邢 穎,韓 英
Caveolin-1及其與腫瘤多藥耐藥的研究進(jìn)展
邢 穎,韓 英
Caveolin-1(Cav-1)是細(xì)胞膜上caveolae的重要組成蛋白,在大多數(shù)正常細(xì)胞中高表達(dá),通過其絞手架區(qū)可與多種信號(hào)分子相連接,參與分子運(yùn)輸、細(xì)胞黏附和信號(hào)轉(zhuǎn)導(dǎo)在內(nèi)的許多細(xì)胞活動(dòng)。近來研究發(fā)現(xiàn)Cav-1與腫瘤細(xì)胞的增殖、分化、侵襲、轉(zhuǎn)移、凋亡以及多藥耐藥(multidrug resistance,MDR)關(guān)系密切,且其表達(dá)水平存在明顯差異,取決于腫瘤的類型、分期和分級(jí)。本文就Cav-1蛋白的結(jié)構(gòu)和功能,及其與MDR的關(guān)系做一綜述,為改善腫瘤治療中MDR問題提供新思路。
腫瘤;多藥耐藥相關(guān)蛋白質(zhì)類;Caveolin-1
Caveolae又稱“小窩”,是胞膜上脂筏表面穴樣凹陷的微區(qū)域,1953 年由 Palade[1]發(fā)現(xiàn),1955 年Yamada[2]給予命名。Caveolae 直徑 50 ~100 nm,以caveolin-1(Cav-1)為骨架分子,富含膽固醇和鞘糖脂。Caveolae存在于多種類型細(xì)胞中,在內(nèi)皮細(xì)胞、脂肪細(xì)胞、血管平滑肌細(xì)胞、纖維母細(xì)胞和肺上皮細(xì)胞中尤其豐富,參與各種信號(hào)分子和信號(hào)通路的整合[3]。Cav-1是caveolae的主要結(jié)構(gòu)蛋白和重要組成部分,與caveolae共同參與多種細(xì)胞過程,如細(xì)胞內(nèi)脂質(zhì)穩(wěn)態(tài)、囊泡運(yùn)輸(轉(zhuǎn)胞吞作用、內(nèi)吞作用和胞飲作用)、細(xì)胞遷移、細(xì)胞周期、細(xì)胞極性、細(xì)胞轉(zhuǎn)化和信號(hào)轉(zhuǎn)導(dǎo)等[4]。本文就Cav-1蛋白的結(jié)構(gòu)和功能及其與腫瘤多藥耐藥(multidrug resistance,MDR)的關(guān)系做一綜述,為改善腫瘤治療中MDR問題提供新思路。
1.1 Cav-1的結(jié)構(gòu)特征 人Cav-1基因定位于7q31.1,其蛋白分子量為 22 kd,長度為 178 AA,Cav-1的N端和C端均朝向胞漿內(nèi),中間具疏水性的第102~134氨基酸殘基形成發(fā)夾結(jié)構(gòu)(hairpin structure),插入到膜內(nèi),從而將該蛋白鏈分為2個(gè)胞漿區(qū)[5],結(jié)構(gòu)示意圖見圖 1。
在N端部分,有兩個(gè)對(duì)結(jié)構(gòu)和功能起主要作用的功能域(domain):一個(gè)是鄰近穿膜區(qū)的第61~101氨基酸殘基,稱為Caveolin寡聚化功能域(caveolin oligomerization domain,COD),它是 caveolin單體之間相互作用形成寡聚體的部位;另一個(gè)是包括在COD之內(nèi)的第82~101氨基酸殘基,稱為Cav-1絞手架區(qū)(caveolin scaffolding domain,CSD),可識(shí)別ωxωxxxω 或 ωxxxxωxxω(ω 代表芳香族氨基酸)的cav結(jié)合序列,是Cav-1與胞內(nèi)其他信號(hào)分子相互作用的區(qū)域[6-8]。最近,發(fā)現(xiàn)了Cav-1分子上負(fù)責(zé)離開內(nèi)質(zhì)網(wǎng)的功能域,即第66~70氨基酸,稱為signature domain,這個(gè)區(qū)域是Cav-1分子中最保守的區(qū)域,去除這個(gè)區(qū)域?qū)е翪av-1滯留在內(nèi)質(zhì)網(wǎng)中[9]。
