鄒忠義,賀稚非,李洪軍,韓鵬飛
(西南大學食品科學學院,重慶市特色食品工程技術研究中心,重慶400716)
單端孢霉烯族毒素及其脫毒微生物國外研究進展
鄒忠義,賀稚非,李洪軍*,韓鵬飛
(西南大學食品科學學院,重慶市特色食品工程技術研究中心,重慶400716)
單端孢霉烯族毒素是一大類霉菌毒素,對人與動物具有非常大的毒性。它們廣泛存在于糧食、飼料及以被污染糧食為原料的食品中,不僅給食品安全帶來了一定的隱患,也影響到畜牧業(yè)生產。許多學者正在研究食品和飼料中單端孢霉烯族毒素的控制方法,其中生物脫毒是目前的研究熱點,例如利用微生物將毒素轉化成無毒或低毒的化合物。由于生物脫毒具有許多優(yōu)點,因而具有廣闊的前景。本文綜述了單端孢霉烯族毒素的結構與毒性官能團,以及單端孢霉烯族毒素脫毒微生物方面的研究進展,旨在為單端孢霉烯族毒素的轉化降解研究提供參考。
單端孢霉烯族毒素,毒性官能團,微生物轉化,生物脫毒
單端孢霉烯族毒素(Trichothecenes)是一大族化學性質相關的真菌毒素,最重要的單端孢霉烯族毒素由鐮刀霉產生[1]。單端孢霉烯族毒素對人和動物均具有毒性,能夠造成急性和慢性疾病,包括嘔吐、腹瀉、刺激皮膚、拒食、惡心、神經障礙和流產等[2-3]。此外,高劑量的單端孢霉烯族毒素能促進白細胞的快速凋亡[4]。單端孢霉烯族毒素的毒性作用機制是對蛋白質、DNA和RNA合成,線粒體功能,細胞分裂和膜效應的抑制作用,以及免疫抑制作用[5-11]。單端孢霉烯族毒素廣泛存在于糧食、飼料以及糧谷類食品中,主要來源于被真菌污染的小麥、大麥和玉米等糧食。由這些污染原料制成的食品和飼料中,往往含有單端孢霉烯族毒素[12-13]。例如玉米粉和燕麥片[14-15],以及嬰幼兒谷類食品[16]。人類許多急性疾病的爆發(fā)與消費鐮刀霉污染的糧谷類食品有關[17]。如果飼料中含有單端孢霉烯族毒素,它們不僅對飼養(yǎng)的動物造成傷害,影響產量和質量,還可能將這些毒素轉移到奶、肉及蛋等動物源性食品中,危害消費者的健康[18-20]。無論是農業(yè)發(fā)達國家還是發(fā)展中國家,單端孢霉烯族毒素污染糧食與飼料都是全球糧食生產與加工,及畜牧業(yè)生產中面臨的一個重要問題[21]。因此,為了防止單端孢霉烯族毒素污染食品和飼料,許多學者做了大量的工作,提出了相關策略:防止真菌污染糧食;對已經存在于食物和飼料的毒素進行脫毒處理;抑制胃腸道對毒素的吸收。但在目前的農業(yè)技術措施條件下,真菌污染不可避免,同時也沒有有效地抑制胃腸道吸收毒素的方法。因此,對單端孢霉烯族毒素進行脫毒處理就是一條可行的措施。物理處理的效果常常不太理想,并且往往會改變營養(yǎng)成分。雖然許多化學處理能顯著降低單端孢霉烯族毒素的濃度,但可能會降低食物和飼料中的營養(yǎng)價值,也有可能殘留有害物質,這些副作用限制了該方法的應用[22]。生物脫毒技術是目前的研究熱點,例如利用微生物將毒素轉化成無毒或低毒的化合物,是一種特異性的、高效的和環(huán)保的的脫毒技術。為了更好地開發(fā)這項脫毒技術,就有必要去了解毒素的毒性官能團,脫毒微生物,脫毒作用方式及脫毒產物等信息。
