陸波潘涼澤謝延風(fēng)
癲癇是中樞神經(jīng)系統(tǒng)常見疾病,其發(fā)病機(jī)制現(xiàn)仍不完全清楚。目前大量研究表明哺乳動(dòng)物雷帕霉素靶蛋白(mammaliantarget of rapamycin,mTOR)信號(hào)通路與癲癇的發(fā)生發(fā)展有著重要聯(lián)系,在多種類型癲癇疾病及動(dòng)物模型中mTOR通路異常激活,在動(dòng)物模型中予以其抑制劑雷帕霉素干預(yù),不僅可控制癲癇癥狀,還可改善如神經(jīng)細(xì)胞死亡、星形膠質(zhì)細(xì)胞增生、苔蘚樣纖維出芽等與癲癇發(fā)生發(fā)展有關(guān)的分子病理改變。mTOR信號(hào)通路的異常激活已被認(rèn)為是癲癇發(fā)生發(fā)展的潛在機(jī)制,抑制mTOR信號(hào)通路將是治療癲癇新的靶點(diǎn)。本文現(xiàn)就與mTOR信號(hào)通路相關(guān)的癲癇疾病與動(dòng)物模型,以及mTOR通路參與癲癇發(fā)生發(fā)展可能的機(jī)制做一綜述,為癲癇的治療提供新的思路。
哺乳動(dòng)物雷帕霉素靶蛋白(mTOR)是一種進(jìn)化上相對(duì)保守的非典型絲氨酸/蘇氨酸蛋白激酶,由mTORC1和mTORC2兩種蛋白質(zhì)復(fù)合體組成,上游主要包括PI3K/Akt通路及LKB1/AMPK通路,前者對(duì)mTOR有激活作用,而后者起抑制作用。在接受來自激素、生長(zhǎng)因子等多種信號(hào)后,上游信號(hào)通過磷酸化各靶點(diǎn)而作用于mTOR,mTOR主要通過調(diào)節(jié)p70S6K和4E-BP1磷酸化水平而參與細(xì)胞生長(zhǎng)、分化增殖和維持代謝穩(wěn)態(tài),以及參與如神經(jīng)細(xì)胞死亡、星形膠質(zhì)細(xì)胞增生,突觸可塑性改變等癲癇相關(guān)病理改變。生理?xiàng)l件下,mTOR通路廣泛存在于哺乳動(dòng)物各組織器官,在中樞神經(jīng)系統(tǒng)內(nèi)呈低表達(dá)[1]。
2.1 mTOR通路與皮質(zhì)發(fā)育畸形所致癲癇 結(jié)節(jié)性硬化癥(tuberous sclerosis complex,TSC)是常見的遺傳性癲癇疾病,患者中癲癇發(fā)生率極高,且多呈難治性,它是由mTOR上游抑制基因TSC1/TSC2突變引起,任一TSC基因突變都將產(chǎn)生癲癇等癥狀,動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn)TSC2基因失活將產(chǎn)生更嚴(yán)重的癲癇[2]。在一個(gè)TSC1基因敲除實(shí)驗(yàn)中,小鼠在3周齡時(shí)出現(xiàn)典型的癲癇發(fā)作,予以mTOR抑制劑雷帕霉素可以阻止或減少癲癇發(fā)作,同時(shí)可改善甚至逆轉(zhuǎn)星形膠質(zhì)細(xì)胞增生,神經(jīng)元肥大,受損髓鞘形成等癲癇相關(guān)病理改變[3]。現(xiàn)雷帕霉素衍生物治療TSC已進(jìn)入臨床試驗(yàn)階段,并在多數(shù)患者中證實(shí)對(duì)癲癇等相關(guān)癥狀有效[4-5]。但雷帕霉素治療TSC存在的重要不足是在動(dòng)物實(shí)驗(yàn)中停藥數(shù)周后癲癇癥狀及相關(guān)病理異常再次出現(xiàn)[3],在人體實(shí)驗(yàn)中長(zhǎng)期使用伴有免疫抑制等毒副作用,其治療策略需進(jìn)一步研究。
局灶性皮質(zhì)發(fā)育不良(focal cortical dysplasia,F(xiàn)CD)常伴難治性癲癇,對(duì)其中亞型FCDIIb型的研究發(fā)現(xiàn),提示PI3K/Akt/mTOR通路激活的標(biāo)志蛋白在該亞型中表達(dá)增加[6],另外雖然對(duì)于基因多態(tài)性是否代表喪失功能的基因突變?nèi)圆豢隙ǎ贔CDIIb難治性癲癇患者病理組織中發(fā)現(xiàn)TSC1基因多態(tài)性約50%,意義尚待探索[7]。
PTEN基因敲除模型常用來模擬皮質(zhì)畸形所致癲癇。PTEN是mTOR上游負(fù)性調(diào)控基因,在PTEN敲除鼠模型中可見癇性發(fā)作,神經(jīng)肥大等表現(xiàn),雷帕霉素可以改善癲癇、行為缺陷等癥狀以及相關(guān)病理改變[8]。在多器官錯(cuò)構(gòu)瘤等多種癲癇發(fā)病率很高的人類疾病中人們也發(fā)現(xiàn)PTEN基因的突變。