圖1 Cav-1結(jié)構(gòu)示意圖
1.2 Cav-1的功能 Cav-1是caveolae不可缺少的組成部分,Cav-1缺陷的小鼠無明顯的caveolae形成[10-11]。同時(shí),Cav-1也是caveolae發(fā)揮細(xì)胞內(nèi)吞作用的關(guān)鍵蛋白,白蛋白、霍亂毒素和破傷風(fēng)毒素均通過此途徑進(jìn)入細(xì)胞內(nèi)[12]。
Cav-1可結(jié)合膽固醇和長鏈不飽和脂肪酸,從而參與caveolae介導(dǎo)的細(xì)胞內(nèi)膽固醇運(yùn)輸[13]。在肝細(xì)胞損傷后脂質(zhì)代謝和增殖反應(yīng)的協(xié)調(diào)中,Cav-1同樣起著至關(guān)重要的作用。敲除已行部分肝切除的小鼠Cav-1基因,其肝臟的再生能力明顯下降;此外,缺失Cav-1基因的小鼠肝細(xì)胞,其利用脂肪酸作為主要能量來源的能力也受損,同時(shí)伴有脂滴形成減少[14]。
Cav-1通過其CSD結(jié)構(gòu)域?qū)⒋罅康牡鞍拙奂赾aveolae上,如受體酪氨酸激酶(receptor tyrosine kinase,RTK)、絲氨酸/蘇氨酸激酶、磷脂酶、G蛋白偶聯(lián)受體(G protein-coupled receptors,GPCR)和接頭蛋白等,從而調(diào)節(jié)這些蛋白的活性,調(diào)控細(xì)胞的信號(hào)轉(zhuǎn)導(dǎo)[15](圖2)。在大多數(shù)情況下,Cav-1是細(xì)胞信號(hào)的負(fù)性調(diào)節(jié)者。Cav-1招募 β-catenin聚集于caveolae膜區(qū)域,從而阻斷β-catenin介導(dǎo)的轉(zhuǎn)錄,抑制Wnt信號(hào)通路[16]。Cav-1與內(nèi)皮型一氧化氮合酶相互作用后抑制后者的活性,以調(diào)節(jié)內(nèi)皮細(xì)胞增生和血管形成。過表達(dá)重組的Cav-1能阻斷neu(cerbB2,表皮生長因子家族中一種重要的受體)介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)[17]。轉(zhuǎn)染Cav-1后能抑制信號(hào)從表皮生長因子受體(EGFR)、Raf-1、MEK-1和Erk2向核內(nèi)傳遞,反義抑制 NIH3T3細(xì)胞的 Cav-1能活化Erk1/2。此外,體外實(shí)驗(yàn)已證實(shí)Cav-1第32~95氨基酸殘基衍生的肽段能抑制MEK-1和Erk2的激酶活性[18-19]。在某些信號(hào)通路中,Cav-1也能起著正性調(diào)節(jié)作用。PI3K/AKT通路是介導(dǎo)細(xì)胞存活的重要信號(hào)通路,PI3K定位于內(nèi)皮細(xì)胞、成纖維細(xì)胞和髓樣細(xì)胞的caveolae上并可與Cav-1相互作用[20];過表達(dá)HEK293和HeLa細(xì)胞的Cav-1可提高磷酸化AKT的基礎(chǔ)水平[21];同樣轉(zhuǎn)染 Cav-1的 MCF-7乳腺癌細(xì)胞可組成性地表達(dá)磷酸化AKT[22]。
圖2 Cav-1調(diào)節(jié)細(xì)胞內(nèi)信號(hào)傳導(dǎo)
