崔玉瓊,楊海城
(哈爾濱醫(yī)科大學(xué)附屬第二醫(yī)院,黑龍江 哈爾濱 150086)
腦膠質(zhì)瘤是最常見且致死率極高的惡性腦腫瘤,其中,膠質(zhì)母細(xì)胞瘤在惡性程度及發(fā)病率上占有較高的比重,其平均生存期只有14個(gè)月[1]。目前,國(guó)際上常規(guī)的手術(shù)輔以放、化療綜合治療方案仍不能取得滿意療效。因此,尋找新的抗膠質(zhì)瘤藥物及其作用靶點(diǎn)成為近年國(guó)內(nèi)外研究的熱點(diǎn)。中藥中有許多抗腫瘤作用的天然藥物,其成分逐漸被提純,相關(guān)機(jī)制也在不斷研究中,這就為中藥在腫瘤治療上提供了更多的理論依據(jù),使中藥在未來腫瘤治療中發(fā)揮越來越大的作用。綜合目前的研究成果,中藥活性成分抗惡性腫瘤的機(jī)制研究主要集中在以下幾方面:1)抑制腫瘤細(xì)胞的增殖、遷移和侵襲。2)調(diào)控腫瘤細(xì)胞周期。3)促進(jìn)腫瘤細(xì)胞凋亡。4)抑制腫瘤的血管生成。本文就近年國(guó)內(nèi)外在治療膠質(zhì)瘤研究中發(fā)現(xiàn)的中藥活性成分及其作用靶點(diǎn)和機(jī)制方面的進(jìn)展進(jìn)行綜述。
姜黃素(Curcumin)是姜科植物根莖提取物的主要成分。由于姜黃素能夠抑制多種腫瘤的發(fā)生、發(fā)展和轉(zhuǎn)移[2-3],并且作為食物和傳統(tǒng)中藥中的天然提取物,具有可靠的藥物安全性,成為腫瘤預(yù)防和治療中極具前景的藥物。
Perry等[2]通過研究證實(shí),在體外試驗(yàn)中,姜黃素以濃度依賴的方式明顯抑制了膠質(zhì)瘤細(xì)胞系U87的增殖,同時(shí)抑制大鼠腦內(nèi)皮細(xì)胞RBE4的增殖、遷移和血管生成,并在體內(nèi)實(shí)驗(yàn)中同樣表現(xiàn)出明顯的抑制腫瘤生長(zhǎng)和血管生成作用。不僅如此,姜黃素具有針對(duì)腫瘤細(xì)胞的特異性。Dhandapani等[3]研究發(fā)現(xiàn),姜黃素在膠質(zhì)瘤細(xì)胞系中表現(xiàn)出細(xì)胞毒性作用,而以相同濃度作用于原代培養(yǎng)的腦皮質(zhì)神經(jīng)元細(xì)胞時(shí),不但沒有對(duì)細(xì)胞造成損傷,相反顯示出抗氧化損傷的神經(jīng)保護(hù)作用;而且,將臨床應(yīng)用濃度的姜黃素作用于原代培養(yǎng)腦皮質(zhì)星形膠質(zhì)細(xì)胞時(shí)亦未觀察到細(xì)胞毒性作用。
關(guān)于姜黃素抗膠質(zhì)瘤的機(jī)制,目前的研究主要包括以下幾點(diǎn):1)促進(jìn)細(xì)胞凋亡。姜黃素調(diào)節(jié)細(xì)胞中一些蛋白的表達(dá)和活性,包括誘導(dǎo)活化caspase-8,增加Bax與Bcl-2比值,促進(jìn)線粒體釋放細(xì)胞色素C,增加細(xì)胞質(zhì)中Smac/Diablo水平,降低 IAPs、NFκB水平以及增加鈣蛋白酶、caspase-3/7活性等等,共同導(dǎo)致腫瘤細(xì)胞的凋亡[4-5]。2)調(diào)控細(xì)胞周期。姜黃素誘導(dǎo)細(xì)胞發(fā)生G2/M期阻滯,其機(jī)制包括下調(diào)CCNE1、E2F1和CDK2及上調(diào)PTEN基因的表達(dá),并可能與姜黃素降低端粒酶活性有關(guān)[6]。3)調(diào)節(jié)信號(hào)通路。有文獻(xiàn)報(bào)道,JAK1,2/STAT3[7]、P53[8]、RB[8]、PI3K/Akt[9]和NFκB[9]等信號(hào)通路參與了姜黃素抗膠質(zhì)瘤的機(jī)制。本課題組尚未發(fā)表的研究證實(shí),姜黃素以濃度和時(shí)間依賴的方式抑制膠質(zhì)瘤的增殖、侵襲和凋亡,且明顯抑制裸鼠異種移植瘤的生長(zhǎng),同時(shí)發(fā)現(xiàn)姜黃素能夠下調(diào)Hedgehog信號(hào)通路活性,表明Hedgehog信號(hào)通路也可能是姜黃素抗膠質(zhì)瘤的機(jī)制之一。姜黃素抗膠質(zhì)瘤的機(jī)制仍未完全清楚,其確切的主要機(jī)制還有待進(jìn)一步的研究。
