高德寶
(黑龍江八一農(nóng)墾大學(xué)理學(xué)院,大慶 163319)
區(qū)間數(shù)級數(shù)的理論研究
高德寶
(黑龍江八一農(nóng)墾大學(xué)理學(xué)院,大慶 163319)
文章在已知實(shí)數(shù)項(xiàng)級數(shù)收斂及區(qū)間數(shù)列收斂概念的基礎(chǔ)上,具體闡述了區(qū)間數(shù)項(xiàng)級數(shù)的定義及其性質(zhì).然后,給出了幾個(gè)關(guān)于正區(qū)間數(shù)項(xiàng)級數(shù)斂散性判斷定理與推論.最后,關(guān)于一般項(xiàng)區(qū)間數(shù)級數(shù)斂散性的判別作了討論.
區(qū)間數(shù);級數(shù);收斂;發(fā)散
區(qū)間分析或稱區(qū)間數(shù)學(xué)是最近四十年來發(fā)展起來的一個(gè)新的數(shù)學(xué)分支.目前,區(qū)間分析的主要研究對象是區(qū)間數(shù)的應(yīng)用,而關(guān)于區(qū)間數(shù)以及區(qū)間數(shù)集的研究卻很少.文獻(xiàn)[1,2]給出了區(qū)間數(shù)的定義及其基本運(yùn)算,介紹了區(qū)間數(shù)在計(jì)算方法、自動控制中的具體應(yīng)用.雖然,區(qū)間分析學(xué)的有關(guān)理論已被越來越多地應(yīng)用到各個(gè)領(lǐng)域,如文[3,4],但它的基礎(chǔ)性理論還有很大的研究空間.本文基于文獻(xiàn)[1,2,5,6,7],結(jié)合數(shù)學(xué)分析的相關(guān)理論,給出區(qū)間數(shù)級數(shù)收斂的定義以及多個(gè)判別方法.
定義1 稱A=[al,ar]為一個(gè)區(qū)間數(shù).當(dāng)al=ar時(shí),區(qū)間數(shù)就退化為一實(shí)數(shù).
定義2 給定兩個(gè)區(qū)間數(shù)A=[al,ar],B=[bl,br],兩個(gè)區(qū)間數(shù)之間有如下的運(yùn)算
上面所提及的理論基本上來源于文獻(xiàn)[3].相應(yīng)于正數(shù)、負(fù)數(shù)與實(shí)數(shù)的模的定義,我們給出區(qū)間數(shù)對應(yīng)的定義.
定義3 給定一個(gè)區(qū)間數(shù)[x,y].若x>0,稱其為正區(qū)間數(shù).若y<0,稱其為負(fù)區(qū)間數(shù).
定義4 給定一個(gè)區(qū)間數(shù)[x,y].對于所有的t∈[x,y],稱由所構(gòu)成的閉區(qū)間為區(qū)間數(shù)[x,y]的模,記作|[x,y]|.
由上面的定義,可得計(jì)算公式
定義5 設(shè){[an,bn]}為一區(qū)間數(shù)列,若存在一實(shí)數(shù)M>0,使得
則稱其為有界區(qū)間數(shù)列.
定義6 設(shè){[an,bn]}為區(qū)間數(shù)列,若an≤an+1,bn≤bn+1,則稱其為單調(diào)遞增區(qū)間數(shù)列;若an≥an+1,bn≥bn+1,則稱其為單調(diào)遞減區(qū)間數(shù)列.
定義7 設(shè){[an,bn]}為區(qū)間數(shù)列,[a,b]為區(qū)間常數(shù).若對任給的正數(shù)ε,總存在正整數(shù)N,使得當(dāng)n>N時(shí),有|an-a|+|bn-b|<ε.則稱區(qū)間數(shù)列{[an,bn]}收斂于[a,b],常數(shù)[a,b]稱為區(qū)間數(shù)列{[an,bn]}的極限,并記作[an,bn]=[a,b].若區(qū)間數(shù)列{[an,bn]}沒有極限,則稱其不收斂,或稱其為發(fā)散數(shù)列.
定義8 給定一個(gè)區(qū)間數(shù)列{[an,bn]},對它的各項(xiàng)依次用“+”號連接起來的表達(dá)式
稱為區(qū)間數(shù)項(xiàng)無窮級數(shù)或區(qū)間數(shù)項(xiàng)級數(shù)(可簡稱為區(qū)間數(shù)級數(shù)),其中[an,bn]稱為區(qū)間數(shù)項(xiàng)級數(shù)的(1)通項(xiàng)或一般項(xiàng).區(qū)間數(shù)項(xiàng)級數(shù)(1)也可簡單寫作∑[an,bn].
區(qū)間數(shù)級數(shù)(1)的前n項(xiàng)之和,記為
稱它為區(qū)間數(shù)項(xiàng)級數(shù)(1)的第n個(gè)部分和,簡稱部分和.