單端孢霉烯族毒素含有特征性的12,13-環(huán)氧-單端孢氧-9-烯環(huán)結構,基本結構如圖1所示,根據它們的化學結構不同,分成4種類型:A型單端孢霉烯族毒素在C-8位不含有羰基功能團,例如T-2毒素、HT-2毒素等;B型單端孢霉烯族毒素在C-8位含有羰基功能團,例如脫氧雪腐鐮刀菌烯醇(DON)、雪腐鐮刀菌烯醇(NIV)等;C型單端孢霉烯族毒素的特征是在C-7、C-8或C-9、C-10上有第二個環(huán)氧基團,例如扁蟲菌素和燕茜素等;D型單端孢霉烯族毒素在C-4、C-15上含有一個大環(huán)結構,例如桿孢菌素和葡萄穗霉毒素等。目前已經鑒定了超過200種單端孢霉烯族毒素,但是主要污染食品和飼料的單端孢霉烯族毒素是A、B型單端孢霉烯族毒素,如圖2、圖3所示[23-24]。
圖1 單端孢霉烯族毒素的基本結構Fig.1 Basic structure of trichothecenes
單端孢霉烯族毒素的毒性各不相同,這由它們的分子結構決定,特別是由它們的毒性官能團決定[25-26]。這些官能團是微生物脫毒作用的靶點。
1.2.1 環(huán)氧基 在單端孢霉烯結構中,C-12,13環(huán)氧環(huán)是毒性的必需官基團,A型和B型單端孢霉烯族毒素的開環(huán)作用,例如脫環(huán)氧作用,能產生無毒或低毒的產物。在大鼠皮膚刺激實驗中,脫環(huán)氧T-2毒素毒性是T-2毒素毒性的1/400[27]。在DNA合成的評估中,用5-溴基-2’-脫氧尿苷(BrdU)結合實驗,比較幾種B型單端孢霉烯族毒素的細胞毒性,脫環(huán)氧DON(DOM-1)的毒性是DON的1/54,脫環(huán)氧NIV的毒性是NIV的1/55[2]。因此,脫環(huán)氧作用是一種有效的脫毒作用。
1.2.2 烯基 單端孢霉烯族毒素中的雙鍵(烯基)也是毒性作用的必需基團。臭氧對單端孢霉烯族毒素的氧化作用,最有可能攻擊雙鍵,在C-9,10雙鍵上加上兩個原子氧,分子的其他部分沒有發(fā)生改變。毒素的分子結構發(fā)生改變,從而生物活性發(fā)生改變,毒性降低[28]。
圖2 A型單端孢霉烯族毒素Fig.2 Type A trichothecenes
圖3 B型單端孢霉烯族毒素Fig.3 Type B trichothecenes
1.2.3 乙?;?雖然C-12,13環(huán)氧環(huán)和C-9,10雙鍵是毒性作用的必需基團,乙?;奈恢煤蛿盗恳诧@著的影響到單端孢霉烯族毒素的毒性。用瑞士小鼠3T3成纖維細胞評估DNA合成,進行細胞毒性實驗,發(fā)現DON的毒性與15-ADON一樣,但是DON的毒性是3-ADON的10倍[2]。但在酵母生物測定的實驗中,15-ADON的毒性要大于DON[29]。在同樣的測試中,HT-2毒素(在C-15位上有一個乙?;?的毒性低于T-2毒素(在C-4、C-15上有兩個乙酰基),但高于三乙酰T-2毒素(在C-3、C-4、C-15上有三個乙?;?。當向大白鼠中腦施加固態(tài)的毒素時,發(fā)現HT-2毒素的毒性低于T-2毒素[30]。乙?;饔煤兔撘阴;饔枚伎赡芙档蛦味随呙瓜┳宥舅氐亩拘?,這由單端孢霉烯分子中乙酰基的位置和數目決定。
1.2.4 羥基 8-酮單端孢霉烯的淋巴毒性各不相同,例如,根據C-4取代物的不同,毒性大小的順序為:乙?;玖u基>氫。單端孢霉烯分子結構中,羥基的存在與否及位置也影響到它們的毒性[31]。NIV的毒性是DON的10倍,他們在結構上的唯一區(qū)別是NIV在C-4位上有羥基[32]。但是,C-3位上羥基對單端孢霉烯族毒素的毒性影響卻不同,當T-2毒素、HT-2毒素及T-2三醇C-3位上的羥基被乙?;〈纬蒚-2乙酸鹽,T-2毒素和T-2四醇四乙酸鹽,它們的毒性降低[33]。當DON的C-3位羥基被氧化形成3-酮-DON,它的免疫抑制毒性顯著下降,表明C-3位羥基對DON的毒性具有重要作用[34]。
