路景濤,何 偉,宋莎莎,魏 偉
(安徽醫(yī)科大學(xué)臨床藥理研究所,抗炎免疫藥物教育部重點(diǎn)實(shí)驗(yàn)室,抗炎免疫藥物安徽省工程技術(shù)研究中心,安徽合肥 230032)
Hedgehog-Pat/Smo-Gli信號(hào)轉(zhuǎn)導(dǎo)通路是一條十分保守的信號(hào)通路,從果蠅到脊椎動(dòng)物發(fā)育中,該通路均發(fā)揮著中軸器官的形態(tài)發(fā)生作用[1]。該通路在動(dòng)物的胚胎發(fā)育、組織分化等生命過(guò)程中調(diào)控著細(xì)胞分化與增殖,特別是調(diào)控著內(nèi)胚層細(xì)胞的分化和增殖,而且對(duì)胚胎形成后的細(xì)胞生長(zhǎng)和組織分化過(guò)程起著極其重要的調(diào)控功能。同時(shí)該通路還參與機(jī)體內(nèi)環(huán)境穩(wěn)定、組織修復(fù)并調(diào)節(jié)著上皮-間充質(zhì)細(xì)胞的形態(tài)轉(zhuǎn)化等生理過(guò)程[2]。該通路在腫瘤的發(fā)生中同樣發(fā)揮著重要的作用,且與腫瘤的侵襲轉(zhuǎn)移關(guān)系密切。本文就該通路及其在腫瘤侵襲轉(zhuǎn)移中的研究進(jìn)展作一綜述。
Hedgehog基因由Nusslein-Volhard C和Wieschaus E于1980年在篩選可能引起果蠅突變的基因時(shí)首先發(fā)現(xiàn)的體節(jié)極性基因,該基因編碼一種分泌性信號(hào)蛋白。Hedgehog-Pat/Smo-Gli信號(hào)通路包括分泌型信號(hào)糖蛋白配體 Hedgehog(Hh)、跨膜蛋白受體Patched(Pat)以及與G蛋白偶聯(lián)的磷酸化受體Smoothened(Smo)組成的復(fù)合體和膠質(zhì)瘤相關(guān)癌基因同源物(glioma-associated oncogene homolog,Gli,一種核轉(zhuǎn)錄因子)等蛋白成分。果蠅僅有一個(gè)Hh基因,該基因突變能導(dǎo)致果蠅的幼蟲(chóng)體表形成許多刺突,形狀與刺猬像似,因此以其英文“hedgehog”命名。而在人類和鼠 Hedgehog-Pat/Smo-Gli信號(hào)通路中有3種Hh同源基因,能編碼3種Hh蛋白,即 Sonic hedgehog(Shh),Desert hedgehog(Dhh)和Indian hedgehog(Ihh),在許多組織、器官的形成中發(fā)揮著重要作用。Hh信號(hào)的缺失和減少,引起多種發(fā)育缺陷而導(dǎo)致畸形發(fā)生[2]。3種Hh蛋白家均由2個(gè)氨基端(Hh-N)和羧基端(Hh-C)結(jié)構(gòu)域組成,其中Hh-N有Hh蛋白的信號(hào)活性,而Hh-C有自身蛋白水解酶的活性,同時(shí)兼有膽固醇轉(zhuǎn)移酶功能。Hh蛋白是一種由上皮細(xì)胞分泌的信號(hào)蛋白,Hh可發(fā)生自身催化反應(yīng)形成具有活性的雙重脂質(zhì)修飾蛋白,該蛋白與其受體Pat和 Smo蛋白的復(fù)合物結(jié)合,從而傳導(dǎo)信號(hào)。Pat和Smo均為跨膜蛋白,介導(dǎo)信號(hào)向細(xì)胞內(nèi)傳遞。人類有兩個(gè)Pat同源基因,即Pat-1和Pat-2,兩者分別編碼Pat-1蛋白和Pat-2蛋白。Pat蛋白家族成員為含12次跨膜結(jié)構(gòu)域的膜蛋白,與Hh結(jié)合后,在Hh信號(hào)通路中起著負(fù)調(diào)控作用。Smo蛋白為7次跨膜蛋白,與G蛋白偶聯(lián)受體同源,其功能受Pat的影響,發(fā)揮著轉(zhuǎn)導(dǎo)Hh信號(hào)的關(guān)鍵作用。在哺乳動(dòng)物中,Gli為具有鋅指結(jié)構(gòu)核轉(zhuǎn)錄因子,分子量為155KD。人類有3個(gè)Gli的同源基因Gli-1,Gli-2和Gli-3,分別編碼 Gli-1,Gli-2 和 Gli-3 蛋白[1,3]。
