張小晶, 林 林, 張佳佳, 賈聰聰, 何金彩, 黃陳平△
(1溫州醫(yī)學(xué)院環(huán)境與公共衛(wèi)生學(xué)院,浙江 溫州 325035;2溫州醫(yī)學(xué)院附屬第一醫(yī)院,浙江 溫州 325000)
1000-4718(2012)09-1577-05
2012-04-08
2012-07-06
國家自然科學(xué)基金資助項(xiàng)目(No. 30972509)
△通訊作者 Tel: 0577-86689901;E-mail: wzhcp@263.net
胚胎期鉛暴露對(duì)斑馬魚胚胎及幼魚NMDA受體mRNA表達(dá)的影響*
張小晶1, 林 林1, 張佳佳2, 賈聰聰1, 何金彩2, 黃陳平1△
(1溫州醫(yī)學(xué)院環(huán)境與公共衛(wèi)生學(xué)院,浙江 溫州 325035;2溫州醫(yī)學(xué)院附屬第一醫(yī)院,浙江 溫州 325000)
目的了解胚胎期鉛暴露對(duì)斑馬魚胚胎及幼魚N-甲基-D-天冬氨酸(NMDA)受體mRNA表達(dá)的影響。方法野生型AB品系斑馬魚胚胎醋酸鉛暴露濃度分別為0、0.1、0.5、2.5和12.5 μmol/L,提取各組受精后24、48、72、96和120 h(hpf)斑馬魚胚胎或幼魚總RNA,實(shí)時(shí)定量PCR檢測(cè)NMDA受體亞基NR1.1、NR1.2和NR2B的mRNA表達(dá)量。結(jié)果(1)對(duì)照組NR1.1和NR1.2及NR2B表達(dá)量在胚胎發(fā)育過程中逐漸升高,在孵化期(72 hpf)表達(dá)量增加明顯,在幼魚早期(96 hpf)時(shí)達(dá)到高峰(與24 hpf時(shí)比較,P<0.01),在120 hpf時(shí)仍處于較高水平。 (2)隨著鉛暴露濃度增高,NR1.1表達(dá)量增加并有高峰前移的趨勢(shì),2.5 μmol/L和12.5 μmol/L鉛暴露組NR1.1表達(dá)高峰期在72 hpf,并且顯著高于對(duì)照組(P<0.05);鉛暴露組NR1.2和NR2B動(dòng)態(tài)表達(dá)也呈類似規(guī)律,但NR1.2表達(dá)高峰期呈平臺(tái)化趨勢(shì),橫跨72 hpf至120 hpf階段,NR2B表達(dá)高峰期出現(xiàn)在72 hpf和120 hpf階段。(3) NR1.1、NR1.2及NR2B mRNA表達(dá)量之間Pearson相關(guān)系數(shù)值分別為rNR1.1-1.2=0.681、rNR1.1-2B=0.637和rNR1.2-2B=0.514,均有統(tǒng)計(jì)學(xué)意義(P<0.01)。結(jié)論在斑馬魚胚胎發(fā)育過程N(yùn)R1.1、NR1.2及NR2B mRNA表達(dá)水平逐漸升高,在幼魚早期達(dá)到高峰;胚胎和幼魚階段NR1.1、NR1.2及NR2B之間mRNA表達(dá)水平存在關(guān)聯(lián);鉛有上調(diào)NR1.1、NR1.2和NR2B mRNA表達(dá)作用并使表達(dá)峰期前移,改變了正常的NMDA受體表達(dá)規(guī)律。
鉛; 斑馬魚; 受體,NMDA; 基因表達(dá); 胚胎