利用微生物發(fā)酵使單端孢霉烯族毒素的毒性官能團發(fā)生改變,將毒素轉化成無毒或低毒的化合物。這種脫毒技術是目前國內外的研究熱點,各種各樣的微生物都被用來測試它們的脫毒效應。目前,能有效轉化單端孢霉烯族毒素的微生物不多,它們主要來源于動物腸道、土壤、植物等自然環(huán)境中。
有很多報道,是關于利用不同反芻動物瘤胃液中的微生物,將單端孢霉烯族毒素轉化的研究。羊瘤胃液中的微生物被發(fā)現具有脫乙酰作用,在厭氧條件下,與瘤胃液一起孵化后,DAS和T-2毒素分別轉化成MAS和HT-2毒素,但是DON沒有改變[35]。相比而言,乳牛瘤胃液微生物將DON轉化成脫環(huán)氧DON(DOM-1)[36-37]。瘤胃液微生物同時具有脫乙酰和脫環(huán)氧作用,將3-ADON轉化成DON和DOM-1[38]。當用含有DON和3-ADON的飼料喂食動物時,也能觀察到瘤胃液的這些轉化作用[39]。
到目前為止,研究最多的是從牛瘤胃液中分離得到菌株BBSH 797,主要的作用是在體內和體外將DON轉化成DOM-1[40]。后來證明,菌株BBSH797也能轉化A型單端孢霉烯族毒素,脫環(huán)氧作用,例如將SCP轉化成脫環(huán)氧SCP,或者脫乙酰作用,將T-2毒素轉化成HT-2毒素[41]。在市場上能購買到基于菌株BBSH797的飼料添加劑產品。
幾種已知的瘤胃單菌株具有酯酶活性,對T-2毒素脫乙酰作用具有不同的活性。丁酸弧菌屬fibrisolvens菌株CE51和CE56將T-2毒素轉化成為HT-2毒素(轉化率分別為22%、38%)、T-2三醇(3%、9%)和NEO(10%、14%),而厭氧弧菌屬解脂假絲酵母和反芻月形單孢菌將T-2毒素僅轉化成HT-2毒素(22%、18%)和T-2三醇(7%、10%)。在葡萄糖培養(yǎng)基和纖維二糖培養(yǎng)基中,細菌培養(yǎng)物的轉化活性相同[42]。在另一個的研究中,溶纖維丁酸弧菌M-14a將DAS脫乙酰形成15-乙酰鐮刀菌烯醇(15-ASCP)。來自綿羊瘤胃的乳酸桿菌和一株未鑒定的細菌具有脫乙酰作用活性[43]。
不同類型的動物具有不同的腸道微生物菌群。在厭氧條件下,來自大鼠和豬的腸道微生物能將DAS進行脫乙酰和脫環(huán)氧作用,生成脫乙酰的脫環(huán)氧產物脫環(huán)氧MAS和脫環(huán)氧SCP;雞腸道微生物僅表現出了脫乙?;钚裕瑢?DAS轉化成 MAS和SCP[27]。將雞大腸食糜與DON混合后,表現出了非常有效的脫環(huán)氧活性,DON被完全轉化成DOM-1[37]。雞腸道微生物的脫環(huán)氧功能,隨著雞的品種、個體和腸道的區(qū)域不同而不同。豬腸道微生物的DON脫環(huán)氧活性也一樣,沒有活性[37]或有活性[44]。
Young等[45]已從雞腸道消化物中分離純化和鑒定了細菌菌株LS100(IDAC180507-1)和SS3,檢驗了它們對12種單端孢霉烯族毒素的轉化能力。轉化的類型與它們的分子結構有關。對無乙?;膯味随呙瓜┳宥舅谼ON、NIV和疣孢霉素,脫環(huán)氧代謝物是主要的轉化產物。但是,單乙酰單端孢霉烯族毒素3-ADON,15-ADON和鐮刀菌烯酮X主要轉化成脫乙酰產物。二乙酰單端孢霉烯族毒素DAS和NEO僅表現出脫乙酰作用。T-2毒素也僅有脫乙酰作用,而HT-2毒素和T-2三醇普遍的反應是脫環(huán)氧作用。大鼠腸道微生物將T-2毒素轉化成脫環(huán)氧產物,脫環(huán)氧HT-2,脫環(huán)氧T-2三醇,進一步轉化成T-2四醇和SCP[27]。Guan等[46]報道,來源于布朗大頭魚鯰魚食糜的微生物培養(yǎng)物C133能將DON脫環(huán)氧化形成DOM-1。