2.1 MDR MDR是指細(xì)胞對(duì)結(jié)構(gòu)和功能不同的多種化療藥物產(chǎn)生交叉耐藥性,這是腫瘤細(xì)胞免受化療藥物攻擊的最重要的防御機(jī)制,也是導(dǎo)致化療失敗的主要原因之一[23-24]。腫瘤MDR的機(jī)制非常復(fù)雜,主要包括:①細(xì)胞中藥物轉(zhuǎn)運(yùn)蛋白如P-gp、MRP1、LRP、GST等表達(dá)增加,藥物外排功能增強(qiáng);②胞膜結(jié)構(gòu)特性(黏彈性、滲透性)改變致細(xì)胞藥物代謝改變;③細(xì)胞凋亡和(或)生長停滯的通路調(diào)節(jié)異常[25]。
2.2 Cav-1參與MDR Cav-1在大多數(shù)的腫瘤組織、細(xì)胞中表達(dá)下調(diào)甚至缺如,如胃癌、乳腺癌、肺癌、宮頸癌、結(jié)腸癌、甲狀腺濾泡狀癌等。然而,在一些誘導(dǎo)MDR的腫瘤細(xì)胞系中Cav-1的水平顯著上調(diào),如秋水仙堿誘導(dǎo)的人結(jié)腸癌細(xì)胞HT-29/MDR和小鼠黑色素瘤細(xì)胞 B16-MDR[26];多柔比星誘導(dǎo)的人乳腺癌細(xì)胞系MCF-7/AdrR[27];長春新堿誘導(dǎo)耐藥的人卵巢癌細(xì)胞SKVLB1和紫杉醇、阿霉素或依托泊苷誘導(dǎo)耐藥的人肺癌細(xì)胞A549[28-30]。同時(shí),通過對(duì)73例吉西他濱治療的非小細(xì)胞肺癌的臨床病例研究,發(fā)現(xiàn)Cav-1陽性患者化療不良反應(yīng)發(fā)生率明顯較低,且有較差的無進(jìn)展生存率和總生存率[31]。以上的研究均提示,Cav-1參與了MDR的獲得和維持。
然而,也有少數(shù)研究發(fā)現(xiàn),在乳腺癌細(xì)胞株MCF-7他莫昔芬耐藥過程中Cav-1的表達(dá)可下降甚至丟失[32];Cav-1過表達(dá)可降低胞膜膽固醇水平,增加胞膜流動(dòng)性,從而間接抑制P-gp的轉(zhuǎn)運(yùn)活性,導(dǎo)致細(xì)胞耐藥性降低[33];有報(bào)道,30例口腔鱗狀細(xì)胞癌的活檢標(biāo)本染色顯示Cav-1陽性與化療應(yīng)答率呈正相關(guān),而7例染色陰性者中6例無化療不良反應(yīng)[34]。
2.3 Cav-1調(diào)節(jié)MDR的機(jī)制 目前,Cav-1增強(qiáng)腫瘤MDR的機(jī)制尚未完全明確,可能原因有:①與MDR有關(guān)的胞膜脂質(zhì)成分改變(膽固醇、GlcCer)。依賴Cav-1的細(xì)胞內(nèi)膽固醇外向轉(zhuǎn)運(yùn)可將大量細(xì)胞毒性藥物(大多數(shù)為脂溶性)逆濃度梯度帶至胞膜caveolae,最終由定位于caveolae的藥物外排泵將藥物轉(zhuǎn)移至細(xì)胞外,從而降低腫瘤細(xì)胞內(nèi)的藥物濃度,導(dǎo)致化療失?。?5];在多種MDR腫瘤細(xì)胞系(包括MCF-7/AdrR、KB-V、NIH:OVCAR-3)中均發(fā)現(xiàn) GlcCer有明顯提高[36],且 Lucci等[37]對(duì)6 例黑色素瘤和1例乳腺癌樣本進(jìn)行研究,發(fā)現(xiàn)GlcCer的水平和患者化療反應(yīng)呈反比關(guān)系;此外,GlcCer大量聚集于caveolae,且與 Cav-1有緊密聯(lián)系,推測(cè) GlcCer對(duì)MDR的調(diào)節(jié)可能與Cav-1有一定關(guān)聯(lián)。②Cav-1與MDR蛋白的相互作用。P-gp是最具代表性的耐藥蛋白,位于胞膜的脂筏和 caveolae內(nèi)。