鉛是常見的環(huán)境污染物,具有明顯的神經(jīng)發(fā)育毒性。胚胎階段鉛暴露是導(dǎo)致出生后神經(jīng)行為發(fā)育障礙的關(guān)鍵環(huán)節(jié),但其機(jī)制尚不清楚[1- 2]。N-甲基-D-天冬氨酸(N-methyl-D-aspartiate, NMDA)受體在中樞神經(jīng)系統(tǒng)中廣泛參與神經(jīng)發(fā)育、突觸可塑性及神經(jīng)回路形成等過程[3]。NMDA受體是由NR1、NR2和NR3構(gòu)成的異聚體陽離子通道,NR1為NMDA受體的基本功能單位,NR2和NR3對(duì)受體功能起調(diào)節(jié)修飾作用[4]。近年來斑馬魚胚胎發(fā)育毒理學(xué)技術(shù)發(fā)展迅速,在神經(jīng)發(fā)育毒性機(jī)制研究方面具有獨(dú)特的優(yōu)勢(shì)[5]。已知斑馬魚NR1有2個(gè)旁系同源基因NR1.1(Gene ID: 767745)和NR1.2(Gene ID: 100005675)。NR2有NR2A~D四個(gè)亞型,NR2B是胚胎期及生后早期主要的NMDA受體調(diào)節(jié)亞基[6]。本文通過比較研究鉛暴露組與對(duì)照組斑馬魚胚胎及幼魚NR1.1、NR1.2和NR2B mRNA動(dòng)態(tài)表達(dá)水平,探討早期鉛暴露對(duì)NMDA受體亞基mRNA表達(dá)的影響。
1動(dòng)物
野生型AB品系斑馬魚引自美國俄勒岡州立大學(xué),由溫州醫(yī)學(xué)院水域科學(xué)與環(huán)境生態(tài)研究所斑馬魚實(shí)驗(yàn)室(浙江省模式生物技術(shù)與應(yīng)用重點(diǎn)實(shí)驗(yàn)室)按斑馬魚工具書[7]描述的方法進(jìn)行養(yǎng)殖。取健康性成熟的斑馬魚,于飼養(yǎng)系統(tǒng)關(guān)燈前(約18∶00)按雌雄1∶2的比例放入孵化器,次晨受光刺激后完成交配和產(chǎn)卵,收集胚卵,選取發(fā)育時(shí)間一致的正常胚胎進(jìn)行實(shí)驗(yàn)。
2主要試劑與儀器
醋酸鉛[Pb(CH3CO2)2·3H2O,PbAc, Sigma], TRIzol試劑(碧云天生物技術(shù)研究所),熒光定量PCR試劑盒(DRR041A,TaKaRa),實(shí)時(shí)熒光定量反轉(zhuǎn)錄試劑(TaKaRa)。人工氣候箱(RXZ智能型,寧波江南儀器廠),倒置相差顯微鏡(TS100,Nikon),NanoDrop 2000超微量分光光度計(jì)(Thermo),熒光定量PCR儀(7500,ABI)。
3主要方法
3.1斑馬魚胚胎鉛染毒 按照斑馬魚工具書要求配制正常胚胎培養(yǎng)液(embryo medium, EM)(0.137 mol/L NaCl, 5.4 mmol/L KCl, 0.25 mmol/L Na2HPO4,0.44 mmol/L KH2PO4,1.3 mmol/L MgSO4,4.2 mmol/L NaHCO3),用EM液溶解醋酸鉛,配制鉛質(zhì)量濃度分別為0.1、0.5、2.5及12.5 μmol/L的含鉛EM液。斑馬魚胚胎自受精后1 h(1 hour post fertilization,1 hpf)進(jìn)行染毒,以不含鉛的EM液孵養(yǎng)的胚胎作為對(duì)照,染毒胚胎孵化后改用EM液孵養(yǎng)至120 hpf。培養(yǎng)皿置于(28±1)℃人工氣候箱內(nèi),光周期為明14 h∶暗10 h,每天更換培養(yǎng)液。
3.2總RNA提取及cDNA合成 分別收集各組發(fā)育至24、48、72、96和120 hpf的斑馬魚胚胎或幼魚各35枚(條),用TRIzol法提取總RNA,逆轉(zhuǎn)錄合成cDNA,反應(yīng)條件: 37 ℃ 15 min,85 ℃ 5 s。cDNA于-20 ℃貯存?zhèn)溆谩?/p>
