nèi)容學(xué)習(xí)結(jié)束或?qū)W期末設(shè)計相關(guān)的試題來檢測學(xué)生能力發(fā)展的整體狀況。
對照班維持原狀進(jìn)行教學(xué),在實驗班運用所設(shè)想的方式進(jìn)行教學(xué),盡量控制無關(guān)變量的影響,并定期對教師的教學(xué)進(jìn)行反思和改進(jìn)。
4.以一個月為時間段,對實驗班和對照班師生的課堂行為、學(xué)生的作業(yè)、試卷等進(jìn)行分析,保留數(shù)據(jù)資料。學(xué)期末,運用自編試題再次對實驗班、對照班學(xué)生的思維發(fā)展水平進(jìn)行測評,并分析學(xué)生的數(shù)學(xué)思維品質(zhì)即“思維的深刻性、靈活性、獨創(chuàng)性、批判性、敏捷性”是否有提高,[7]作為后測的研究資料。對前測結(jié)果與后測結(jié)果進(jìn)行統(tǒng)計分析,得出實驗的成效。
5.縱向比較。一學(xué)年后,在目前的3年級選取1個班級分別進(jìn)行前后測(未進(jìn)行實驗干預(yù),跨度一學(xué)年),收集的數(shù)據(jù)資料與原來3年級的實驗資料進(jìn)行比較分析;原來4年級的實驗資料與現(xiàn)在4年級的實驗資料進(jìn)行比較分析,以此來進(jìn)一步驗證實驗的信度和效度。
6.?dāng)?shù)據(jù)整理與統(tǒng)計分析:對收集的數(shù)據(jù)運用SPSS進(jìn)行統(tǒng)計,并對結(jié)果進(jìn)行分析。
[1]史中寧.《數(shù)學(xué)課程標(biāo)準(zhǔn)》的若干思考[J].?dāng)?shù)學(xué)通報,2007(5):1-5.
[2]郝文武.實現(xiàn)三維教學(xué)目標(biāo)統(tǒng)一的有效教學(xué)方式[J].教育研究,2009(1):69-73.
[3]王光生.知識類型與數(shù)學(xué)教學(xué)設(shè)計[J].?dāng)?shù)學(xué)教育學(xué)報,2007,16(3):27 -31.
[4]單墫.?dāng)?shù)學(xué)是思維的科學(xué)[J].?dāng)?shù)學(xué)通報,2001(6):1 -2.
[5]邵光華.?dāng)?shù)學(xué)思維能力結(jié)構(gòu)的定性分析[J].?dāng)?shù)學(xué)通報,1994(10):9-14.
[6]皮連生,蔡維靜.超越布盧姆——試論“知識分類與目標(biāo)導(dǎo)向”教學(xué)中的學(xué)習(xí)結(jié)果測量與評價[J].華東師范大學(xué)學(xué)報:教育科學(xué)版,2000,18(2):40 -49.
[7]林崇德.學(xué)習(xí)與發(fā)展——中小學(xué)生心理能力發(fā)展與培養(yǎng)(修訂版)[M].北京:北京師范大學(xué)出版社,2003:329.
The Experimental Scheme Design on the Elementary School Mathematics Teaching and Students’Thinking Ability Development
GENG Fei-fei
(School of Eucation,Shaanxi Normal University,Xi’an 710062,China)
The experimental study on the elementary school mathematics teaching and thinking ability development is under the frame of inter-subject.This paper uses experimental method to explore the clear designed teaching object according to different types of mathematics knowledge(conceptual knowledge,principle knowledge and procedural knowledge),meanwhile,fixing the reasonable subject aims(Questions-inductive,Inquiry-found,and Lectures-practice),that is aimed at accessing to knowledge,and abilities as well,especially optimization development of thinking ability.Related tests are applied on students’thinking ability testing.At last,the experiment results are tested and the foothold of inter-subject can be found from theory to practice.
Primary mathematics;Knowledge teaching;Thinking ability;Design of experiment
G424.2
A
1674-2087(2012)03-0089-05
2012-08-16
耿飛飛,女,江蘇徐州人,陜西師范大學(xué)教育學(xué)院博士研究生,主要從事教育學(xué)原理研究。
[責(zé)任編輯 向 寧]