單端孢霉烯族毒素是谷類農作物中比較常見的真菌毒素,它們具有很強的物理化學穩(wěn)定性,但是它們在自然環(huán)境中并沒有蓄積,這表明自然環(huán)境中可能存在著DON生物轉化降解作用。土壤、水體等自然環(huán)境被作為篩選單端孢霉烯族毒素轉化微生物的來源。
土壤微生物短小桿菌屬菌株114-2,能轉化A型單端孢霉烯族毒素。利用T-2毒素作為唯一碳源,在有氧條件下,將T-2毒素首先轉化成HT-2毒素,HT-2毒素進一步轉化成T-2三醇。長時間的培養(yǎng)后,T-2毒素被完全轉化,在培養(yǎng)物中檢測不到單端孢霉烯族毒素。該菌株也能降解DAS,NEO,NIV和FUS。降解作用需要雜化和水解酶類,存在于完整細胞、無細胞可溶部分和培養(yǎng)物濾液[47]。
V?lkl等[48]在1285份來自農場土壤、糧谷、昆蟲和其它來源的微生物培養(yǎng)物中,發(fā)現一種混合微生物能將DON轉化成3-酮-DON。這種混合微生物也能轉化3-ADON,15-ADON和FUS,但沒有鑒定出具有生物轉化作用的微生物。Binder等[39]報道稱混合土壤微生物將DON和3-ADON轉化成5種未鑒定的代謝物,經釀酒酵母測定,毒性減小。Shima等[34]在含有礦物鹽類的培養(yǎng)基中,以DON作為唯一的富集方法,從土壤樣品中分離得到土壤桿菌屬-根瘤菌屬菌株E3-39,在有氧條件下,該菌株將DON轉化成3-酮-DON。該菌株具有長期的轉化活性,在細胞培養(yǎng)物、無細胞濾液發(fā)現了微生物轉化的酶(系),但在細胞提取液中未發(fā)現此類物質。Zhou等[25]用禾谷鐮刀菌增強感染發(fā)霉玉米,6種耕種土壤能將DON轉化成幾種產物。這種增強的土壤能轉化超過87%的DON,其中兩種在28℃條件下孵化3d,能完全去除培養(yǎng)基中的DON,從其中一個土壤樣品中分離得到了細菌菌株Barpee,表現出了較強的DON轉化活性,在有氧條件下,將DON轉化成至少兩種產物,主要產物是DON的同分異構體,較少產生3-酮-DON。He等[49]用以DON作為唯一碳源的無機鹽培養(yǎng)基,從土壤中分離得到一株塔賓曲霉NJA-1,經過兩個星期的孵化,該菌株能將94.4%的DON轉化成一種相對分子質量比DON大18.1的化學物質,但其沒有描述其分子結構和轉化產物的毒性,這可能是水分子的OH-和H+加到碳碳雙鍵兩個碳原子上的水合作用產物。
單端孢霉烯族毒素的三種產生菌:雪腐鐮刀霉、粉紅鐮刀霉、茄病鐮刀霉,能夠將單端孢霉烯族毒素轉化成乙?;蛎撘阴;漠a物。粉紅鐮刀霉在添加蛋白胨的察式培養(yǎng)基中產生3-ADON,隨著該霉菌的生長,3-ADON的產量也增加,在達到最大生長量后,3-ADON脫乙酰,DON增加。這三種霉菌在無糖察式培養(yǎng)基中產生脫乙酰化作用,但它們的反應明顯不同。培養(yǎng)茄病鐮刀菌生長菌絲后,DON三乙酸鹽(3α,7α,15α-三乙?;撗跹└牭毒┐?,3,7,15-A3DON)脫乙酰成7α,15α-二乙?;撗跹└牭毒┐?7,15-A2DON),然后是7α-乙?;撗跹└牭毒┐?7-ADON)。另一方面,雪腐鐮刀霉24h能將5%的DON轉化成3-ADON;但另外兩種霉菌很難觀察到乙?;饔茫?0]。其它的鐮刀菌中也發(fā)現具有乙?;兔撘阴;δ?,已經從禾谷鐮刀菌中克隆了編碼單端孢霉烯3-O-乙酰轉移酶的基因(Tri101)[51]。