Demeule等[38]對(duì)中國倉鼠卵巢癌細(xì)胞的研究表明,無論是在耐藥的CH(R)C5細(xì)胞,還是在藥敏的AuxB1細(xì)胞,均有相當(dāng)一部分的P-gp和Cav-1共同定位在caveolae。用環(huán)孢素A或秋水仙堿處理CH(R)C5細(xì)胞,可以使定位在caveolae的P-gp和 Cav-1的量增加。實(shí)驗(yàn)還發(fā)現(xiàn)P-gp和Cav-1有共沉淀現(xiàn)象,提示兩者之間存在著直接的相互作用。Pang等[39]研究了正常人與白血病患者骨髓細(xì)胞中Cav-1和MDR-1基因(P-gp的編碼基因)的表達(dá),發(fā)現(xiàn)二者表達(dá)呈正相關(guān)。提示兩者相互作用,共同引起多藥耐藥的發(fā)生;Li等[40]對(duì)人乳腺癌耐藥細(xì)胞系進(jìn)行研究也得到類似結(jié)果,紫杉醇可誘導(dǎo)P-gp和PrPC復(fù)合物在caveolae微區(qū)域的聚集,且該過程與Cav-1的再分布同步;此外,Cav-1 還可與 MGr1-Ag[41]、BCRP/ABCG2[42]等MDR相關(guān)蛋白相互作用,參與化療藥物的抵抗。③Cav-1與過氧化物酶體增殖因子活化受體(peroxisome proliferator-activated receptor,PPAR)-γ相互作用,提高腫瘤細(xì)胞抵抗細(xì)胞毒性藥物的能力,從而導(dǎo)致MDR發(fā)生[43]。④Cav-1可能作為促存活、抗凋亡的蛋白參與MDR。Tirado等[44]研究發(fā)現(xiàn)ESFT細(xì)胞中Cav-1水平越高,對(duì)化療藥物的抵抗就越強(qiáng),且Cav-1能活化ESFT細(xì)胞PKCα磷酸化,從而增強(qiáng)其抵抗阿霉素和順鉑所致細(xì)胞凋亡的能力,而敲除細(xì)胞Cav-1基因,細(xì)胞磷酸化PKCα水平下降,同時(shí)伴有凋亡敏感性增強(qiáng),再次表達(dá)Cav-1可逆轉(zhuǎn)上述變化,推測(cè)Cav-1通過調(diào)節(jié)PKCα磷酸化而增強(qiáng)細(xì)胞對(duì)藥物誘導(dǎo)的凋亡抵抗,產(chǎn)生MDR;Zhang等[45]觀察到在前列腺癌細(xì)胞系LNCap和22RV1中Id-1和Cav-1相互作用,參與上皮間質(zhì)轉(zhuǎn)變、細(xì)胞侵襲性增加以及對(duì)紫杉醇誘導(dǎo)的細(xì)胞凋亡抵抗。
綜上所述,Cav-1在腫瘤發(fā)生發(fā)展中的作用機(jī)制十分復(fù)雜[46],在腫瘤發(fā)生早期階段,Cav-1水平下調(diào)以減弱其生長抑制作用,使細(xì)胞獲得非貼壁依賴性生長的性質(zhì),促進(jìn)腫瘤細(xì)胞惡性轉(zhuǎn)化;在晚期階段,腫瘤細(xì)胞獲得轉(zhuǎn)移性或耐藥性時(shí),Cav-1表達(dá)再次升高,以發(fā)揮其促進(jìn)腫瘤細(xì)胞存活的作用。然而目前,腫瘤進(jìn)展時(shí)Cav-1從腫瘤抑制到腫瘤促進(jìn)的轉(zhuǎn)變機(jī)制尚不清楚,推測(cè)不同時(shí)期結(jié)合Cav-1的蛋白、Cav-1自身磷酸化狀態(tài)以及異構(gòu)體的差異表達(dá)可能均參與其中[8]。闡明Cav-1與腫瘤及MDR之間的雙重性作用機(jī)制,尋找腫瘤耐藥逆轉(zhuǎn)新的突破點(diǎn),提高化療藥物敏感性,是未來Cav-1在腫瘤研究中亟需解決的問題。
[1]Palade G E.Fine structure of blood capillaries[J].Journal of Applied Physiology,1953,24:14-24.