3種核轉(zhuǎn)錄因子蛋白Gli均具有十分相似氨基序列,有5個(gè)高度保守的串聯(lián)鋅指結(jié)構(gòu)及組氨酸-半胱氨酸相連接的序列。其中,Gli-l被證實(shí)與神經(jīng)膠質(zhì)瘤 (Glioma)形成有關(guān)而首先被命名,相對(duì)于核轉(zhuǎn)錄因子Gli-2和Gli-3,對(duì)Gli-l的研究較多。3種Gli具有不同的轉(zhuǎn)錄激活或抑制功能。一般來(lái)講,Gli-l僅有激活功能[4],而 Gli-2,Gli-3 同時(shí)可以發(fā)揮轉(zhuǎn)錄激活與抑制的功能,因?yàn)楹笳叩腃、N末端存在不同的蛋白激活和抑制區(qū)域,即3種Gli-1,Gli-2,Gli-3蛋白的C末端均存在激活區(qū),而Gli-2,Gli-3的N末端還具有轉(zhuǎn)錄抑制區(qū)域,同時(shí)C末端能與其他分子相互作用,并將其定位于胞質(zhì)內(nèi),N末端則促其向胞核內(nèi)轉(zhuǎn)移[5]?,F(xiàn)有的研究認(rèn)為Gli-2基因與人類疾病較少相關(guān),Gli-3基因的不同突變則引起不同的表型出現(xiàn),包括軸前、中央及軸后多指等[6]。Gli-1在各種腫瘤中異常表達(dá),近年的研究多集中探索核轉(zhuǎn)錄因子Gli功能狀態(tài)改變的上游蛋白及其他信號(hào)通路,如Costal蛋白、Fused激酶等,而對(duì)Gli-1調(diào)控的下游基因及其與下游信號(hào)通路相互作用研究較少。隨著對(duì)該信號(hào)通路在脊椎動(dòng)物發(fā)育中研究不斷加深,使對(duì)其調(diào)控功能和機(jī)制的認(rèn)識(shí)不再局限于生物的胚胎發(fā)育,在腫瘤特別是在上皮類腫瘤發(fā)生中作用的研究逐漸增多[7]。研究表明,該信號(hào)通路在多種內(nèi)胚層來(lái)源的組織器官中異常激活,并誘發(fā)該類組織器官的腫瘤,占腫瘤的三分之一以上,該信號(hào)通路異常激活最早在痣樣基底細(xì)胞癌綜合征中被證實(shí),其后在基底膜癌、胃癌、結(jié)直腸癌、前列腺癌、食管癌、胰腺癌、乳腺癌、乳腺癌、肺癌、卵巢癌、子宮內(nèi)膜癌及原發(fā)性肝癌等腫瘤中相繼被發(fā)現(xiàn)[8-9]。
當(dāng)細(xì)胞間質(zhì)中Hh缺乏時(shí),細(xì)胞表面受體Pat與次跨膜蛋白Smo結(jié)合并阻止Smo轉(zhuǎn)位到細(xì)胞膜,從而抑制Smo的活性及在細(xì)胞表面的定位,該信號(hào)通路處于失活狀態(tài);當(dāng)細(xì)胞間質(zhì)中存在Hh信號(hào)存在時(shí),Hh誘導(dǎo)Smo羧基端的多個(gè)絲/蘇氨酸殘基磷酸化,使Smo在細(xì)胞表面聚集并激活,驅(qū)動(dòng)蛋白樣分子COS2及絲/蘇氨酸激酶Fus,Sufu形成復(fù)合物并從微管上解離下來(lái),激活Gli,Gli轉(zhuǎn)運(yùn)至胞核,最終激活目的靶基因的轉(zhuǎn)錄[10]。Gli為Hh信號(hào)通路的核轉(zhuǎn)錄因子,被激活直接導(dǎo)致Hh信號(hào)通路下游目的基因轉(zhuǎn)錄水平的改變[11]。而Hh通路中的上游蛋白并不能直接導(dǎo)致Gli功能狀態(tài)的變化,Gli通過(guò)與蛋白復(fù)合體內(nèi)組成成份的激酶磷酸化或者其他相關(guān)因子的相互作用,在多種水平上被調(diào)節(jié),影響Gli的活性及其在細(xì)胞內(nèi)的定位[12]。