在目前的農業(yè)技術生產條件下,真菌毒素的污染不可避免,這就非常需要脫毒技術,來減少或消除食品和飼料中可能存在的單端孢霉烯族毒素。微生物脫毒技術是一種特異性的、高效的和環(huán)保的的脫毒技術。眾多研究表明,能夠轉化降解單端孢霉烯族毒素的微生物廣泛存在于自然界中,但目前得到實際應用的卻不多,唯一商品化應用的是基于菌株BBSH797的飼料添加劑產品,在食品工業(yè)領域還沒有得到這方面的應用[52]。這主要的原因可能是還沒有找到一種高效、安全的,可用于食品工業(yè)的脫毒微生物,以及對微生物脫毒作用的機理,特別是微生物產生的脫毒酶類還不是很了解,這些方面還需要深入的研究。未來的研究重點包括:脫毒微生物的篩選,脫毒酶類的分離純化,產酶基因的確認,基因的克隆與表達,構建基因工程菌大規(guī)模生產轉化降解單端孢霉烯族毒素作用的酶類,從而應用于食品與飼料工業(yè)中的脫毒。
[1]Desjardins A E.Fusarium mycotoxins:chemistry,genetics,and biology[M].American Phytopathological Society,2006:260.
[2]Eriksen G S,Pettersson H,Lundh T.Comparative cytotoxicity of deoxynivalenol,nivalenol,their acetylated derivatives and de-epoxy metabolites[J].Food and Chemical Toxicology,2004,42:619-624.
[3]Morgavi D P,Riley R T.Fusarium and their toxins:mycology,occurrence,toxicity,control and economic impact[J].Animal Feed Science and Technology,2007,137:199-200.
[4]PestkaJ,SmolinskiA.Deoxynivalenol:Toxicologyand potential effects on humans[J].Journal of Toxicology and Environmental Health Part B,2005(8):39-69.
[5]Azcona-Olivera J I,Ouyang Y,Murtha J,et al.Induction of cytokine mRNAs in mice after oral exposure to the trichothecene vomitoxin(deoxynivalenol):Relationship to toxin distribution and protein synthesis inhibition[J].Toxicology and Applied Pharmacology,1995,133:109-120.