羊水過多-巨顱-癥狀性癲癇綜合征(polyhydramnios,megalencephaly,and symptomatic epilepsy syndrome,PMSE)是由STRADA基因突變引起,以局部皮質(zhì)發(fā)育畸形、嚴(yán)重的癲癇、認(rèn)知障礙為特征的一種遺傳性疾病。STRADA基因編碼的蛋白STRADα可激活LKB1/AMPK通路,從而抑制mTOR蛋白的激活,STRADA基因突變后將致mTOR及其下游的活化,在PMSE患者腦組織中發(fā)現(xiàn)mTOR通路的激活也是對(duì)其客觀的印證[9]。
2.2 mTOR通路與病毒感染所致癲癇 中樞神經(jīng)系統(tǒng)病毒感染常致熱性驚厥和癲癇,近期研究發(fā)現(xiàn),許多病毒蛋白與mTOR通路有關(guān),提示mTOR通路在病毒性腦炎所致癲癇中扮演重要角色。
1型單純皰疹病毒(herpes simplex virus,HSV-1)感染常使膜電位去極化減少,而使神經(jīng)元處于過度興奮狀態(tài),其顱內(nèi)感染后常常發(fā)生癲癇[10],HSV-1蛋白ICP0可激活mTOR下游分子4E-BP1,促進(jìn)蛋白合成[11]。腺病毒感染常發(fā)生熱性驚厥,其產(chǎn)生的蛋白E4-ORF1可以直接結(jié)合活化PI3K,而E4-ORF4可結(jié)合活化PP2A,抑制mTORC1的去磷酸化而激活mTOR通路[12]。在人類免疫缺陷病毒(human immunodeficiency virus,HIV)相關(guān)腦炎所致的癲癇中,mTOR通路活化,以及GP120和mTOR的相關(guān)性也已有相關(guān)報(bào)道[13]。先天性巨細(xì)胞病毒感染患者癲癇發(fā)病率高,病毒中IE1和IE2蛋白可以活化Akt,同時(shí)病毒也可作用于AMPK影響蛋白的合成[14],另一個(gè)蛋白PUL38可影響TSC1/TSC2而抑制宿主細(xì)胞的凋亡[15]。
2.3 mTOR通路與大腦腫瘤所致癲癇 多種類型大腦腫瘤常伴發(fā)癲癇,如神經(jīng)節(jié)神經(jīng)膠質(zhì)瘤、腦膜瘤、多形性膠質(zhì)母細(xì)胞瘤等,目前有證據(jù)表明,mTOR通路在多種大腦腫瘤相關(guān)的癲癇中異常激活并扮演著重要角色。
在神經(jīng)節(jié)神經(jīng)膠質(zhì)瘤患者病理組織中mTOR通路激活,并表明與絡(luò)絲蛋白(Reelin)有關(guān)[16]。腦膜瘤中顯著表達(dá)纖維母細(xì)胞生長(zhǎng)因子(fibroblast growth factor,FGF)及其受體之一FGFR-3,F(xiàn)GFR-3的活化依賴于PI3K/AKt/mTORC1通路的激活[17],同時(shí)人們還發(fā)現(xiàn)在一些腦膜瘤中mTORC1抑制因子NF2/Merlin的突變[18]。多形性膠質(zhì)細(xì)胞瘤是侵襲性很高的原發(fā)性大腦腫瘤,表現(xiàn)出PI3K-AKt依賴性,雖然目前雷帕霉素對(duì)這類患者療效欠佳[19],但mTOR通路與該病關(guān)系仍需探索。
2.4 mTOR通路與獲得性癲癇動(dòng)物模型 海藻氨酸及匹魯卡品致癇鼠模型都是常用的顳葉癲癇模型。在海藻氨酸誘發(fā)癲癇持續(xù)狀態(tài)后mTOR通路在急性期的大鼠海馬及新皮質(zhì)區(qū)均激活,持續(xù)數(shù)小時(shí)后漸降至正常,3天后在海馬區(qū)再次檢測(cè)到mTOR通路活化,雷帕霉素預(yù)處理可以阻斷這種雙時(shí)相激活,并減少癇性發(fā)作、神經(jīng)細(xì)胞死亡及苔蘚纖維出芽,在癲癇持續(xù)狀態(tài)后使用雷帕霉素可阻斷慢性期mTOR通路的活化,減少癇性發(fā)作及苔蘚樣纖維出芽[20]。進(jìn)一步研究發(fā)現(xiàn),在海藻氨酸注射前一小時(shí)使用雷帕霉素mTOR通路活化程度反而增加,并伴隨著神經(jīng)細(xì)胞死亡的異常,但如果二者注射有足夠長(zhǎng)的時(shí)間間隔,又表現(xiàn)出mTOR通路抑制及抗癲癇作用[21]。在匹魯卡品致癇模型中,mTOR通路在癲癇持續(xù)狀態(tài)以及慢性自發(fā)性癲癇期激活,雷帕霉素可減少癇性發(fā)作頻率,抑制笞蘚樣纖維出芽及齒狀回異常神經(jīng)環(huán)路的形成[22],但停止使用數(shù)周后癲癇癥狀及病理改變相繼發(fā)生[23]。
控制性皮質(zhì)撞擊損傷(controlled cortical impact,CCI)模型常用來模擬外傷性癲癇,在該模型中人們檢測(cè)到異?;罨膍TOR通路,雷帕霉素可以改善癲癇癥狀,減少神經(jīng)元死亡及苔蘚樣纖維出芽[24]。另一實(shí)驗(yàn)中聯(lián)合使用Akt和mTOR抑制劑還可改善后期的認(rèn)知及運(yùn)動(dòng)功能[25]。