白藜蘆醇(Resveratrol)是從葡萄皮中提取的一種天然抗氧化劑[10],是近年應(yīng)用比較廣泛的抗腫瘤中藥。
白藜蘆醇抗膠質(zhì)瘤的機(jī)制有:1)抑制細(xì)胞增殖。研究表明,白藜蘆醇影響膠質(zhì)瘤細(xì)胞中拓?fù)洚悩?gòu)酶Ⅱ的活性,導(dǎo)致DNA的損傷,從而抑制細(xì)胞的增殖[11]。2)促進(jìn)細(xì)胞凋亡。白藜蘆醇以濃度和時(shí)間依賴的方式促進(jìn)膠質(zhì)瘤細(xì)胞的凋亡,機(jī)制包括下調(diào)Bcl-2、Bcl-XL蛋白的表達(dá)和上調(diào)Bax與caspase-3的表達(dá)水平等[12]。3)抑制細(xì)胞侵襲。研究顯示,白藜蘆醇作用于膠質(zhì)瘤細(xì)胞后,減少其基質(zhì)金屬蛋白酶-2(Matrix Metalloproteinase-2,MMP-2)和富含半胱氨酸的酸性分泌蛋白(Secreted Protein Acidic and Rich in Cysteine,SPARC)的表達(dá)[13],同時(shí)抑制 NFκB 信號(hào)通路活性,并減少細(xì)胞外基質(zhì)蛋白水解所需的尿激酶型纖溶酶原激活劑及其受體的表達(dá)[13],這些機(jī)制均導(dǎo)致膠質(zhì)瘤細(xì)胞侵襲力的下降。4)抑制血管生成。Tseng等[14]將白藜蘆醇作用于大鼠RT-2膠質(zhì)瘤細(xì)胞,發(fā)現(xiàn)其VEGF的表達(dá)水平明顯下降,同時(shí)證明白藜蘆醇以濃度和時(shí)間依賴方式抑制臍靜脈血管內(nèi)皮細(xì)胞的增殖,兩種機(jī)制均可抑制腫瘤的血管生成。
此外,白藜蘆醇還有加強(qiáng)替莫唑胺化療效果及增強(qiáng)膠質(zhì)瘤對(duì)放射線敏感性的作用。Lin等[15]從體內(nèi)外實(shí)驗(yàn)表明其增強(qiáng)替莫唑胺療效可能與減少ROS/ERK信號(hào)通路介導(dǎo)的細(xì)胞保護(hù)性的自我吞噬進(jìn)而增加腫瘤細(xì)胞凋亡有關(guān)。不僅如此,白藜蘆醇還可以增強(qiáng)惡性膠質(zhì)瘤對(duì)放射線的敏感性[16]。
大麻的主要活性成分為四氫大麻酚(Δ9-Tetrahydrocannabinol,THC),其在人體內(nèi)主要通過細(xì)胞膜上CB1和CB2兩種受體發(fā)揮作用。CB1主要在中樞神經(jīng)系統(tǒng)表達(dá),大麻作用于其產(chǎn)生精神作用;CB2被認(rèn)為主要存在于人體的免疫細(xì)胞中,近年在膠質(zhì)瘤尤其是膠質(zhì)母細(xì)胞瘤中檢測(cè)到其高表達(dá),并且與腫瘤的惡性程度相關(guān)[17],這也暗示了其作為惡性膠質(zhì)瘤治療的靶點(diǎn)。Sánchez等[18]的研究表明,選擇性激活 CB2受體能夠抑制裸鼠異種移植瘤的生長(zhǎng)。尋找和研制選擇性地作用于CB2受體,同時(shí)避免激活CB1受體所誘發(fā)精神作用的藥物是近年研究的重點(diǎn)和難點(diǎn)之一。2004年,Massi等[19]研究發(fā)現(xiàn),大麻提取物大麻二酚(Cannabidiol,CBD)兼具抗膠質(zhì)瘤作用的同時(shí)能夠避免產(chǎn)生精神上的副作用,被視為較有前途的抗膠質(zhì)瘤藥。