[6]Nelson P E.Fusarium-paul E nelson memorial symposium[M].The American Phytopathological Society,2002:392.
[7]Avantaggiato G,Havenaar R,Visconti A.Evaluation of the intestinal absorption of deoxynivalenol and nivalenol by an in vitro gastrointestinal model,and the binding efficacy of activated carbon and other adsorbent materials[J].Food and Chemical Toxicology,2004,42:817-824.
[8]Kouadio J H,Mobio T A,Baudrimont I,et al.Comparative study of cytotoxicity and oxidative stress induced by deoxynivalenol,zearalenone or fumonisin B1in human intestinal cell line Caco-2[J].Toxicology,2005,213:56-65.
[9]Rocha O,Ansari K,Doohan,F M.Effects of trichothecene mycotoxins on eukaryotic cells:A review[J].Food Additives and Contaminants,2005,22:369-378.
[10]Stark A A.Threat assessment of mycotoxins as weapons: Molecular mechanisms of acute toxicity[J].Journal of Food Protection,2005,68:1285-1293.
[11]Zhou H R,Islam Z,Pestka J J.Induction of competing apoptotic and survival signaling pathways in the macrophage by the ribotoxic trichothecene deoxynivalenol[J].Toxicological Sciences,2005,87:113-122.
[12]Lancova K,Hajslova J,Poustka J,et al.Transfer of Fusarium mycotoxins and‘masked’deoxynivalenol(deoxynivalenol-3-zglucoside)from field barley through malt to beer[J].Food Additives and Contaminants,2008,25:732-744.
[13]Pittet A.Natural occurrence of mycotoxins in foods and feeds:a decade in review[C]//de KOE W J,SAMSON R A,van EGMOND H P,ed.Mycotoxins and phycotoxins in perspective at the turn of the millennium.Proceedings of the 10th International IUPAC Symposium on Mycotoxins and Phycotoxins.Wageningen,Netherlands,2001:153-172.
[14]Hollinger K,Ekperigin H E.Mycotoxicosis in food producing animals[J].The Veterinary Clinics of North America:Food Animal Practice,1999(15):133-165.
[15]European Food Safety Authority(EFSA).Opinion of the scientific panel on contaminants in the food chain on a request from thecommission related to deoxynivalenol(DON)as undesirable substance in animal feed(Question N EFSA-Q-2003-036)[J].The EFSA Journal,2004,73:1-42.
[16]Lombaert G A,Pellaers P,Roscoe V,et al.Mycotoxins in infant cereal foods from the Canadian retail market[J].Food Additives and Contaminants,2003(20):494-504.
[17]Canady R,Coker R,Egan S K,et al.Deoxynivalenol(DON),Safety evaluation of certain mycotoxins in food[J].Joint FAO/ WHO Expert Committee on Food Additives(JECFA),FAO Food and Nutrition Paper,2001,74:419-555.
[18]Goyarts T,D?nicke S,Valenta H,et al.Carry-over of Fusarium toxins(deoxynivalenol and zearalenone)from naturally contaminated wheat to pigs[J].Food Additives and Contaminants,2007,24(4):369-380.
[19]Seeling K,D?nicke S,Valenta H,et al.Effects of Fusarium toxin-contaminated wheatand feed intake levelon the biotransformation and carry-over of deoxynivalenol in dairy cows[J].Food Additives and Contaminants,2006,22:1008-1020.
[20]ValentaH,D?nickeS.Studyonthetransmission of deoxynivalenol and deepoxy-deoxynivalenol into eggs of laying hens using a high-performance liquid chromatography-ultraviolet method with clean-up by immunoaffinity columns[J].Molecular Nutrition and Food Research,2005,49:779-785.
[21]Binder E M,Tan L M,Chin L J,et al.Worldwide occurrence of mycotoxins in commodities,feeds and feed ingredients[J]. Animal Feed Science and Technology,2007,137:265-282.