mTOR通路參與癲癇發(fā)生發(fā)展分子機(jī)制仍不清,人們推測(cè)與炎癥、離子通道、神經(jīng)遞質(zhì)受體、神經(jīng)細(xì)胞死亡、星形膠質(zhì)細(xì)胞增生和突觸可塑性等異常有關(guān)。
在人類及動(dòng)物癲癇致癇灶里炎癥因子IL-1β、TNF-α等大量存在,雷帕霉素可以抑制炎癥過程中小膠質(zhì)細(xì)胞的活化,從而抑制炎癥反應(yīng)[26],最近的報(bào)道再次證實(shí)mTOR通路通過炎癥反應(yīng)而參與癲癇發(fā)生發(fā)展的推測(cè)[27]。
mTOR涉及管理與癲癇有關(guān)的離子通道和神經(jīng)遞質(zhì)受體的活性,Gregory等[28]報(bào)告在TSC患者腦組織中NMDA受體增加及GABA受體減少并推測(cè)與mTOR通路有關(guān)。在癲癇動(dòng)物模型中人們發(fā)現(xiàn)雷帕霉素通過抑制mTOR通路可增加皮層及海馬Kv1.1鉀離子通道蛋白的表達(dá)[29],增加GABA受體介導(dǎo)的突觸活性及減少AMPA受體表達(dá)[30],從而達(dá)到抗癲癇作用。
另有報(bào)道稱mTOR通路通過調(diào)節(jié)凋亡、自噬方式的神經(jīng)細(xì)胞死亡,星形膠質(zhì)細(xì)胞增生,苔蘚樣纖維出芽等影響大腦神經(jīng)興奮性而參與癲癇發(fā)生發(fā)展。星形膠質(zhì)細(xì)胞聚集可減少谷氨酸及鉀離子的攝取而導(dǎo)致癇性發(fā)作[31],同時(shí)星形膠質(zhì)細(xì)胞增生,神經(jīng)細(xì)胞死亡及苔蘚樣纖維出芽可形成異常的神經(jīng)環(huán)路而導(dǎo)致癲癇的發(fā)生。McMahon等[32]在TSC和PTEN動(dòng)物模型中發(fā)現(xiàn)mTOR通路對(duì)自噬的負(fù)性調(diào)節(jié),并提示異常的自噬過程可能參與癲癇的發(fā)生發(fā)展,同時(shí)人們?cè)诙鄠€(gè)癲癇模型中證實(shí)mTOR通路促進(jìn)神經(jīng)細(xì)胞凋亡,星形膠質(zhì)細(xì)胞增生及苔蘚樣纖維出芽,雷帕霉素可抑制這些病理改變并阻止癲癇的發(fā)生發(fā)展[3,20-24,33]。
mTOR通路的異常激活已經(jīng)在多種類型癲癇疾病及動(dòng)物模型中證實(shí),雷帕霉素可控制癲癇癥狀,改善甚至逆轉(zhuǎn)癲癇相關(guān)病理改變,我們相信mTOR通路在癲癇的發(fā)生發(fā)展中扮演了重要角色,但二者關(guān)系仍有待進(jìn)一步研究。首先應(yīng)進(jìn)一步探索mTOR下游通路參與癲癇的分子機(jī)制及與已知的直接導(dǎo)致癲癇發(fā)生的分子或離子通道等關(guān)系,其次探索合理使用雷帕霉素的方法,減少其抗癲癇過程的毒副作用,最后探索現(xiàn)有或正在研究的抗癲癇藥物或方法如姜黃素[34-35]、生酮飲食[36]等與mTOR通路聯(lián)系,以期找到療效更為確切、毒副作用更小的mTOR通路抑制劑用于臨床。
[1]Chong ZZ,Shang YC,Wang S,et al.Shedding new light on neurodegenerative diseases through the mammalian target of rapamycin[J].Prog Neurobiol,2012,99(2):128-148.
[2]Zeng LH,Rensing NR,Zhang B,et al.Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex[J].Hum Mol Genet,2011,20(3):445-454.
[3]Zeng LH,Xu L,Gutmann DH,et al.Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex[J].Ann Neurol,2008,63(4):444-453.
[4]Krueger DA,Care MM,Holland K,et al.Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis[J].N Engl J Med,2010,363(19):1801-1811.