定義9 若區(qū)間數(shù)項(xiàng)級數(shù)(1)的部分和數(shù)列{[An,Bn]}收斂于[A,B],則稱區(qū)間數(shù)項(xiàng)級數(shù)(1)收斂,稱[A,B]為區(qū)間數(shù)項(xiàng)級數(shù)(1)的和,記作
若{[An,Bn]}是發(fā)散區(qū)間數(shù)列,則稱區(qū)間數(shù)項(xiàng)級數(shù)(1)發(fā)散.
根據(jù)區(qū)間數(shù)列極限的定義,有下面的定理.
定理2 區(qū)間數(shù)項(xiàng)級數(shù)∑[an,bn]收斂的充要條件是:實(shí)數(shù)項(xiàng)級數(shù)∑an,∑bn(an≤bn)收斂.
推論區(qū)間數(shù)項(xiàng)級數(shù)∑[an,bn]發(fā)散的充要條件是:實(shí)數(shù)項(xiàng)級數(shù)∑an或∑bn(an≤bn)發(fā)散.
定理3 區(qū)間級數(shù)(1)收斂的充要條件是:任給正數(shù)ε>0,總存在正整數(shù)N,使得當(dāng)m>N以及對任意的正整數(shù)p,都有
推論若級數(shù)(1)收斂,則
定理4(線性運(yùn)算) 若區(qū)間數(shù)級數(shù)∑[an,bn]與∑[cn,dn]都收斂,則對任意的實(shí)常數(shù)k,l,級數(shù)∑k[an,bn]+l[cn,dn]亦收斂,且
定理5 去掉、增加或改變級數(shù)的有限項(xiàng)并不改變級數(shù)的斂散性.
定理6 在收斂級數(shù)的項(xiàng)中任意加括號,既不改變級數(shù)的收斂性,也不改變它的和.
若區(qū)間數(shù)項(xiàng)級數(shù)各項(xiàng)均是正區(qū)間數(shù)或均是負(fù)區(qū)間數(shù),則稱它為同號級數(shù).對于同號級數(shù),只需研究各項(xiàng)都是由正區(qū)間數(shù)組成的級數(shù)——稱為正區(qū)間項(xiàng)級數(shù).如果級數(shù)的各項(xiàng)都是負(fù)數(shù),則它乘以-1后就得到一個(gè)正區(qū)間項(xiàng)級數(shù),它們具有相同的斂散性.
定理7 正區(qū)間數(shù)項(xiàng)級數(shù)∑[an,bn]收斂的充要條件是:實(shí)數(shù)項(xiàng)數(shù)列{Bn}有界,即存在某正數(shù)M,對一切正整數(shù)n有Bn≤M.
對于正區(qū)間項(xiàng)級(1)而言,因?yàn)閍n≤bn,若∑bn收斂,則∑an必收斂;若∑an發(fā)散,則∑bn必發(fā)散.故對于其收斂性而言,我們只需討論∑bn收斂性.而正數(shù)項(xiàng)級∑bn收斂性的充要條件是它的部分和數(shù)列有界.故定理7易證.定理7與下面的兩個(gè)定理是等價(jià)的.
定理8 正區(qū)間數(shù)項(xiàng)級數(shù)∑[an,bn]收斂的充要條件是正項(xiàng)級數(shù)∑bn收斂.
推論正區(qū)間數(shù)項(xiàng)級數(shù)∑[an,bn]發(fā)散的充要條件是實(shí)數(shù)項(xiàng)級數(shù)∑an發(fā)散.
定理9 設(shè)∑[an,bn]是正區(qū)間項(xiàng)級數(shù),∑cn是正項(xiàng)級數(shù).如果存在某正整數(shù)N,對一切n>N都有
(i)bn≤cn且∑cn收斂,則正區(qū)間數(shù)項(xiàng)級數(shù)∑[an,bn]收斂.
(ii)cn≤an且∑cn發(fā)散,則正區(qū)間數(shù)級數(shù)∑[an,bn]發(fā)散.
(i)當(dāng)0<l<+∞時(shí),級數(shù)∑[an,bn]和級數(shù)∑cn同時(shí)收斂或同時(shí)發(fā)散.
(ii)當(dāng)k=0且級數(shù)∑cn發(fā)散時(shí),級數(shù)∑[an,bn]發(fā)散.
(iii)當(dāng)k=+∞或l=+∞且級數(shù)∑cn發(fā)散,則級數(shù)∑[an,bn]也發(fā)散.
證根據(jù)數(shù)學(xué)分析[5]中的比較原則,當(dāng)0<l<+∞時(shí),級數(shù)∑bn和級數(shù)∑cn同時(shí)收斂或同時(shí)發(fā)散,故根據(jù)定理8可得:結(jié)論(i)是成立的.當(dāng)k=0且級數(shù)∑cn發(fā)散時(shí),級數(shù)∑an是發(fā)散的,根據(jù)定理8的推論可知:結(jié)論(ii)是成立的.當(dāng)k=+∞或l=+∞且級數(shù)∑cn發(fā)散時(shí),級數(shù)∑an或∑bn發(fā)散,故結(jié)論(iii)是成立的.