文獻(xiàn)報(bào)道Hedgehog-Pat/Smo-Gli信號(hào)通路對(duì)多種類型細(xì)胞轉(zhuǎn)移與遷移的控制及血管形成發(fā)揮著重要作用[13-15];該信號(hào)促進(jìn)骨髓來(lái)源的內(nèi)皮祖細(xì)胞的增殖、轉(zhuǎn)移,促進(jìn)與腫瘤密切關(guān)系的血管生成。該信號(hào)通路與胃癌、胰腺癌、食管癌、膀胱癌、神經(jīng)膠質(zhì)瘤前體、結(jié)腸癌、乳腺癌、前列腺癌、卵巢癌等腫瘤的再生、侵襲與轉(zhuǎn)移密切相關(guān)[16-22]。
2.1 Hedgehog-Pat/Smo-Gli信號(hào)通路與胃癌侵襲轉(zhuǎn)移胃癌組織中,Hedgehog-Pat/Smo-Gli信號(hào)通路與腫瘤分化程度、淋巴結(jié)轉(zhuǎn)移呈正相關(guān)[19]。Wang等[23]通過(guò)免疫組化、PCR等方法檢測(cè)了該通路成分,并分析了通路與胃癌侵襲轉(zhuǎn)移的關(guān)系。結(jié)果表明,Hedgehog-Pat/Smo-Gli信號(hào)通路的Shh,Smo與胃癌的侵襲、臨床分期及腫瘤細(xì)胞的分化有相關(guān)性。Yoo等等[24]報(bào)道,通路的配體Shh能夠誘導(dǎo)胃癌細(xì)胞的侵襲轉(zhuǎn)移,而通路的抑制劑KAAD-cyc或通路配體Shh的抗體減少了胃癌細(xì)胞的侵襲轉(zhuǎn)移,Shh誘導(dǎo)的胃癌細(xì)胞的侵襲轉(zhuǎn)移被TGF-β抗體或TGF-β1 siRNA拮抗。Shh增加了胃癌細(xì)胞的ALK5蛋白及Smad3的磷酸化,KAAD-cyc或Shh抗體、TGF-β1抗體減少了胃癌細(xì)胞的ALK5蛋白及Smad3的磷酸化,而ALK5抑制則明顯抑制了Smad3的磷酸化及MMPs的活性以及胃癌細(xì)胞的侵襲轉(zhuǎn)移。ALK5 siRNA或Smad3 siRNA轉(zhuǎn)染減少了Shh刺激的胃癌細(xì)胞侵襲與轉(zhuǎn)移。由此得出Hedgehog-Pat/Smo-Gli信號(hào)通路促進(jìn)了胃癌細(xì)胞的侵襲,其機(jī)制與TGF-beta介導(dǎo)的 ALK5-Smad3通路有關(guān)。Yoo[19]另一研究還發(fā)現(xiàn)Hedgehog-Pat/Smo-Gli信號(hào)通路通過(guò)PI3K/Akt通路介導(dǎo)了MMP-9的表達(dá),從而促進(jìn)胃癌的侵襲轉(zhuǎn)移[43]。
2.2 Hedgehog-Pat/Smo-Gli信號(hào)通路與胰腺癌侵襲轉(zhuǎn)移
Thayer等[9]對(duì)胰腺癌轉(zhuǎn)基因鼠模型和人胰腺癌進(jìn)行對(duì)比分析發(fā)現(xiàn),Shh信號(hào)通路中的各個(gè)蛋白質(zhì)或mRNA不論在小鼠還是人的正常胰腺導(dǎo)管上皮中均無(wú)表達(dá),但在胰腺上皮內(nèi)瘤樣病變和浸潤(rùn)性癌灶中有高強(qiáng)度的表達(dá)。通路的抑制劑Cyclopamine可以減少胰腺癌中Snail蛋白的表達(dá),上調(diào)細(xì)胞粘附蛋白E-cadherin的表達(dá),同時(shí)抑制細(xì)胞上皮-間質(zhì)轉(zhuǎn)化,從而導(dǎo)致胰腺癌侵襲轉(zhuǎn)移的減少(P<0.0001),相反胰腺導(dǎo)管上皮腫瘤細(xì)胞Gli高表達(dá)而胰腺癌侵襲力增加,并伴有細(xì)胞粘附蛋白E-cadherin的下調(diào);同時(shí)Cyclopamine抑制了移植性胰腺癌腫瘤小鼠的轉(zhuǎn)移(1/7),而對(duì)照組7只小鼠全部發(fā)生轉(zhuǎn)移[21]。Nagai等[25]對(duì) Hedgehog-Pat/Smo-Gli信號(hào)通路介導(dǎo)胰腺癌侵襲轉(zhuǎn)移的機(jī)制進(jìn)行了研究,結(jié)果Cyclopamine抑制胰腺癌的侵襲與減少M(fèi)MP-9的表達(dá)有關(guān)。Gli-1轉(zhuǎn)染胰腺癌細(xì)胞激活該通路,則增加了胰腺癌細(xì)胞的侵襲,同時(shí)增加了MMP-9的表達(dá)。