[5]Wiegand G,May TW,Ostertag P,et al.Everolimus in tuberous sclerosis patients with intractable epilepsy:A treatment option?[J].Eur J Paediatr Neurol,2013,17(6):631-638.
[6]Schick V,Majores M,Engels G,et al.Differential Pi3K-pathway activation in cortical tubers and focal cortical dysplasias with balloon cells[J].Brain Pathol,2007,17(2):165-173.
[7]Wong M.Mechanisms of epileptogenesis in tuberous sclerosis complex and related malformations of cortical development with abnormal glioneuronal proliferation[J].Epilepsia,2008,49(1):8-21.
[8]Sunnen CN,Brewster AL,Lugo JN,et al.Inhibition of the mammalian target of rapamycin blocks epilepsy progression in NSPten conditional knockout mice[J].Epilepsia,2011,52(11):2065-2075.
[9]Orlova KA,Parker WE,Heuer GG,et al.STRADalpha deficiency results in aberrant mTORC1 signaling during corticogenesis in humans and mice[J].J Clin Invest,2010,120(5):1591-1602.
[10]Misra UK,Tan CT,Kalita J.Viral encephalitis and epilepsy[J].Epilepsia,2008,49(Suppl 6):13-8.
[11]Walsh D,Mohr I.Phosphorylation of eIF4E by Mnk-1 enhances HSV-1 translation and replication in quiescent cells[J].Genes Dev,2004,18(6):660-672.
[12]O'Shea CC,Choi S,McCormick F,et al.Adenovirus overrides cellular checkpoints for protein translation[J].Cell Cycle,2005,4(7):883-888.
[13]Nardacci R,Antinori A,Larocca LM,et al.Characterization of cell death pathways in human immunodeficiency virus-associated encephalitis[J].Am J Pathol,2005,167(3):695-704.
[14]Kudchodkar SB,Del Prete GQ,Maguire TG,et al.AMPK-mediated inhibition of mTOR kinase is circumvented during immediate-early times of human cytomegalovirus infection[J].J Virol,2007,81(7):3649-3651.
[15]Moorman NJ,Cristea IM,Terhune SS,et al.Human cytomegalovirus protein UL38 inhibits host cell stress responses by antagonizing the tuberous sclerosis protein complex[J].Cell Host Microbe,2008,3(4):253-262.
[16]Jossin Y,Goffinet AM.Reelin signals through phosphatidylinositol 3-kinase and Akt to control cortical development and through mTor to regulate dendritic growth[J].Mol Cell Biol,2007,27(20):7113-7124.