3.3實(shí)時(shí)定量PCR檢測(cè)NR1.1、NR1.2和NR2BmRNA的表達(dá)量 根據(jù)斑馬魚NR1.1、NR1.2、NR2B的cDNA序列,設(shè)計(jì)熒光定量PCR引物,以β-actin作為內(nèi)參照,引物由南京金斯瑞生物科技有限公司根據(jù)設(shè)計(jì)合成,引物序列見表1。根據(jù)熒光定量PCR試劑盒操作步驟,用熒光定量PCR儀對(duì)發(fā)育至24、48、72、96和120 hpf的斑馬魚胚胎或幼魚NR1.1、NR1.2和NR2B mRNA表達(dá)量進(jìn)行檢測(cè)。PCR反應(yīng)體系為20 μL:SYBR Premix Ex TaqTM(2×) 10 μL,引物(10 μmol/L)各0.8 μL,ROX Reference Dye(50×) 0.4 μL,cDNA 2 μL,加用焦碳酸二乙酯處理的水至20 μL。反應(yīng)條件:預(yù)變性95 ℃ 30 s;PCR反應(yīng),95 ℃ 3 s,60 ℃ 30 s,循環(huán)40次。重復(fù)檢測(cè)3次,每次做3個(gè)復(fù)孔,分別計(jì)算同一樣品3個(gè)復(fù)孔的Ct均值,以同一樣本中的β-actin Ct值作為內(nèi)參照,以24 hpf對(duì)照組胚胎標(biāo)本為基準(zhǔn)。設(shè)基準(zhǔn)組2-ΔΔCt為1,按式: 2-[( 檢測(cè)組NR Ct-檢測(cè)組β-actin Ct)-(基準(zhǔn)組NR Ct-基準(zhǔn)組β-actin Ct)]分別計(jì)算各組2-ΔΔCt,用以表示NR1.1、NR1.2和NR2B mRNA相對(duì)表達(dá)量[8]。
4統(tǒng)計(jì)學(xué)處理
表1β-actin、NR1.1、NR1.2和NR2B的實(shí)時(shí)熒光定量PCR引物序列
Table 1. Primer sequences of β-actin, NR1.1, NR1.2 and NR2B used in real-time quantitative PCR
GenenamePrimersequence(5’-3’)Productβ-actinForward:ATGGATGAGGAAATCGCTGCC106bpReverse:CTCCCTGATGTCTGGGTCGTCNR1.1Forward:GAAGCCAGCGGTGTAGGAG218bpReverse:GTGTTTAAAGATGCCGTCACCCNR1.2Forward:ACGCCGTCACCCAAGCCAAC248bpReverse:GGACATGCGGGTGGTCAGGCNR2BForward:TGGGCTGGCAATGTTCAAGGGAC95bpReverse:GGACGCGGCAGTCGGAGAAAG
1NR1.1、NR1.2、NR2B及β-actincDNA擴(kuò)增片段凝膠電泳
以斑馬魚胚胎cDNA為模板,用設(shè)計(jì)引物擴(kuò)增NR1.1、NR1.2、NR2B及β-actin cDNA片段,擴(kuò)增產(chǎn)物凝膠電泳結(jié)果均顯示單一明亮條帶,片段大小與設(shè)計(jì)預(yù)期相符,見圖1。
Figure 1. Gel electrophoresis of β-actin, NR1.1, NR1.2 and NR2B cDNA in zebrafish.