[22]Kabak B,Dobson A D W,Var I.Strategies to prevent mycotoxin contamination of food and animal feed:a review[J]. Critical Reviews in Food Science and Nutrition,2006,46:593-619.
[23]Frisvad J C,Thrane U,Samson R A,et al.Important mycotoxins and the fungi which produce them[M].Advances in Food Mycology,2006:3-31.
[24]He J,Zhou T,Young J C,et al.Chemical and biological transformations for detoxification of trichothecene mycotoxins in human and animal food chains:A review[J].Trends in Food Science and Technology,2010(21):67-76.
[25]Zhou T,He J,Gong J.Microbialtransformation of trichothecene mycotoxins[J].World Mycotoxin Journal,2008,1(1):23-30.
[26]Nagy C M,Fejer S N,Berek L,et al.Hydrogen bondings in deoxynivalenol(DON)conformations-A density functional study[J].Journal of Molecular Structure:Theochem,2005,726:55-59.
[27]Swanson S P,Helaszek C,Buck W B,et al.The role of intestinal microflora in the metabolism of trichothecene mycotoxins[J].Food and Chemical Toxicology,1988,26:823-829.
[28]Young J C,Zhu H,Zhou T.Degradation of trichothecene mycotoxins by aqueous ozone[J].Food and Chemical Toxicology,2006,44:417-424.
[29] Madhyastha M S,Marquardt R R,Abramson D.Structureactivity relationships and interactions among trichothecene mycotoxins as assessed by yeast bioassay[J]. Toxicon,1994,32:1147-1152.
[30]Bergmann F,Soffer D,Yagen B.Cerebral toxicity of the trichothecene toxin T-2,of the products of its hydrolysis and of some related toxins[J].Toxicon,1988,26:923-930.
[31]Betina V.Structure-activity relationships among mycotoxins[J].Chemico-Biological Interactions,1989,71:105-146.
[32]Ueno Y.The toxicology of mycotoxins[J].Toxicology,1985,14:99-133.
[33]Jarvis B B,Mazzola E P.Macrocyclic and other novel trichothecenes:Their structure,synthesis,and biological significance[J].Accounts of Chemical Research,1982(15): 388-395.
[34]Shima J,Takase S,Takahashi Y,et al.Novel detoxification of the trichothecene mycotoxin deoxynivalenol by a soil bacterium isolated by enrichment culture[J].Applied and Environmental Microbiology,1997,63:3825-3830.
[35]Kiessling K H,Pettersson H,Sandholm K,et al.Metabolism of aflatoxin,ochratoxin,zearalenone,and three trichothecenes by intact rumen fluid,rumen protozoa and rumen bareria[J].Applied and Environmental Microbiology,1984,47:1070-1073.
[35]Yoshizawa T,Hiroaki T,Ohi T.Structure of a novel metabolite from deoxynivalenol,a trichothecene mycotoxin,in animals[J].Agricultural and Biological Chemistry,1983,47:2133-2135.
[37]He P,Young L G,Forsberg C.Microbial transformation of deoxynivalenol(vomitoxin)[J].Applied and Environmental Microbiology,1992,58:3857-3863.
[38]King R R,Mcqueen R E,Levesque D,et al.Transformation of deoxynivalenol(vomitoxin)by rumen microorganisms[J].Journal of Agriculture and Food Chemistry,1984,32:1181-1183.
[39]Binder E M,Binder J,Ellend N,et al.Microbiological degradation of deoxynivalenol and 3-acetyl-deoxynivalenol[M]. Mycotoxinsand Phycotoxins-Developments in Chemistry,Toxicology and Food Safety,1998:279-285.
[40]Schatzmayr G,Zehner F,Taubel M,et al.Microbiologicals for deactivating mycotoxins[J].MolecularNutrition and Food Research,2006,50:543-551.