[2]Yamada E.The fine structure of the gall bladder epithelium of the mouse[J].J Biophys Biochem Cyto,1955,1(2):445-458.
[3]Cohen A W,Hnasko R,Schubert W,et al.Role of caveolae and caveolins in health and disease[J].Physiol Rev,2004,84(4):1341-1379.
[4]Thompson T C,Tahir S A,Li L.The role of caveolin-1 in prostate cancer:clinical implications[J].Prostate Cancer Prostatic Dis,2010,13(1):6-11.
[5]Goetz J G,Lajoie P,Wiseman S M,et al.Caveolin-1 in tumor progression:the good,the bad and the ugly[J].Cancer Metastasis Rev,2008,27(4):715-735.
[6]Bastiani M,Parton R G.Caveolae at a glance[J].J CellSci,2010,123(Pt 22):3831-3836.
[7]Schlegel A,Lisanti M P.A molecular dissection of caveolin-1 membrane attachment and oligomerization.Two separate regions of the caveolin-1 C-terminal domain mediate membrane binding and oligomer/oligomer interactions in vivo[J].J Biol Chem,2000,275(28):21605-21617.
[8]Shatz M,Liscovitch M.Caveolin-1:a tumor-promoting role in human cancer[J].Int J Radiat Biol,2008,84(3):177-189.
[9]Machleidt T,Li W P,Liu P,et al.Multiple domains in caveolin-1 control its intracellular traffic[J].J Cell Biol,2000,148(1):17-28.
[10]Drab M,Verkade P,Elger M,et al.Loss of caveolae,vascular dysfunction,and pulmonary defects in caveolin-1 gene-disrupted mice[J].Science,2001,293(5539):2449-2452.
[11]Razani B,Engelman J A,Wang X B,et al.Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities[J].J Biol Chem,2001,276(41):38121-38138.
[12]Nabi I R,Le P U.Caveolae/raft-dependent endocytosis[J].J Cell Biol,2003,161(4):673-677.
[13]Fielding C J,F(xiàn)ielding P E.Caveolae and intracellular trafficking of cholesterol[J].Adv Drug Deliv Rev,2001,49(3):251-264.
[14]Fernandez M A,Albor C,Ingelmo Torres M,et al.Caveolin-1 is essential for liver regeneration[J].Science,2006,313(5793):1628-1632.
[15]Staubach S,Hanisch F G.Lipid rafts:signaling and sorting platforms of cells and their roles in cancer[J].Expert Rev Proteomics,2011,8(2):263-277.
[16]Galbiati F,Volonte D,Brown A M,et al.Caveolin-1 expression inhibits Wnt/beta-catenin/Lef-1 signaling by recruiting beta-catenin to caveolae membrane domains[J].J Biol Chem,2000,275(30):23368-23377.
[17]Engelman J A,Lee R J,Karnezis A,et al.Reciprocal regulation of neu tyrosine kinase activity and caveolin-1 protein expression in vitro and in vivo.Implications for human breast cancer[J].J Biol Chem,1998,273(32):20448-20455.