圖1斑馬魚β-actin、NR1.1、NR1.2和NR2BcDNA凝膠電泳圖
2胚胎及幼魚階段NR1.1mRNA的表達(dá)
對(duì)照組 NR1.1 mRNA表達(dá)量在胚胎發(fā)育過程中逐漸升高,在孵化期(72 hpf)表達(dá)量增加明顯,在幼魚早期(96 hpf)時(shí)達(dá)到高峰,在120 hpf時(shí)仍處于較高水平,相對(duì)24 hpf時(shí)NR1.1表達(dá)量有顯著增高(96 hpf,P<0.01;120 hpf,P<0.05)。各鉛暴露組NR1.1動(dòng)態(tài)表達(dá)也呈類似規(guī)律,但隨著鉛暴露濃度增高,NR1.1表達(dá)量增加并有高峰前移的趨勢(shì)。2.5 μmol/L和12.5 μmol/L鉛暴露組其NR1.1表達(dá)峰值出現(xiàn)在72 hpf 時(shí)點(diǎn),較對(duì)照組提前,而且顯著高于同時(shí)點(diǎn)對(duì)照組NR1.1表達(dá)量(P<0.05);在48 hpf 時(shí),0.5 μmol/L和12.5 μmol/L鉛暴露組NR1.1表達(dá)量也較對(duì)照組顯著增高(P<0.05),見圖2。
圖2不同鉛暴露組斑馬魚胚胎及幼魚NR1.1mRNA的表達(dá)
3胚胎及幼魚階段NR1.2mRNA的表達(dá)
24 hpf至72 hpf時(shí)點(diǎn),對(duì)照組NR1.2表達(dá)量逐漸升高,在72 hpf后,NR1.2表達(dá)量快速增加,在96 hpf 時(shí)達(dá)到高峰,顯著高于其它各時(shí)段NR1.2表達(dá)量(P<0.01),隨后NR1.2表達(dá)量有明顯下降,但在120 hpf時(shí)仍處于較高水平。各鉛暴露組NR1.2動(dòng)態(tài)表達(dá)也呈類似規(guī)律,但NR1.2表達(dá)高峰期呈平臺(tái)化趨勢(shì),橫跨72 hpf至120 hpf階段,尤以高鉛(2.5 μmol/L和12.5 μmol/L)暴露組為明顯。此外,48 hpf時(shí)0.5 μmol/L和72 hpf時(shí)2.5 μmol/L鉛暴露組NR1.2表達(dá)量較同時(shí)段對(duì)照組有顯著增加(P<0.05),見圖3。
4胚胎及幼魚階段NR2BmRNA的表達(dá)
對(duì)照組 NR2B表達(dá)量自24 hpf后逐漸升高,72 hpf后表達(dá)量升高速度加快,在96 hpf 時(shí)達(dá)到高峰(P<0.01),之后表達(dá)量明顯下降。各鉛暴露組NR2B動(dòng)態(tài)表達(dá)高峰期出現(xiàn)在72 hpf和120 hpf階段,72 hpf時(shí)2.5 μmol/L組和120 hpf時(shí)0.5 μmol/L組NR2B表達(dá)量較相同鉛暴露濃度下24 hpf時(shí)NR2B表達(dá)量有明顯增高(P<0.05)。在48 hpf 時(shí),2.5 μmol/L鉛暴露組NR2B表達(dá)量也較對(duì)照組顯著增高(P<0.05),見圖4。
圖3不同鉛暴露組斑馬魚胚胎及幼魚NR1.2mRNA的表達(dá)
圖4不同鉛暴露組斑馬魚胚胎及幼魚NR2BmRNA的表達(dá)
5NR1.1、NR1.2及NR2BmRNA表達(dá)量之間相關(guān)分析結(jié)果
NR1.1與NR1.2、NR1.1與NR2B、NR1.2與NR2B mRNA表達(dá)量之間Pearson相關(guān)系數(shù)值分別為0.681、0.637和0.514,均有統(tǒng)計(jì)學(xué)意義(P<0.01),提示NR1.1、NR1.2及NR2B mRNA表達(dá)量之間存在相關(guān)關(guān)系。