同時(shí)又通過(guò)MMP-9 siRNA的干擾胰腺癌細(xì)胞后,MMP-9 siRNA抑制了胰腺癌細(xì)胞的侵襲,減少了MMP-9的表達(dá),推測(cè)該通路通過(guò)上調(diào)MMP-9的表達(dá)而介導(dǎo)了胰腺癌的侵襲。Inaguma[26]對(duì) Hedgehog-Pat/Smo-Gli信號(hào)通路介導(dǎo)胰腺癌侵襲轉(zhuǎn)移的機(jī)制進(jìn)一步研究表明,作為胰腺癌的預(yù)后不良的主要標(biāo)記MUC5AC是Gli的直接的轉(zhuǎn)錄靶點(diǎn),Gli-1激活MUC5AC的啟動(dòng)子,增加MUC5AC蛋白表達(dá),從而干擾E-cadherin的在腫瘤細(xì)胞間的膜定位,導(dǎo)致腫瘤細(xì)胞間的粘附減少,增加胰腺癌的轉(zhuǎn)移和侵襲,Gli-1與Gli-2基因敲除后則減弱了胰腺癌的侵襲與轉(zhuǎn)移。Onishi[17]研究了低氧下條件下胰腺癌通路Smo的轉(zhuǎn)錄增加,直接誘發(fā)胰腺癌低氧條件下的侵襲與轉(zhuǎn)移,Gli-1通過(guò)MMP-9及雌激素受體介導(dǎo)胰腺癌的侵襲。
2.3 Hedgehog-Pat/Smo-Gli信號(hào)通路與食管癌侵襲轉(zhuǎn)移Mori等[27]檢測(cè)34株食道鱗狀上皮細(xì)胞腫瘤細(xì)胞株,結(jié)果91%(31/34)的細(xì)胞株表達(dá) Gli-1,而34株細(xì)胞全部表達(dá)Shh,Pat,Smo。且Gli-1與腫瘤位置的深度及淋巴結(jié)轉(zhuǎn)移、不良預(yù)后有關(guān)。同時(shí)他們檢測(cè)了通路抑制劑Cyclopamine,Gli-1siRNA等對(duì)食管癌ESCC細(xì)胞增殖與轉(zhuǎn)移的影響,結(jié)果Cyclopamine明顯抑制ESCC細(xì)胞Gli-1的表達(dá),同時(shí)抑制其增殖與轉(zhuǎn)移,并且Gli-1siRNA同樣抑制細(xì)胞的生長(zhǎng)與轉(zhuǎn)移。Isohata N等報(bào)道了Hh信號(hào)通路可以通過(guò)EMT信號(hào)介導(dǎo)食管的角質(zhì)形成細(xì)胞及食管癌的侵襲與生長(zhǎng)[28],且Gli-1的表達(dá)與食管癌血管侵襲,淋巴侵襲,預(yù)后不良有相關(guān)性[29]。
2.4 Hedgehog-Pat/Smo-Gli信號(hào)通路與膀胱癌侵襲轉(zhuǎn)移Azoulay等[30]研究了Hedgehog-Pat/Smo-Gli信號(hào)通路與膀胱癌淋巴結(jié)轉(zhuǎn)移的相關(guān)性,結(jié)果表明該信號(hào)通路的Shh上皮表達(dá)明顯與膀胱癌淋巴結(jié)轉(zhuǎn)移 (P=0.004)成正相關(guān),同時(shí)信號(hào)通路Dhh與精囊腺轉(zhuǎn)移 (P=0.03)及膀胱頸轉(zhuǎn)移(P=0.0008)也具有相關(guān)性。He[31]也發(fā)現(xiàn) Hedgehog-Pat/Smo-Gli信號(hào)通路的Shh,Pat-1,Gli-1陽(yáng)性蛋白表達(dá)與膀胱癌的靜脈侵襲及淋巴結(jié)轉(zhuǎn)移明顯相關(guān)。但Mechlin[32]發(fā)現(xiàn)Gli-2的表達(dá)與膀胱癌的侵襲有關(guān),而與增殖可能無(wú)關(guān)。
