劉生鵬,高 秋,胡仙林,孟培培
(武漢工程大學(xué)綠色化工過程教育部重點實驗室,湖北 武漢 430074)
隨著石油及石油產(chǎn)品用量的增加,石油開采及石油產(chǎn)品的加工、提煉、儲存、運輸及使用過程中產(chǎn)生的泄露和各種油類廢棄物對海洋生態(tài)環(huán)境和淡水生態(tài)環(huán)境造成了極大的破壞[1-3].水中的溢油、油漬不僅降低海洋和淡水環(huán)境的質(zhì)量,影響食物鏈的循環(huán),破壞生態(tài)平衡,還威脅著人類的健康[4].海上溢油造成的破壞具有危害程度大、波及范圍廣、清除困難等特點[5],要解決這些問題,迫切的需要開發(fā)出高效、耐用、清潔的吸油材料.吸油材料可歸納為無機吸油材料和有機吸油材料兩種類型[6].
無機吸油材料又可以分為炭質(zhì)吸油材料[7]、天然無機吸油材料[8]、人工合成無機吸油材料[9]和功能化改性無機吸油材料[10]4種類型.無機吸油材料來源廣泛,吸油倍率高,制備方法簡便、易操作,但是存在循環(huán)利用率低的問題.
炭質(zhì)吸油材料在無機吸油材料中占有很大的比例[11],它可以分為活性炭類吸油材料[12]、粉煤灰類吸油材料[13]和石墨類吸油材料等[14]幾種類型.
1.1.1 活性炭類吸油材料 活性炭可由木材、木屑、粉煤灰等制得,吸附油品后的活性炭可以用作固體燃料,處理較為容易,不會對環(huán)境造成破壞.Sun等[15]以商業(yè)的活性炭為基體,再用氫氧化鉀和二甲基硅氧烷修飾,制得的活性炭具有很大的比表面積和孔隙率,具有很好的吸油效果,能夠選擇性的從水中去除多種有機物和油脂.Fan等[16]制備了一種大孔徑的碳納米管用來吸附溢油,與膨脹石墨吸附41g/g相比,碳納米管可以吸附69g/g溢油,吸油倍率更高.Zhu[17]等和 Gui等[18]制備的海綿狀碳納米管具有更好的吸油性能.Zhu等制備的碳納米管吸油材料的吸油能力為92.30g/g,傳統(tǒng)吸附劑聚丙烯纖維織物和毛氈的吸油能力分別是7.45g/g和6.74g/g,新制備的吸油材料的吸附能力是傳統(tǒng)吸油材料的15~16.5倍,吸油能力遠大于兩種傳統(tǒng)的吸附劑.Gui等制備的吸油材料吸附柴油能力為56g/g,在磁力和加熱作用下可以循環(huán)1 000次,能重復(fù)使用.Kazuo[19]將粉末狀的煤在400~500 ℃焦化、氧化、冷卻,待加熱到600~700℃時驟冷得到活性焦炭,再用含硅化合物進行憎水處理,得到的吸附劑具有憎水親油性,可以很好的清除水中溢油.
活性炭除了自身改性制成吸油材料還可以與其它材料復(fù)合增加吸附能力.Klymenko N A等[20]將活性炭與生物膜結(jié)合起來制備了一種新型吸附材料,并將其應(yīng)用于被油品污染的自來水的處理,取得了很好的效果,經(jīng)過處理的水質(zhì)可以達到飲用標準.Chun等[21]用聚苯乙烯微球和硝酸鐵為基體制備了一種三維大孔Fe/C的納米復(fù)合材料,具有很高的疏水性,對油品和有機溶劑有很好的吸附效果,而且有很好的循環(huán)性.Chen等[22]用三氧化二鐵、鎳、鈷與碳結(jié)合制備了一種超輕的疏水親油性材料,在400℃時將金屬與碳接枝到聚氨酯上,發(fā)現(xiàn)它們會形成一種中空的管狀結(jié)構(gòu),管狀結(jié)構(gòu)的大小可以通過丙烯酸或金屬陽離子的含量來調(diào)節(jié),制備的材料吸油倍率可達到100g/g.Bi等[23]將碳纖維和未加工的棉花制備成氣凝膠作為吸油材料,通過實驗發(fā)現(xiàn)它對菜籽油、橄欖油、泵油等油品和甲苯、氯仿等有機物有很好的吸附效果,其中對泵油吸附效果為自身重量的192倍,對氯仿的吸附效果為115g/g,而且能多次循環(huán)利用.