NMDA受體為谷氨酸離子型受體,通常由2個(gè)NR1亞基和2個(gè)NR2亞基形成的異四聚體,其構(gòu)成的離子通道對(duì)Ca2+有高通透性,具有化學(xué)電壓雙重門控特點(diǎn),NMDA受體介導(dǎo)的細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)與神經(jīng)發(fā)育、突觸可塑性及學(xué)習(xí)記憶功能等密切相關(guān)[3-4, 9]。本實(shí)驗(yàn)中,對(duì)照組斑馬魚NR1.1、NR1.2和NR2B的mRNA表達(dá)量自24 hpf后逐漸升高,72 hpf后表達(dá)量明顯增加,在96 hpf時(shí)達(dá)到高峰。斑馬魚胚胎發(fā)育迅速,72 hpf時(shí)處于胚胎孵出前后階段,96 hpf 為幼魚早期階段。本實(shí)驗(yàn)結(jié)果顯示NR1.1、NR1.2和NR2B主要在胚胎發(fā)育后期及幼魚階段表達(dá)。Cox等[10]報(bào)道,NR1在24 hpf斑馬魚胚胎就已有明顯表達(dá),表達(dá)部位在腦區(qū)及脊索等部位,至48 hpf時(shí)表達(dá)愈加明顯;PCR檢測(cè)NR2B基因表達(dá)在96 hpf時(shí)最顯著。Monyer等[6]研究大鼠神經(jīng)發(fā)育階段NMDA受體亞基分布表達(dá)情況,發(fā)現(xiàn)各NR2亞基表達(dá)水平在生后7~20 d達(dá)到高峰。本實(shí)驗(yàn)結(jié)果與上述報(bào)道結(jié)果相符,證實(shí)了在出生早期存在NMDA受體表達(dá)高峰期。NMDA受體各亞基主要分布于神經(jīng)元,其表達(dá)水平與神經(jīng)發(fā)育有關(guān),生后早期是神經(jīng)元發(fā)育及細(xì)胞間連接形成旺盛階段,可能因此誘發(fā)NR1.1、NR1.2和NR2B的高表達(dá)。
表2NR1.1、NR1.2和NR2BmRNA表達(dá)量之間相關(guān)分析
Table 2. Correlation analysis of the mRNA expression among NR1.1,NR1.2 and NR2B
GroupnPearson’sCorrelationCoefficientNR1.1-NR1.2NR1.1-NR2BNR1.2-NR2BControl150.942??0.735??0.792??0.1μmol/LPbAc150.5010.810??0.0750.5μmol/LPbAc150.646??0.1460.4742.5μmol/LPbAc150.722??0.806??0.719??12.5μmol/LPbAc150.678??0.896??0.563?Total750.681??0.637??0.514??
*P<0.05,**P<0.01.
鉛屬于神經(jīng)性毒物,在神經(jīng)系統(tǒng)發(fā)育早期其毒作用尤為明顯,但目前毒作用機(jī)制尚未明了。據(jù)報(bào)道,NMDA受體的亞基組成與神經(jīng)發(fā)育及突觸形成等密切相關(guān),除必需亞基NR1外,構(gòu)成NMDA受體的亞基主要為NR2A和NR2B,不同亞基構(gòu)成的NMDA受體在不同發(fā)育階段和部位,通過不同的信號(hào)轉(zhuǎn)導(dǎo)通路發(fā)揮著不同作用[11]。在胚胎發(fā)育階段及出生早期,主要以NR2B高表達(dá)為主,在生后成熟期則以NR2A高表達(dá)為主,這種在神經(jīng)發(fā)育過程中從以含NR2B的NMDA受體為主向以含NR2A的NMDA受體過渡的轉(zhuǎn)變,對(duì)于神經(jīng)細(xì)胞正常發(fā)育可能是十分重要的[6]。Toscano等[12]報(bào)道鉛暴露可能延緩或阻礙以含NR2B為主的NMDA受體向以含NR2A為主的NMDA受體過渡,進(jìn)而影響有關(guān)的信號(hào)轉(zhuǎn)導(dǎo)通路。Neal等[13]研究發(fā)現(xiàn),體外原代海馬神經(jīng)元鉛暴露可減少突觸NR2A-NMDA受體水平,增加NR2B-NMDA受體水平, 增加NR1在突觸后膜致密區(qū)(postsynaptic density,PSD)集聚,并認(rèn)為此與持久性抑制NMDA受體有關(guān),因其結(jié)果與使用NMDA受體拮抗劑2-氨基-5-磷戊酸(2-amino-5-phosphonovaleric acid,APV)得到的結(jié)果相似。目前認(rèn)為鉛可能是一種非競(jìng)爭性NMDA受體拮抗物[14]。在本實(shí)驗(yàn)中,隨著鉛暴露濃度增高,NR1.1表達(dá)量增加并有高峰前移的趨勢(shì),NR1.2和NR2B動(dòng)態(tài)表達(dá)也呈類似規(guī)律,表達(dá)高峰期呈平臺(tái)化趨勢(shì)。本實(shí)驗(yàn)結(jié)果證實(shí)了鉛暴露能導(dǎo)致胚胎期及孵化后早期NR1和NR2B表達(dá)水平增加,改變了NMDA受體亞基原有的表達(dá)規(guī)律,這種改變可能是由于鉛抑制了NMDA受體而導(dǎo)致NR1和NR2B表達(dá)代償性上調(diào)所致。