2.5 Hedgehog-Pat/Smo-Gli信號(hào)通路與乳腺癌侵襲轉(zhuǎn)移Onishi[33]研究了 Hedgehog-Pat/Smo-Gli通路與乳腺癌的侵襲關(guān)系,結(jié)果該通路介導(dǎo)了乳腺癌的侵襲。Souzaki[34]進(jìn)一步研究發(fā)現(xiàn) Hedgehog-Pat/Smo-Gli增殖非依賴性介導(dǎo)乳腺癌非侵襲原位導(dǎo)管癌向侵潤(rùn)性導(dǎo)管癌轉(zhuǎn)變,其機(jī)制與該通路Gli-1啟動(dòng)VEGF的啟動(dòng)子,從而上調(diào)VEGF的表達(dá),促進(jìn)血管內(nèi)皮細(xì)胞生成有關(guān),同時(shí)該通路還通過(guò)上調(diào)MMP-2以及MMP-9的表達(dá),破壞腫瘤周圍的基質(zhì),從而增加乳腺癌的侵襲轉(zhuǎn)移。
2.6 Hedgehog-Pat/Smo-Gli信號(hào)通路與神經(jīng)細(xì)胞瘤的侵襲轉(zhuǎn)移 Shida[35]和 Fendrich[36]先后報(bào)道了 Hedgehog-Pat/Smo-Gli信號(hào)通路與神經(jīng)內(nèi)分泌瘤及膠質(zhì)瘤的侵襲轉(zhuǎn)移有關(guān)。敲除通路的Gli-1后,MMP-9的表達(dá)下調(diào),而E-cadherin的表達(dá)上調(diào)[16],從而抑制了腫瘤的侵襲轉(zhuǎn)移。Hsieh等[37]發(fā)現(xiàn)Hedgehog-Pat/Smo-Gli介導(dǎo)了IGF胰島素樣生長(zhǎng)因子依賴的神經(jīng)膠質(zhì)瘤干細(xì)胞的侵襲轉(zhuǎn)移,而Gli-1的抑制劑抑制了胰島素樣生長(zhǎng)因子依賴的神經(jīng)膠質(zhì)瘤干細(xì)胞的侵襲轉(zhuǎn)移。Cao[38]同樣報(bào)道了增加Gli-1的轉(zhuǎn)錄激活可以促進(jìn)神經(jīng)膠質(zhì)母細(xì)胞瘤的侵襲轉(zhuǎn)移。
2.7 Hedgehog-Pat/Smo-Gli信號(hào)通路與結(jié)腸癌的侵襲轉(zhuǎn)移 Ruiz等[39]發(fā)現(xiàn)Gli調(diào)節(jié)胚胎干細(xì)胞樣因子從而介導(dǎo)結(jié)腸癌的高侵襲及轉(zhuǎn)移。同時(shí)HHIP siRNA下調(diào)該通路拮抗蛋白HHIP的表達(dá)后,則促進(jìn)了結(jié)腸癌的生長(zhǎng)與轉(zhuǎn)移,同樣HHIP基因的超甲基化和染色體重組也導(dǎo)致了結(jié)腸癌的生長(zhǎng)與轉(zhuǎn)移[40]。
2.8 Hedgehog-Pat/Smo-Gli信號(hào)通路與肝癌的侵襲轉(zhuǎn)移Hedgehog-Pat/Smo-Gli信號(hào)通路的異常激活在HCC的發(fā)病中發(fā)揮了重要作用。Cheng發(fā)現(xiàn)該信號(hào)激活與肝癌脈管侵襲及肝細(xì)胞的增殖成正相關(guān)[41]。Chen等[42]同樣報(bào)道了Hedgehog-Pat/Smo-Gli信號(hào)通路與肝腫瘤的干細(xì)胞的侵襲與耐受有關(guān)。而我們研究的也發(fā)現(xiàn)該通路參與了原發(fā)性肝細(xì)胞的侵襲轉(zhuǎn)移,其機(jī)制可能與該通路激活后,激活MAPK/ERK信號(hào)通路、最終增加MMP-9蛋白表達(dá)有關(guān)[43]。
2.9 Hedgehog-Pat/Smo-Gli信號(hào)通路與其他腫瘤的侵襲轉(zhuǎn)移 Karhadkar首次報(bào)道了Hedgehog-Pat/Smo-Gli信號(hào)通路介導(dǎo)介導(dǎo)前列腺癌的侵襲[22],同時(shí)具有侵襲性的前列腺癌的腫瘤干細(xì)胞伴有Hh通路的增強(qiáng)[44]。研究表明卵巢癌的侵襲與轉(zhuǎn)移伴有Gli-1的過(guò)表達(dá)[18],KAAD-cyc處理卵巢癌細(xì)胞后,KAAD-cyc則抑制了卵巢癌細(xì)胞的侵襲轉(zhuǎn)移,而Alexaki[45]也發(fā)現(xiàn)Gli-2直接參與了黑色素瘤的侵襲與轉(zhuǎn)移。