活性炭具有良好的吸附特性和穩(wěn)定的化學(xué)性質(zhì),既能耐強酸、強堿,又能經(jīng)受水浸、高溫、高壓作用.Muhammad等[24]將石墨烯用硫酸、鹽酸等酸化得到一種新的吸油材料,并且測定了容積密度、空隙體積和碳氧比、原油粘度對其吸附量的影響,測定得到吸油材料的吸附量為131g/g.徐靜莉等[25]利用活性炭的大的比表面積來吸附含油廢水中的COD,發(fā)現(xiàn)粉炭對COD的去除效果最好,當吸附時間為50min,pH值為7,活性炭用量為6g的條件下,COD去除率大于65%.
1.1.2 粉煤灰類吸油材料 粉煤灰不僅可以用來制成活性炭作為吸油材料,其本身經(jīng)過改性也具有很好的吸油性能[26],粉煤灰改性后制得的吸油材料對油品的清除有較好效果.姚樂[27]用聚二甲基二烯丙基氯化銨對粉煤灰進行改性,并將改性后的粉煤灰在含油廢水中進行吸附測試,結(jié)果表明吸附時間為90min,廢水pH值為10,改性粉煤灰用量為100g/L時改性粉煤灰除油效果最佳,去除率為96%.Shashwat等[28]將粉煤灰用陽離子表面活性劑十六烷基三甲基溴化銨進行改性,發(fā)現(xiàn)它能有效的吸附風(fēng)化的原油.Tamilselvan等[29]將粉煤灰通過化學(xué)改性改變了其親水性,先通過堿處理,再在其表面增加疏水性官能團改變親水性,制備成一種疏水親油的吸油材料,吸油能力是未改性材料的5倍.Karakasi等[30]將工業(yè)副產(chǎn)品高鈣粉煤灰制備了吸油材料,用吸油材料對燃油、輕循環(huán)油和伊朗輕質(zhì)原油進行吸附測試,同時測試了時間、溫度、吸附劑與油品的質(zhì)量比和溶液濃度等與吸附量的關(guān)系,發(fā)現(xiàn)了吸油材料的吸附特性.
除了直接將粉煤灰改性制得吸油效果較好的材料外,也可以將粉煤灰和其它材料復(fù)合以增加其吸附能力.Kolemen等[31]用粉煤灰、膨潤土和糖蜜在30MPa的壓力下造粒制備吸附劑,發(fā)現(xiàn)10g粉煤灰和0.25mL糖蜜與膨潤土反應(yīng)2.5h制備的吸附劑吸附效果最好,對含油廢水的去除率為90%.郝志濤等[32]的研究結(jié)果表明在攪拌時間為15min,轉(zhuǎn)速為300r/min,pH 值為7.2~7.8,灰水比為1∶50時,粉煤灰對采油廢水中的石油類和COD去除效果最佳,去除率分別為70%~80%和20%左右.Liu等[33]以三元乙丙橡膠為基質(zhì),粉煤灰為填料,過氧化二異丙苯為催化劑,制備了一種吸油材料,結(jié)果表明過氧化二異丙苯為2%(質(zhì)量分數(shù)),粉煤灰含量為25%(質(zhì)量分數(shù))時,制備的吸油材料的吸附性能最好.