綜合近年的研究,THC抗膠質(zhì)瘤的機(jī)制主要有:1)抑制細(xì)胞遷移和侵襲。體內(nèi)外實(shí)驗(yàn)證明,THC可以下調(diào)細(xì)胞MMP-2[20]和金屬蛋白酶抑制劑(Tissue Inhibitors of Metallo - Proteinasese,TIMPs)[21]的表達(dá)水平,并且二者抑制細(xì)胞遷移和侵襲的作用均可以通過CB2受體激動(dòng)劑JWH-133來模擬,也可以通過抑制神經(jīng)酰胺的合成和下調(diào)p8蛋白的表達(dá)取消這種作用[20-21]。2)促進(jìn)細(xì)胞凋亡。有研究表明,神經(jīng)酰胺的水平與人類膠質(zhì)瘤的惡性程度及預(yù)后有關(guān)[22],THC能夠通過激活CB2受體使神經(jīng)酰胺重新合成,進(jìn)而上調(diào)p8蛋白表達(dá)水平來誘導(dǎo)腫瘤細(xì)胞的凋亡[23]。3)抑制血管生成。Blázquez等[24]認(rèn)為 THC 是通過減少VEGF的生成及降低VEGF受體-2的活化來抑制VEGF信號(hào)通路活性,從而抑制腫瘤血管生成的。
此外,有研究表明THC和CBD能夠通過激發(fā)細(xì)胞的自我吞噬增強(qiáng)替莫唑胺抗膠質(zhì)瘤的藥效[25],表現(xiàn)出很好的應(yīng)用前景,但由于其精神效應(yīng)大麻素類僅限于科學(xué)研究,研發(fā)出國(guó)際社會(huì)認(rèn)可的大麻素類藥物仍是科學(xué)工作者們努力的目標(biāo)。
欖香烯(Elemene)是姜科植物溫郁金根莖中的提取物,由β-、γ-和δ-欖香烯組成,β-欖香烯為其活性成分。以下介紹β-欖香烯抗惡性膠質(zhì)瘤的作用及機(jī)制。
體外實(shí)驗(yàn)證明,β-欖香烯通過絲裂原活化蛋白激酶激酶3(Mitogen-activated protein kinase kinase-3,MKK3)和絲裂原活化蛋白激酶激酶6(Mitogen-activated protein kinase kinase-6,MKK6)的互相補(bǔ)償性激活機(jī)制來抑制U87和C6細(xì)胞的增殖,并誘導(dǎo)細(xì)胞周期在 G0/G1期停滯[26];同實(shí)驗(yàn)室的研究發(fā)現(xiàn),MKK3/MKK6上游的膠質(zhì)細(xì)胞成熟因子β(Glia maturation factorβ,GMFβ)也能夠影響β-欖香烯對(duì)抗膠質(zhì)瘤的作用,因此,也有望成為膠質(zhì)瘤治療的靶點(diǎn)[27]。Zhao等[28]研究表明,β-欖香烯不僅能通過分裂Hsp90/Raf-1復(fù)合體,導(dǎo)致Raf/MEK/ERK信號(hào)通路活性的下降;還能夠增加Bax與Bcl-2比值,從而誘導(dǎo)膠質(zhì)瘤細(xì)胞的凋亡;并且在裸鼠實(shí)驗(yàn)中可觀察到β-欖香烯抑制膠質(zhì)瘤生長(zhǎng)的現(xiàn)象。此外尚有研究表明,β-欖香烯能夠增強(qiáng) U87細(xì)胞系對(duì)順鉑的敏感性[27],暗示了其作為輔助化療藥物的潛能。
欖香烯現(xiàn)已應(yīng)用于臨床治療,并表現(xiàn)出很好的抗腫瘤效果及很少的副作用,其機(jī)制的深入研究能夠指導(dǎo)臨床合理聯(lián)合用藥,并為臨床應(yīng)用提供更確切的理論基礎(chǔ)。
雷公藤(Tripterygium wilfordii)單體是衛(wèi)矛科植物雷公藤的一種分離提取物,其中雷公藤甲素和雷公藤紅素被證明有抗腫瘤作用[29-30]。