另有文獻(xiàn)報(bào)道Hedgehog-Pat/Smo-Gli信號(hào)通路參與非小細(xì)胞肺癌的上皮間質(zhì)轉(zhuǎn)化及轉(zhuǎn)移,抑制劑Shh siRNA則能抑制非小細(xì)胞肺癌轉(zhuǎn)移[46]。Liao[47]用免疫組化方法檢測(cè)了 Gli-1的表達(dá),結(jié)果Gli-1與子宮內(nèi)膜癌的非子宮肌層的侵襲(P=0.004)及淺表子宮肌層的侵襲(P=0.041)均有相關(guān)性。近年來(lái)還發(fā)現(xiàn)[48]選擇性剪接的Gli兩種亞型Gli1△N,tGli1,他們分別主要存在于正常和腫瘤組織,后者主要介導(dǎo)多種腫瘤的侵襲與轉(zhuǎn)移[48]。同時(shí)該通路還在腦腫瘤細(xì)胞的生長(zhǎng)、轉(zhuǎn)移及局部侵襲中發(fā)揮關(guān)鍵性的作用[49]。
人們首先發(fā)現(xiàn)了Hedgehog-Pat/Smo-Gli信號(hào)通路參與了基底膜癌的發(fā)生發(fā)展,并以此認(rèn)為該通路可能不參與腫瘤侵襲轉(zhuǎn)移,但隨著對(duì)其研究的深入,越來(lái)越多的證據(jù)證實(shí)了該通路參與了多種腫瘤的分化、侵襲與轉(zhuǎn)移,其異常激活是腫瘤侵襲轉(zhuǎn)移的主要原因之一。但該通路參與腫瘤侵襲轉(zhuǎn)移的具體機(jī)制不明,對(duì)其進(jìn)一步研究必將有助于全面認(rèn)識(shí)腫瘤侵襲轉(zhuǎn)移的分子機(jī)制,并針對(duì)該信號(hào)通路的特異性的分子靶向治療有望成為臨床上治療腫瘤侵襲轉(zhuǎn)移有效策略。
[1]Ruizi AA,Sanchez P,Dahmane N.Gli and hedgehog in cancer:tumours,embryos and stem cells[J].Nat Rev Cancer,2002,2:361-72.
[2]Christopher W,Wilson A,Chuang P T.Mechanism and evolution of cytosolic hedgehog signal transduction[J].Development,2010,137:2079-92.
[3]Sasaki H,Nishizaki Y,Hui C,et al.Regulation of Gli2 and Gli3 activities by an amino-terminal repression domain:implication of Gli2 and Gli3 as primary mediators of Shh signaling[J].Development,1999,126:3915-24.
[4]Stepan V,Ramamoorthy S,Nitsche H,et al.Regulation and function of the sonic hedgehog signal transduction pathway in isolated gastric parietal cells[J].J Biol Chem,2005,280:15700-8.
[5]Price M A,Kalderon D.Proteolysis of the hedgehog signaling effector cubitus interruPtus requires phosphorylation by glyeogen synthase kinase 3 and casein kinasel[J].Cell,2002,108:823- 35.
[6]Buttitta L,Mo R,Hui C C,F(xiàn)an C M.Interplays of Gli2 and Gli3 and their requirement inmediating Shh-dependent sclerotome induction[J].Development,2003,130:6233- 43.