NR1.1與NR1.2、NR1.1與NR2B、NR1.2與NR2B mRNA表達(dá)量之間Pearson相關(guān)系數(shù)值均有統(tǒng)計(jì)學(xué)意義,提示NR1.1、NR1.2及NR2B mRNA表達(dá)量之間存在相關(guān)關(guān)系。NR1.1和NR1.2是斑馬魚NR1兩個(gè)旁系同源基因,轉(zhuǎn)錄物具有相同功能,因此其表達(dá)調(diào)控相似。NR2B作為胚胎期和孵化后早期參與NMDA受體構(gòu)成的NR2亞基主要的類型,其表達(dá)量與NR1之間存在密切關(guān)系。
綜上所述,得出如下初步結(jié)論:(1)在斑馬魚胚胎發(fā)育過程N(yùn)R1.1、NR1.2及NR2B mRNA表達(dá)水平逐漸升高,在幼魚早期達(dá)到高峰;(2)胚胎和幼魚階段NR1.1、NR1.2及NR2B之間mRNA表達(dá)水平存在關(guān)聯(lián);(3)鉛有上調(diào)NR1.1、NR1.2和NR2B mRNA表達(dá)作用并使表達(dá)峰期前移,改變了正常的NMDA受體表達(dá)規(guī)律。
[1] Lidsky TI, Schneider JS. Lead neurotoxicity in children: basic mechanisms and clinical correlates[J]. Brain, 2003,126(Pt 1):5-19.
[2] Bellinger DC. Very low lead exposures and children’s neurodevelopment[J]. Curr Opin Pediatr, 2008,20(2):172-177.
[3] Gladding CM, Raymond LA. Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function[J]. Mol Cell Neurosci, 2011,48(4):308-320.
[4] Paoletti P. Molecular basis of NMDA receptor functional diversity[J]. Eur J Neurosci, 2011,33(8):1351-1365.
[5] Sipes NS, Padilla S, Knudsen TB. Zebrafish: as an integrative model for twenty-first century toxicity testing[J]. Birth Defects Res C Embryo Today, 2011,93(3):256-267.
[6] Monyer H, Burnashev N, Laurie DJ, et al. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors[J]. Neuron, 1994,12(3):529-540.
[7] Westerfield M. The zebrafish book: A guide for the laboratory use of zebrafish (Daniorerio)[M]. 4th ed. Eugene: University of Oregon Press, 2000.
[8] Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CTmethod[J]. Nat Protoc, 2008,3(6):1101-1108.
[9] 王玉梅, 劉永平, 曹 凱, 等. 黃芩莖葉黃酮對(duì)慢性腦缺血大鼠腦內(nèi)NMDA受體和VEGF表達(dá)的影響[J]. 中國病理生理雜志, 2012, 28(2):353-357.