[18]Engelman J A,Chu C,Lin A,et al.Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo.A role for the caveolin-scaffolding domain[J].FEBS Lett,1998,428(3):205-211.
[19]Galbiati F,Volonte D,Engelman J A,et al.Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade[J].EMBO J,1998,17(22):6633-6648.
[20]Zundel W,Swiersz L M,Giaccia A.Caveolin-1 mediated regulation of receptor tyrosine kinase-associated phosphatidylinositol 3-kinase activity by ceramide[J].Mol Cell Biol,2000,20(5):1507-1514.
[21]Shack S,Wang X T,Kokkonen G C,et al.Caveolin-induced activation of the phosphatidylinositol 3-kinase/Akt pathway increases arsenite cytotoxicity[J].Mol Cell Biol,2003,23(7):2407-2414.
[22]Ravid D,Maor S,Werner H,et al.Caveolin-1 inhibits cell detachment-induced p53 activation and anoikis by upregulation of insulin-like growth factor-I receptors and signaling[J].Oncogene,2005,24(8):1338-1347.
[23]王鈞,王婧,周毅.環(huán)氧合酶-2與腫瘤多藥耐藥[J].腫瘤學(xué)雜志,2011,17(3):216-220.
[24]倪彥彬,章國良.異源物代謝核受體PXR與腫瘤多藥耐藥相關(guān)性的研究進(jìn)展[J].生理科學(xué)進(jìn)展,2011,42(1):67-71.
[25]Szakacs G,Paterson J K,Ludwig J A,et al.Targeting multidrug resistance in cancer[J].Nat Rev Drug Discov,2006,5(3):219-234.
[26]Lavie Y,Liscovitch M.Changes in lipid and protein constituents of rafts and caveolae in multidrug resistant cancer cells and their functional consequences[J].Glycoconj J,2000,17(3-4):253-259.
[27]Lavie Y,F(xiàn)iucci G,Liscovitch M.Up-regulation of caveolae and caveolar constituents in multidrug-resistant cancer cells[J].J Biol Chem,1998,273(49):32380-32383.
[28]Yang C P,Galbiati F,Volonte D,et al.Upregulation of caveolin-1 and caveolae organelles in Taxol-resistant A549 cells[J].FEBS Lett,1998,439(3):368-372.
[29]Belanger M M,Gaudreau M,Roussel E,et al.Role of caveolin-1 in etoposide resistance development in A549 lung cancer cells[J].Cancer Biol Ther,2004,3(10):954-959.
[30]Belanger M M,Roussel E,Couet J.Up-regulation of caveolin expression by cytotoxic agents in drug-sensitive cancer cells[J].Anticancer Drugs,2003,14(4):281-287.
[31]Ho C C,Kuo S H,Huang P H,et al.Caveolin-1 expression is significantly associated with drug resistance and poor prognosis in advanced non-small cell lung cancer patients treated with gemcitabine-based chemotherapy[J].Lung Cancer,2008,59(1):105-110.
[32]Thomas N B,Hutcheson I R,Campbell L.Growth of hormone-dependent MCF-7 breast cancer cells is promoted by constitutive caveolin-1 whose expression is lost in an EGF-R-mediated manner during development of tamoxifen resistance[J].Breast Cancer Res Treat,2010,119(3):575-591.
[33]Cai C,Chen J.Overexpression of caveolin-1 induces alter-ation of multidrug resistance in Hs578T breast adenocarcinoma cells[J].Int J Cancer,2004,111(4):522-529.
[34]Nakatani K,Wada T,Nakamura M,et al.Expression of caveolin-1 and its correlation with cisplatin sensitivity in oral squamous cell carcinoma[J].J Cancer Res Clin Oncol,2005,131(7):445-452.
[35]Liscovitch M,Lavie Y.Multidrug resistance:a role for cholesterol efflux pathways?[J].Trends Biochem Sci,2000,25(11):530-534.