[17]Johnson MD,O'Connell MJ,Pilcher W,et al.Fibroblast growth factor receptor-3 expression in meningiomas with stimulation of proliferation by the phosphoinositide 3 kinase-Akt pathway[J].J Neurosurg,2010,112(5):934-939.
[18]James MF,Han S,Polizzano C,et al.NF2/merlin is a novel negative regulator of mTOR complex 1,and activation of mTORC1 is associated with meningioma and schwannoma growth[J].Mol Cell Biol,2009,29(15):4250-4261.
[19]Albert L,Karsy M,Murali R,et al.Inhibition of mTOR Activates the MAPK Pathway in Glioblastoma Multiforme[J].Cancer Genomics Proteomics,2009,6(5):255-261.
[20]Zeng LH,Rensing NR,Wong M.The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy[J].J Neurosci,2009,29(21):6964-6972.
[21]Zeng LH,McDaniel S,Rensing NR,et al.Regulation of cell death and epileptogenesis by the mammalian target of rapamycin(mTOR):a double-edged sword?[J].Cell Cycle,2010,9(12):2281-2285.
[22]Tang H,Long H,Zeng C,et al.Rapamycin suppresses the recurrent excitatory circuits of dentate gyrus in a mouse model of temporal lobe epilepsy[J].Biochem Biophys Res Commun,2012,420(1):199-204.
[23]Huang,X,Zhang,H,Yang,J,et al.Pharmacological inhibition of the mammalian target of rapamycin pathway suppresses acquired epilepsy[J].Neurobiol Dis,2010,40(1):193-199.
[24]Guo D,Zeng L,Brody DL,et al.Rapamycin attenuates the development of posttraumatic epilepsy in a mouse model of traumatic brain injury[J].PLoS One,2013,8(5):e64078.
[25]Park J,Zhang J,Qiu J,et al.Combination therapy targeting Akt and mammalian target of rapamycin improves functional outcome after controlled cortical impact in mice[J].J Cereb Blood Flow Metab,2012,32(2):330-340.
[26]Russo E,Citraro R,Constanti A,et al.The mTOR signaling pathway in the brain:focus on epilepsy and epileptogenesis[J].Mol Neurobiol,2012,46(3):662-681.
[27]Wang SJ,Bo QY,Zhao XH,et al.Resveratrol pre-treatment reduces early inflammatory responses induced by status epilepticus via mTOR signaling[J].Brain Res,2013,1492:122-129.
[28]Holmes GL,Stafstrom CE.Tuberous sclerosis complex and epilepsy:recent developments and future challenges[J].Epilepsia,2007,48(4):617-630.
[29]Raab-Graham KF,Haddick PC,Jan YN,et al.Activity-and mTOR-dependent suppression of Kv1.1 channel mRNA translation in dendrites[J].Science,2006,314(5796):144-148.
[30]Wang Y,Barbaro MF,Baraban SC.A role for the mTOR pathway in surface expression of AMPA receptors[J].Neurosci Lett,2006,401(1-2):35-39.
[31]Seifert G,Carmignoto G,Steinhauser C.Astrocyte dysfunction in epilepsy[J].Brain Res Rev,2010,63(1-2):212-221.
[32]McMahon J,Huang X,Yang J,et al.Impaired autophagy in neurons after disinhibition of mammalian target of rapamycin and its contribution to epileptogenesis[J].J Neurosci,2012,32(45):15704-15714.
[33]Zhang,B,McDaniel,SS,Rensing,NR,et al.Vigabatrin inhibits seizures and mTOR pathway activation in a mouse model of tuberous sclerosis complex[J].PLoS One,2013,8(2):e57445.
[34]郭曦,彭偉鋒,杜鵬等.雌激素和姜黃素對(duì)海人酸杏仁核點(diǎn)燃大鼠行為學(xué)、腦電圖及海馬神經(jīng)元損傷的影響[J].中國(guó)神經(jīng)精神疾病雜志.2008,34(9):562-564
[35]Beevers CS,Chen L,Liu L,et al.Curcumin disrupts the Mammalian target of rapamycin-raptor complex[J].Cancer Res,2009,69(3):1000-1008.
[36]慕潔,劉凌,周東.生酮飲食治療兒童難治性癲癇[J].中國(guó)神經(jīng)精神疾病雜志,2011,37(9):570-573.