雷公藤甲素抗惡性膠質(zhì)瘤的機(jī)制有:1)抑制膠質(zhì)瘤細(xì)胞系的增殖,使細(xì)胞周期停滯在G0/G1期;2)通過減少cyclin D1、CDK4、CDK6以及Rb蛋白的表達(dá)而促進(jìn)細(xì)胞凋亡;3)誘導(dǎo)MAP-2介導(dǎo)的微管裂解和Rho GTP酶介導(dǎo)的肌動(dòng)蛋白細(xì)胞骨架重組,以致膠質(zhì)瘤細(xì)胞發(fā)生形態(tài)學(xué)改變[31]。林雋等[32]在膠質(zhì)瘤細(xì)胞系研究中發(fā)現(xiàn)雷公藤甲素抗腫瘤的機(jī)制涉及Ras、PI3K/Akt和ERK信號(hào)通路。
雷公藤由于其對(duì)人體具有較大的毒性作用,在中醫(yī)中藥的應(yīng)用中也很謹(jǐn)慎,因此,其抗腫瘤的藥用效果及副作用有待大量體內(nèi)實(shí)驗(yàn)及臨床試驗(yàn)進(jìn)行研究驗(yàn)證,并盡可能去除毒性作用部分,以保證臨床用藥的安全性。
除了以上介紹的5種外,還有很多天然藥物成分如人參皂苷[33]、三氧化二砷[34]、槲皮素[35-36]、戒酒硫[37-39]及喜樹堿[40]等,均有文獻(xiàn)報(bào)道具有抗膠質(zhì)瘤的作用,但其確切機(jī)制還有待進(jìn)一步研究。
與傳統(tǒng)化療藥物相比,中藥具有多途徑、多靶點(diǎn)、多效性和少副作用等特點(diǎn),具有良好的應(yīng)用前景。近年研究發(fā)現(xiàn)納米脂質(zhì)體能夠增加中藥的血腦屏障透過率,使其抗癌作用得到充分發(fā)揮,進(jìn)一步提高了中藥的應(yīng)用價(jià)值[6,41]。膠質(zhì)瘤的發(fā)生發(fā)展機(jī)制及病程特點(diǎn)因人而異,個(gè)體化綜合治療是未來膠質(zhì)瘤治療的趨勢(shì),中藥活性成分的研究為增加治療手段和開展個(gè)體化治療奠定了一定基礎(chǔ)。中醫(yī)藥博大精深,其在抗癌治療中的應(yīng)用仍有很多值得探索,例如,某些藥物成分有著相同的作用靶點(diǎn)及機(jī)制,其聯(lián)合應(yīng)用能否起到協(xié)同的作用值得深入研究。但相信隨著更多研究的開展,中醫(yī)藥必會(huì)為包括膠質(zhì)瘤在內(nèi)的腫瘤預(yù)防和治療事業(yè)做出更大貢獻(xiàn)。
[1]Van Meir EG,Hadjipanayis CG,Norden AD,et al.Exciting new advances in neuro-oncology:the avenue to a cure for malignant glioma[J].CA Cancer J Clin,2010,60(3):166 -193.
[2]Moos PJ,Edes K,Mullally JE,et al.Curcumin impairs tumor suppressor p53 function in colon cancer cells[J].Carcinogenesis,2004,25(9):1611-1617.
[3]Chen HW,Lee JY,Huang JY,et al.Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor[J].Cancer Res,2008,68(18):7428 -7438.
[4]Perry MC,Demeule M,Régina A,et al.Curcumin inhibits tumor growth and angiogenesis in glioblastoma xenografts[J].Mol Nutr Food Res,2010,54(8):1192 -1201.
[3]Dhandapani KM,Mahesh VB,Brann DW.Curcumin suppresses growth and chemoresistance of human glioblastoma cells via AP-1 and NFkappaB transcription factors[J].J Neurochem,2007,102(2):522-538.