[7]Marini K D,Payne B J,Watkins D N,Martelotto L G.Mechanisms of hedgehog signalling in cancer[J].Growth Factors,2011,29:221-34.
[8]Caro I,Low J A.The role of the hedgehog signaling pathway in the development of basal cell carcinoma and opportunities for treatment[J].Clin Cancer Res,2010,16:3335-9.
[9]Thayer S P,di Magliano M P,Heiser P W,et al.Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis[J].Nature,2003,425:851-6.
[10]Goetz J A,Suber L M,Zeng X,Robbins D J.Sonic hedgehog as a mediator of long-range signaling[J].Bioessays,2002,24:157-65.
[11]Cohen M M Jr.The hedgehog signaling network[J].Am J Med Genet,2003,123:5-28.
[12]Merchant M,Vajdos F F,Ultsch M,et al.Suppressor of fused regulates Gli activity through adual binding mechanism[J].Mol Cell Biol,2004,24:8627-41.
[13]Merchan P,Bribian A,Sanchez-Camacho C,et al.Sonic hedgehog promotes the migration and proliferation of optic nerve oligodendrocyte precursors[J].Mol Cell Neurosci,2007,36:355-68.
[14]Deshpande G,Swanhart L,Chiang P,Schedl P.Hedgehog signaling in germ cell migration[J].Cell,2001,106:759-69.
[15]Vokes S A,Yatskievych T A,Heimark R L,et al.Hedgehog signaling is essential for endothelial tube formmion during vasculogenesis[J].Development,2004,131:4371-80.
[16]Wang K,Pan L,Che X,et al.Sonic Hedgehog/GLI signaling pathway inhibition restricts cell migration and invasion in human gliomas[J].Neurol Res,2010,32:975- 80.
[17]Onishi H,Kai M,Odate S,et al.Hypoxia activates the hedgehog signaling pathway in a ligand-independent manner by upregulation of Smo transcription in pancreatic cancer[J].Cancer Sci,2011,102:1144-50.
[18]Liao X,Siu M K,Au C W,et al.Aberrant activation of hedgehog signaling pathway in ovarian cancers;effect on prognosis,cell invasion and differentiation[J].Carcinogenesis,2009,30:131-40.
[19]Yoo Y A,Kang M H,Kim J S,Oh S C.Sonic hedgehog signaling promotes motility and invasiveness of gastric cancer cells through TGF-beta-mediated activation of the ALK5-Smad 3 pathway[J].Carcinogenesis,2008,29:480-90.
[20]Moil Y,Okumura T,Tsunoda S,et al.Gli-1 expression is associated with lymph node metastasis and tumor progression in esophageal squamous cell carcinoma[J].Oncology,2006,70:378-89.
[21]Feldmann G,Dhara S,F(xiàn)endrich V,et al.Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases:a new paradigm for combination therapy in solid cancers[J].Cancer Res,2007,67:2187-96.
[22]Karhadkar S S,Bova G S,Abdallah N,et al.Hedgehog signalling in prostate regeneration,neoplasia and metastasis[J].Nature,2004,431:707-12.
[23]Wang L H,Choi Y L,Hua X Y,et al.Increased expression of sonic hedgehog and altered methylation of its promoter region in gastric cancer and its related lesions[J].Mod Pathol,2006,19:675-83.
[24]Yoo Y A,Kang M H,Lee H J,et al.Sonic hedgehog pathway promotes metastasis and lymphangiogenesis via activation of Akt,EMT,and MMP-9 pathway in gastric cancer[J].Cancer Res,2011,71:7061-70.
[25]Nagai S,Nakamura M,Yanai K,et al.Gli1 contributes to the invasiveness of pancreatic cancer through matrix metalloproteinase-9 activation[J].Cancer Sci,2008,99:1377-84.
[26]Inaguma S,Kasai K,Ikeda H.GLI1 facilitates the migration and invasion of pancreatic cancer cells through MUC5AC-mediated attenuation of E-cadherin[J].Oncogene,2011,30:714-23.
[27]Mori Y,Okumura T,Tsunoda S,et al.Gli-1 expression is associated with lymph node metastasis and tumor progression in esophageal squamous cell carcinoma[J].Oncology,2006,70:378- 89.
[28]Isohata N,Aoyagi K,Mabuchi T,et al.Hedgehog and epithelialmesenchymal transition signaling in normal and malignant epithelial cells of the esophagus[J].Int J Cancer,2009,125:1212-21.