[36]Lavie Y,Cao H,Bursten S L,et al.Accumulation of glucosylceramides in multidrug-resistant cancer cells[J].J Biol Chem,1996,271(32):19530-19536.
[37]Lucci A,Cho W I,Han T Y,et al.Glucosylceramide:a marker for multiple-drug resistant cancers[J].Anticancer Res,1998,18(1B):475-480.
[38]Demeule M,Jodoin J,Gingras D,et al.P-glycoprotein is localized in caveolae in resistant cells and in brain capillaries[J].FEBS Lett,2000,466(2-3):219-224.
[39]Pang A,Au W Y,Kwong Y L.Caveolin-1 gene is coordinately regulated with the multidrug resistance 1 gene in normal and leukemic bone marrow[J].Leuk Res,2004,28(9):973-977.
[40]Li Q Q,Cao X X,Xu J D,et al.The role of P-glycoprotein/cellular prion protein interaction in multidrug-resistant breast cancer cells treated with paclitaxel[J].Cell Mol Life Sci,2009,66(3):504-515.
[41]Linge A,Meleady P,Henry M.Bleomycin treatment of A549 human lung cancer cells results in association of MGr1-Ag and caveolin-1 in lipid rafts[J].Int J Biochem Cell Biol,2011,43(1):98-105.
[42]Herzog M,Storch C H,Gut P.Knockdown of caveolin-1 decreases activity of breast cancer resistance protein(BCRP/ABCG2)and increases chemotherapeutic sensitivity[J].Naunyn Schmiedebergs Arch Pharmacol,2011,383(1):1-11.
[43]Lin S Y,Yeh K T,Chen W T,et al.Promoter CpG methylation of caveolin-1 in sporadic colorectal cancer[J].Anticancer Res,2004,24(3A):1645-1650.
[44]Tirado O M,MacCarthy C M,F(xiàn)atima N.Caveolin-1 promotes resistance to chemotherapy-induced apoptosis in E-wing's sarcoma cells by modulating PKCalpha phosphorylation[J].Int J Cancer,2010,126(2):426-436.
[45]Zhang X,Ling M T,Wang Q,et al.Identification of a novel inhibitor of differentiation-1(ID-1)binding partner,caveolin-1,and its role in epithelial-mesenchymal transition and resistance to apoptosis in prostate cancer cells[J].J Biol Chem,2007,282(46):33284-33294.
[46]Shatz M,Liscovitch M.Caveolin-1 and cancer multidrug resistance:coordinate regulation of pro-survival proteins?[J].Leuk Res,2004,28(9):907-908.
Caveolin-1 and Its Role in Cancer Multidrug Resistance
XING Ying1,HAN Ying2(1.Medical University of PLA,Beijing 100853,China;2.General Hospital of Beijing Military Area Command,Beijing 100700,China)
Caveolin-1(Cav-1),an integral membrane protein in caveolae and extremely abundant in many normal cell types,exhibits an unusual ability to interact and modulate many cellular processes such as molecular transport,cell adhesion and signal transduction via its caveolin scaffolding domain(CSD).Cav-1 has been recently reported to closely correlate with multiple cancer-associated processes including cellular generation,differentiation,infestation,transformation,apoptosis and multidrug resistance(MDR),and there are obvious differences in expressive levels which depend on the types,staging and grading of the tumor.This paper surveys the structure and function of Cav-1,especially its relationship with cancer MDR so as to provide a new thread for improving MDR in treatment.
Neoplasms;Multidrug resistance-associated proteins;Caveolin-1
R73
A
2095-140X(2012)08-0010-05
10.3969/j.issn.2095-140X.2012.08.003
2012-06-12 修回時(shí)間:2012-06-28)
2009年國家自然科學(xué)基金資助項(xiàng)目(30940032)
100853北京,解放軍醫(yī)學(xué)院2010級(jí)博士(邢穎);100700北京,北京軍區(qū)總醫(yī)院(韓英)
韓英,E-mail:yh721303@sina.com