[41]FuchsE,Binde,E M,HeidlerD,etal.Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797[J].Food Additives and Contaminants,2002,19:379-386.
[42]Westlake K,Mackie R I,Dutton M F.T-2 toxin metabolism by ruminal bacteria and its effect on their growth[J].Applied and Environmental Microbiology,1987,53:587-592.
[43]Matsushima T,Okamoto E,Miyagawa E,et al.Deacetyllation of diacetoxyscirpenol to 15-acetoxyscirpenol by rumen bacteria[J].Journal of General and Applied Microbiology,1996,42: 225-234.
[44]Kollarczik B,Gareis M,Hanelt M.In vitro transformation of the Fusarium mycotoxins deoxynivalenol and zearalenone by the normal gut microflora of pigs[J].Natural Toxins,1994(2): 105-110.
[45]Young J C,Zhou T,Yu H,et al.Degradation of trichothecene mycotoxins by chicken intestinal microbes[J].Food and Chemical Toxicology,2007,45:136-143.
[46]Guan S,He J,Young J C,etal.Transformation of trichothecene mycotoxins by microorganisms from fish digesta[J]. Aquaculture,2009,290:290-295.
[47]Ueno Y,Nakayama K,Ishii K,et al.Metabolism of T-2 toxin in Curtobacterium sp.strain 114-2[J].Applied and Environmental Microbiology,1983,46:120-127.
[48]V?lkl A,Vogler B,Schollenberger M,et al.Microbial detoxification of mycotoxin deoxynivalenol[J].Journal of Basic Microbiology,2004,44:147-156.
[49]He C H,Fan Y H,Liu G F,et al.Isolation and identification ofa strain ofAspergillus tubingensis with deoxynivalenol biotransformation capability[J].International Journal of Molecular Sciences,2008(9):2366-2375.
[50]Yoshizawa T,Morooka N.Biologicalmodification of trichothecene mycotoxins:acetylation and deacetylation of deoxynivalenols by Fusarium spp.[J].Applied Microbiology,1975,29:54-58.
[51]Kimura M,Matsumoto G,Shingu Y,et al.The mystery of the trichothecene 3-O-acetyltransferase gene:Analysis of the region around Tri101 and characterization ofitshomologue from Fusarium sporotrichioides[J].FEBS Letters,1998,435:163-168.
[52]European Food Safety Authority(EFSA).Opinion of the scientific panel on additives and products or substances used in animal feed on a request from the commission on the safety of the product“Biomin BBSH 797”for piglets,pigs for fattening and chickens for fattening(Question NO EFSA-Q-2003-052)[J]. The EFSA Journal,2005,169:1-14.
Foreign research progress on trichothecenes and microbes of detoxification
ZOU Zhong-yi,HE Zhi-fei,LI Hong-jun*,HAN Peng-fei
(College of Food Science,Chongqing Special Food Engineering and Technology Research Center,Southwest University,Chongqing 400716,China)
Trichothecenes were a large class of mycotoxins,which were highly toxic to humans and animals.They were commonly found in grain and in animal feed and in human food produced from contaminated grain.It was not only a concern for food safety,but also highly relevant to the livestock industry.Methods of controlling trichothecenes in food and feed were being studied,among which bio-detoxification was a hot research at present,such as the use of microorganisms and enzymes,to convert the toxins into non or less toxic compounds. Bio-detoxification had a broad prospect,as it had lots of advantages.This review described the chemical structures and toxicity functional groups of trichothecenes,and researched progress of microbes of detoxification of trichothecenes,hoped to provide some reference for study on transformation and degradation of trichothecenes. Key words:trichothecenes;toxicity functional groups;microbial transformation;bio-detoxification
TS201.2
A
1002-0306(2012)08-0384-06
2011-06-07 *通訊聯系人
鄒忠義(1982-),男,博士研究生,研究方向:現代食品加工理論與技術。
國家“973”計劃項目(2009CB118806);西南大學研究生科技創(chuàng)新基金項目(ky2010005)。