[10]Cox JA, Kucenas S, Voigt MM. Molecular characterization and embryonic expression of the family ofN-methyl-D-aspartate receptor subunit genes in the zebrafish[J]. Dev Dyn, 2005,234(3):756-766.
[11]Kim MJ, Dunah AW, Wang YT, et al. Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking[J]. Neuron, 2005,46(5):745-760.
[12]Toscano CD, Hashemzadeh-Gargari H, McGlothan JL, et al. Developmental Pb2+exposure alters NMDAR subtypes and reduces CREB phosphorylation in the rat brain[J]. Brain Res Dev Brain Res, 2002,139(2):217-226.
[13]Neal AP, Worley PF, Guilarte TR. Lead exposure during synaptogenesis alters NMDA receptor targeting via NMDA receptor inhibition[J]. Neurotoxicology, 2011,32(2):281-289.
[14]Gavazzo P, Zanardi I, Baranowska-Bosiacka I, et al. Molecular determinants of Pb2+interaction with NMDA receptor channels[J]. Neurochem Int, 2008,52(1-2):329-337.
EffectofleadexposureonmRNAexpressionofNMDAreceptorsinzebrafishembryosandlarvae
ZHANG Xiao-jing1, LIN Lin1, ZHANG Jia-jia2, JIA Cong-cong1, HE Jin-cai2, HUANG Chen-ping1
(1SchoolofEnvironmentalScienceandPublicHealth,WenzhouMedicalCollege,Wenzhou325035,China;2TheFirstAffi-liatedHospitalofWenzhouMedicalCollege,Wenzhou325000,China.E-mail:wzhcp@263.net)
AIM: To investigate the effect of lead exposure on mRNA expression ofN-methyl-D-aspartate (NMDA) receptors in zebrafish embryos and larvae.METHODSZebrafish embryos (wild type; AB line) were exposed to lead acetate (PbAc) at concentrations of 0, 0.1, 0.5, 2.5 and 12.5 μmol/L, respectively. Total RNA was extracted from zebrafish embryos or larvae at the time points of 24, 48, 72, 96 and 120 hours post fertilization (hpf). The mRNA levels of NR1.1, NR1.2 and NR2B were determined by real-time quantitative PCR.RESULTSThe mRNA expression of NR1.1, NR1.2 and NR2B gradually increased during embryonic development, raised rapidly at 72 hpf, peaked at 96 hpf (vsthat at 24 hpf,P<0.01), and still kept in high level at 120 hpf in control group. The impact of lead exposure on the mRNA expression of NR1.1, NR1.2 and NR2B varied with lead concentrations. With the increasing concentrations of PbAc, the mRNA expression of NR1.1 generally increased and reached the highest level ahead of 96 hpf. The peak mRNA level of NR1.1 was observed at 72 hpf under the condition of PbAc exposure at the concentrations of 2.5 and 12.5 μmol/L, and were higher than that in control group (P<0.05). Similarly, the mRNA levels of NR1.2 and NR2B showed an increasing trend with PbAc exposure. However, the peaking time of NR1.2 and NR2B in mRNA expression spanned from 72 to 120 hpf. The significant correlations between the expression levels of NR1.1, NR1.2 and NR2B were observed (P<0.01) and the Pearson’s correlation coefficient values ofrNR1.1-1.2,rNR1.1-2Band rNR1.2-2Bwere 0.681, 0.637 and 0.514, respectively.CONCLUSIONThe mRNA expression of NR1.1, NR1.2 and NR2B gradually increases throughout the embryonic development of zebrafish and reaches the highest levels at early stage of larva. Close correlations between the mRNA expression of NR1.1, NR1.2 and NR2B are present during the period of embryo and larva. Lead exposure induces up-regulation and forward shift of NR1.1, NR1.2 and NR2B at mRNA level, indicating that lead induces abnormal expression of NMDA receptors.
Lead; Zebrafish; Receptors, NMDA; Gene expression; Embryo
R363
A
10.3969/j.issn.1000-4718.2012.09.008