[4]Karmakar S,Banik NL,Ray SK.Curcumin suppressed anti-apoptotic signals and activated cysteine proteases for apoptosis in human malignant glioblastoma U87MG cells[J].Neurochem Res,2007,32(12):2103-2113.
[5]Karmakar S,Banik NL,Patel SJ,et al.Curcumin activated both receptor-mediated and mitochondria-mediated proteolytic pathways for apoptosis in human glioblastoma T98G cells[J].Neurosci Lett,2006,407(1):53 -58.
[6]Kundu P,Mohanty C,Sahoo SK.Antiglioma activity of curcumin -loaded lipid nanoparticles and its enhanced bioavailability in brain tissue for effective glioblastoma therapy[J].Acta Biomater,2012,8(7):2670-2687.
[7]Weissenberger J,Priester M,Bernreuther C,et al.Dietary curcumin attenuates glioma growth in a syngeneic mouse model by inhibition of the JAK1,2/STAT3 signaling pathway[J].Clin Cancer Res,2010,16(23):5781-5795.
[8]Su CC,Wang MJ,Chiu TL.The anti- cancer efficacy of curcumin scrutinized through core signaling pathways in glioblastoma[J].Int J Mol Med,2010,26(2):217 -224.
[9]Zanotto - Filho A,Braganhol E,Edelweiss MI,et al.The curry spice curcumin selectively inhibits cancer cells growth in vitro and in preclinical model of glioblastoma[J].J Nutr Biochem,2012,23(6):591-601.
[10]Soleas GJ,Diamandis EP,Goldberg DM.Resveratrol:a molecule whose time has come And gone[J].Clin Biochem,1997,30(2):91-113.
[11]Leone S,Basso E,Polticelli F,et al.Resveratrol acts as a topoisomerase II poison in human glioma cells[J].Int J Cancer,2012,131(3):173-178.
[12]劉宏勝,王金環(huán),徐新女,等.白藜蘆醇對(duì)U251人腦膠質(zhì)瘤細(xì)胞生長(zhǎng)的抑制及相關(guān)機(jī)制的研究[J].中國(guó)中藥雜志,2009,34(8):1027-1031.
[13]Ryu J,Ku BM,Lee YK,et al.Resveratrol reduces TNF - αinduced U373MG human glioma cell invasion through regulating NF-κB activation and uPA/uPAR expression[J].Anticancer Res,2011,31(12):4223-4230.
[14]Tseng SH,Lin SM,Chen JC,et al.Resveratrol suppresses the angiogenesis and tumor growth of gliomas in rats[J].Clin Cancer Res,2004,10(6):2190 -2202.
[15]Lin CJ,Lee CC,Shih YL,et al.Resveratrol enhances the therapeutic effect of temozolomide against malignant glioma in vitro and in vivo by inhibiting autophagy[J].Free Radic Biol Med,2012,52(2):377-391.
[16]Yang YP,Chang YL,Huang PI,et al.Resveratrol suppresses tumorigenicity and enhances radiosensitivity in primary glioblastoma tumor initiating cells by inhibiting the STAT3 axis[J].J Cell Physiol,2012,227(3):976 -993.
[17]Ellert- Miklaszewska A,Grajkowska W,Gabrusiewicz K,et al.Distinctive pattern of cannabinoid receptor type II(CB2)expression in adult and pediatric brain tumors[J].Brain Res,2007,1137(1):161-169.
[18]Sánchez C,Ceballos ML,Gome del Pulgar T,et al.Inhibition of glioma growth in vivo by selective activation of the CB(2)cannabinoid receptor[J].Cancer Res,2001,61(15):5784 -5789.
[19]Massi P,Vaccani A,Ceruti S,et al.Antitumor effects of cannabidiol,a nonpsychoactive cannabinoid,on human glioma cell lines[J].J Pharmacol Exp Ther,2004,308(3):838 -845.
[20]Blázquez C,Salazar M,Carracedo A,et al.Cannabinoids inhibit glioma cell invasion by down-regulating matrix metalloproteinase-2 expression[J].Cancer Res,2008,68(6):1945 -1952.
[21]Blázquez C,Carracedo A,Salazar M,et al.Down - regulation of tissue inhibitor of metalloproteinases-1 in gliomas:a new marker of cannabinoid antitumoral activity[J].Neuropharmacology,2008,54(1):235-243.