(i)當(dāng)q<1時(shí),正區(qū)間項(xiàng)級數(shù)∑[an,bn]收斂.
(ii)當(dāng)q>1或p>1時(shí),正區(qū)間項(xiàng)級數(shù)∑[an,bn]發(fā)散.
定理11(根式判別法) 設(shè)∑[an,bn]是正區(qū)間項(xiàng)級數(shù),且存在某正整數(shù)N及常數(shù)l,
(i)若對一切n>N,成立不等式nbn≤l<1,則正區(qū)間項(xiàng)級數(shù)∑[an,bn]收斂;
(ii)若對一切n>N,成立不等式nbn≥1,則正區(qū)間項(xiàng)級數(shù)∑[an,bn]發(fā)散.
(i)當(dāng)l<1時(shí),正區(qū)間項(xiàng)級數(shù)∑[an,bn]收斂;
(ii)當(dāng)k>1或l>1時(shí),正區(qū)間項(xiàng)級數(shù)∑[an,bn]發(fā)散.
定義10 若區(qū)間數(shù)項(xiàng)級數(shù)的正、負(fù)區(qū)間數(shù)相間,即
則稱其為為交錯(cuò)區(qū)間數(shù)級數(shù).
定理12(萊布尼茲判別法) 若交錯(cuò)區(qū)間數(shù)級數(shù)(2)滿足下述兩個(gè)條件:
根據(jù)數(shù)學(xué)分析[5]中的萊布尼茲定理,數(shù)項(xiàng)級數(shù)∑(-1)n-1an,∑(-1)n-1bn是收斂的.故交錯(cuò)區(qū)間數(shù)項(xiàng)級數(shù)(2)是收斂的.
推論若區(qū)間數(shù)級數(shù)(2)滿足萊布尼茲判別法的條件,則收斂的區(qū)間數(shù)級數(shù)(2)的余項(xiàng)估計(jì)式為
定義11 若區(qū)間數(shù)項(xiàng)級數(shù)[a1,b1]+[a2,b2]+…+[an,bn]+…的各項(xiàng)絕對值所組成的級數(shù)
收斂,則稱原區(qū)間項(xiàng)級數(shù)為絕對收斂級數(shù).
定理13 絕對收斂的區(qū)間數(shù)項(xiàng)級數(shù)一定收斂.
故級數(shù)∑an,∑bn是收斂的,從而級數(shù)∑[an,bn]是收斂的.
由區(qū)間數(shù)的乘法運(yùn)算,我們會得到如下兩個(gè)區(qū)間數(shù)列乘積的級數(shù):
定理14(阿貝爾判別法) 若{[an,bn]}為單調(diào)遞增(或遞減)的有界區(qū)間數(shù)列,且區(qū)間數(shù)項(xiàng)級數(shù)∑[cn,dn]收斂,則區(qū)間數(shù)項(xiàng)級數(shù)(4)收斂.
證因?yàn)椋踑n,bn]}為單調(diào)遞增(或遞減)的有界區(qū)間數(shù)列,所以數(shù)列{an},{bn}是單調(diào)遞增(遞減)且有界的.因?yàn)閰^(qū)間數(shù)項(xiàng)級數(shù)∑[cn,dn]收斂,所以數(shù)項(xiàng)級數(shù)∑cn,∑dn是收斂的.
根據(jù)數(shù)學(xué)分析[5]中的阿貝爾判別法可知,四個(gè)數(shù)項(xiàng)級數(shù)
是收斂的.即區(qū)間數(shù)項(xiàng)級數(shù)(4)是收斂的.
此定理的證明過程需用數(shù)學(xué)分析[5]中的狄利克雷判別法定理,它的證明過程與定理14的基本相同.故其證明過程略.
[1] Moore R E.Interval analysis[M].Englewood:Prentice-Hall,1966.
[2] Moore R E,Kearfott R B,Cloud M J.Introduction to Interval Analysis[M].SIAM:2008.
[3] Chen P Y.An interval estimation for the number of signals[J].Signal Processing,2005,85(3):1622-1633.
[4] Hansen E.Global Optimization Using Interval Analysis the Multi-Dimensional Case[J].Numerische Mathematik,1980,34(3):247-270.
[5] Chen C Z.Mathematical Analysis[M].Higher Education Press:2005.
[6] Seqngupta A,Pal K.On comparing interval numbers[J].European Journal of Operation Research,2000,127(1):28-43.
[7] Chanas S,Zielinski P.Ranking fuzzy interval numbers in the Setting of random sets-further results[J].Information Scienee,1999,117(8):201-207.
Study on The Theory of Interval Series
GAO De-bao
(College of Sciences,Heilongjiang Bayi Agricultural University,Daqing 163319,China)
The definition and its properties of interval number series is described in detail,which is based on the concepts of real series and interval sequences.Then,it gives a few theorems and deductions of the convergence and divegence of positive interval number series.At last,the he convergence and divergence of the common interval numbers series is discussed.
interval number;series;convergence;divergence
O173.1
A
1672-1454(2012)03-0042-05
2009-11-07