[29]Wei L,Xu Z.Cross-signaling among phosphinositide-3 kinase,mitogen-activated protein kinase and sonic hedgehog pathways exists in esophageal cancer[J].Int J Cancer,2011,129:275- 84.
[30]Azoulay S,Terry S,Chimingqi M,et al.Comparative expression of hedgehog ligands at different stages of prostate carcinoma progression[J].J Pathol,2008,216:460- 70.
[31]He H C,Chen J H,Chen X B,et al.Expression of hedgehog pathway components is associated with bladder cancer progression and clinical outcome[J].Pathol Oncol Res,2012,18:349-55.
[32]Mechlin C W,Tanner M J,Chen M,et al.Gli2 expression and human bladder transitional carcinoma cell invasiveness[J].J Urol,2010,184:344-51.
[33]Onishi H,Katano M.Hedgehog signaling pathway as a therapeutic target in various types of cancer[J].Cancer Sci,2011,102:1756-60.
[34]Souzaki M,Kubo M,Kai M.Hedgehog signaling pathway mediates the progression of non-invasive breast cancer to invasive breast cancer[J].Cancer Sci,2011,102:373-81.
[35]Shida T,F(xiàn)uruya M,Nikaido T,et al.Sonic hedgehog-Gli1 signaling pathway might become an effective therapeutic target in gastrointestinal neuroendocrine carcinomas[J].Cancer Biol Ther,2006,5:1530-8.
[36]Fendrich V,Waldmann J,Esni F,et al.Snail and sonic hedgehog activation in neuroendocrine tumors of the ileum[J].Endocr Relat Cancer,2007,14:865-74.
[37]Hsieh A,Ellsworth R,Hsieh D.Hedgehog/GLI1 regulates IGF dependent malignant behaviors in glioma stem cells[J].Cell Physiol,2011,226:1118-27.
[38]Cao X,Geradts J,Dewhirst M W,Lo H W.Upregulation of VEGF-A and CD24 gene expression by the tGLI1 transcription factor contributes to the aggressive behavior of breast cancer cells[J].Oncogene,2012,31:104-15.
[39]Ruiz i Altaba A.Hedgehog signaling and the Gli code in stem cells,cancer,and metastases[J].Sci Signal,2011,4:pt9.
[40]Taniguchi H,Yamamoto H,Akutsu N,et al.Transcriptional silencing of hedgehog-interacting protein by CpG hypermethylation and chromatic structure in human gastrointestinal cancer[J].J Pathol,2007,213:131-9.
[41]Cheng W T,Xu K,Tian D Y,et al.Role of hedgehog signaling pathway in proliferation and invasiveness of hepatocellular carcinoma cells[J].Int J Oncol,2009,34:829-36.
[42]Chen X,Lingala S,Khoobyari S,et al.Epithelial mesenchymal transition and hedgehog signaling activation are associated with chemoresistance and invasion of hepatoma subpopulations[J].J Hepatol,2011,55:838-45.
[43]Lu J T,Zhao W D,He W,Wei W.Hedgehog signaling pathway mediates invasion and metastasis of hepatocellular carcinoma via ERK pathway[J].Acta Pharmacol Sin,2012,33:691-700.
[44]Klarmann G J,Hurt E M,Mathews L A,et al.Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature[J].Clin Exp Metastasis,2009,26:433- 46.
[45]Alexaki V I,Javelaud D,Van Kempen L C,et al.GLI2-mediated melanoma invasion and metastasis[J].J Natl Cancer Inst,2010,102:1148-59.
[46]Maitah M Y,Ali S,Ahmad A,et al.Up-regulation of sonic hedgehog contributes to TGF-β1-induced epithelial to mesenchymal transition in NSCLC cells[J].PLoS One,2011,6:e16068
[47]Liao X,Siu M K,Au C W,et al.Aberrant activation of hedgehog signaling pathway contributes to endometrial carcinogenesis through beta-catenin[J].Mod Pathol,2009,22:839- 47.
[48]Zhu H,Lo H W.The human glioma-associated oncogene homolog 1(GLI1)family of transcription factors in gene regulation and diseases[J].Curr Genomics,2010,11:238- 45.
[49]Mimeault M,Batra S K.Complex oncogenic signaling networks regulate brain tumor-initiating cells and their progenies:pivotal roles of wild-type EGFR,EGFRⅧ mutant and hedgehog cascades and novel multitargeted therapies[J].Brain Pathol,2011,21:479-500.