[22]Riboni L,Campanella R,Bassi R,et al.Ceramide levels are inversely associated with malignant progression of human glial tumors[J].Glia,2002,39(2):105 -113.
[23]Carracedo A,Lorente M,Egia A,et al.The stress-regulated protein p8 mediates cannabinoid - induced apoptosis of tumor cells[J].Cancer Cell,2006,9(4):301 -312.
[24]Blázquez C,González- Feria L,Alvarez L,et al.Cannabinoids inhibit the vascular endothelial growth factor pathway in gliomas[J].Cancer Res,2004,64(16):5617 -5623.
[25]Torres S,Lorente M,Rodríguez- Fornés F,et al.A combined preclinical therapy of cannabinoids and temozolomide against glioma[J].Mol Cancer Ther,2011,10(1):90 - 103.
[26]Zhu T,Zhao Y,Zhang J,et al.β - Elemene inhibits proliferation of human glioblastoma cells and causes cell-cycle G0/G1 arrest via mutually compensatory activation of MKK3 and MKK6[J].Int J Oncol,2011,38(2):419 -426.
[27]Zhu T,Xu Y,Dong B,et al.β -elemene inhibits proliferation of human glioblastoma cells through the activation of glia maturation factor β and induces sensitization to cisplatin[J].Oncol Rep,2011,26(2):405-413.
[28]Zhao YS,Zhu TZ,Chen YW,et al.β -elemene inhibits Hsp90/Raf-1 molecular complex inducing apoptosis of glioblastoma cells[J].J Neurooncol,2012,107(2):307 - 314.
[29]周幽心,黃煜倫,許期年,等.雷公藤單體體外抑制膠質(zhì)瘤細(xì)胞的實(shí)驗(yàn)研究[J].癌癥,2002,21(10):1106 -1108.
[30]Yang H,Chen D,Cui QC,et al.Celastrol,a triterpene extracted from the Chinese“Thunder of God Vine”is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice[J].Cancer Res,2006,66(9):4758 -4765.
[31]Zhang H,Zhu W,Su X,et al.Triptolide inhibits proliferation and invasion of malignant glioma cells[J].J Neurooncol,2012,109(1):53-62.
[32]Lin J,Chen L,Lin Z,et al.Inhibitory effect of triptolide on glioblastoma multiforme in vitro[J].J Int Med Res,2007,35(4):490-496.
[33]Wu N,Wu GC,Hu R,et al.Ginsenoside Rh2 inhibits glioma cell proliferation by targeting microRNA - 128[J].Acta Pharmacol Sin,2011,32(3):345 -353.
[34]張祖斌,蔣小崗,梁中琴,等.三氧化二砷誘導(dǎo)人腦膠質(zhì)瘤干祖細(xì)胞凋亡及其機(jī)制[J].蘇州大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2011,31(2):196-200.
[35]Wang G,Wang JJ,Yang GY,et al.Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death[J].Int J Nanomedicine,2012,7:271 - 280.
[36]Park MH,Min do S.Quercetin-induced downregulation of phospholipase D1 inhibits proliferation and invasion in U87 glioma cells[J].Biochem Biophys Res Commun,2011,412(4):710 -715.
[37]Liu P,Brown S,Goktug T,et al.Cytotoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH-positive cancerstem - like cells[J].Br J Cancer,2012,107(9):1488 -1497.
[38]Hothi P,Martins TJ,Chen L,et al.High - throughput chemical screens identify disulfiram as an inhibitor of human glioblastoma stem cells[J].Oncotarget,2012,3(10):1124 -1136.
[39]Triscott J,Lee C,Hu K,et al.Disulfiram,a drug widely used to control alcoholism,suppresses the self-renewal of glioblastoma and over - rides resistance to temozolomide[J].Oncotarget,2012,3(10):1112-1123.
[40]Lee BS,Nalla AK,Stock IR,et al.Oxidative stimuli-responsive nanoprodrug of camptothecin kills glioblastoma cells[J].Bioorg Med Chem Lett,2010,20(17):5262 -5268.
[41]Shao J,Li X,Lu X,et al.Enhanced growth inhibition effect of resveratrol incorporated into biodegradable nanoparticles against glioma cells is mediated by the induction of intracellular reactive oxygen species levels[J].Colloids Surf B Biointerfaces,2009,72(1):40 -47.