1.1.3 石墨類吸油材料 石墨類吸油材料通常包括兩種,一種是石墨烯類吸油材料,另一種是膨脹石墨類吸油材料.
Nguyen等[34]制備了一種超疏水親油的海綿狀石墨烯,它能高效的吸收油類和有機溶劑,其吸油能力最高為165g/g,且有很好的循環(huán)能力.Bi等[35]制備的海綿狀石墨烯具有很高的比表面積,形狀可塑性高,除了能高效的吸收石油產(chǎn)品和脂肪類物質(zhì),對有毒溶劑甲苯、氯仿等也有較好的吸附能力,它對氯仿的吸收能力為80g/g,循環(huán)10次后仍然有很好的吸附效果.He等[36]人用單項凍結(jié)干燥、無方向冷凍干燥和空氣冷凍干燥技術(shù)制備具有疏水性的氧化石墨烯泡沫,它對汽油、柴油、泵油和潤滑油等的吸附能力均高于100g/g,對于橄欖油的吸附能力高達122g/g.Dong等[37]在鎳的催化下用兩步化學(xué)氣相沉積法合成了三維的石墨烯混合泡沫,通過測試證明它對機油等多種油品和甲苯等有機溶劑都有較好的吸附效果.
王淑釗等[38]選用氧化插層法制備了膨脹石墨,測定了膨脹體積對柴油飽和吸附量的影響,研究表明膨脹石墨的膨脹體積越大,對柴油的飽和吸附量越大,最高可達54g/g.龐秀言等[39]研究了膨脹石墨對不同黏度油類的吸附量大小和膨脹容積對吸附量的影響,發(fā)現(xiàn)吸附量隨吸附質(zhì)的黏度增大而增加,吸附量與膨脹石墨的膨脹容積呈正相關(guān)性.Wang等[40]用檸檬酸溶膠凝膠法制備了一種磁性膨脹石墨,研究發(fā)現(xiàn)有磁性的膨脹石墨比普通的膨脹石墨來說孔隙結(jié)構(gòu)更加明顯,磁性膨脹石墨對機油和原油的吸附率為48.93g/g和42.75g/g,相較于普通膨脹石墨的41.46g/g和40.46g/g,吸油率提高了18.01%和5.65%.
現(xiàn)在研究的天然無機吸油材料大多數(shù)是將礦物粘土如沸石、膨潤土、蛭石等經(jīng)過改性或者將其與其他物質(zhì)復(fù)合得到[41].Tina等[42]選用一種疏水親脂的礦物粉末碳酸鈣作為吸附劑從油水混合物中吸附溢油,發(fā)現(xiàn)吸附效果較好.Shavandi等[43]采用天然沸石從棕櫚油廠廢水中吸附剩余的殘渣油,并且對pH、吸附劑的劑量、攪拌速率、接觸時間等影響因素進行了探討.
Flávia等[44]用化學(xué)氣相沉積法將碳納米管和碳納米纖維沉積到膨脹蛭石表面,制備了一種高疏水性低密度的吸油材料,這種材料具有“海綿結(jié)構(gòu)”,可以吸附自身6倍重量的油品.Miguel等[45]將甘油在膨脹蛭石表面進行處理制備了一種新型的吸油材料,對柴油等油品具有很好的吸附效果.Zhao等[46]用插層法將石墨插入蛭石內(nèi)制備一種新的吸油材料,制備的材料具有多孔的結(jié)構(gòu),未改性前蛭石對柴油的吸油能力為26.7g/g,改性后吸油效果為70.6g/g,且具有良好的循環(huán)性.
Dikla等[47]通過研究發(fā)現(xiàn)滑石對食用油的吸附能力強于海泡石,海泡石強于蒙脫石,但是海泡石對油品的吸附速度更快,清除相同量的溢油,海泡石清除完時滑石清除了60%左右,而蒙脫石清除了45%,并且發(fā)現(xiàn)通過熱處理,海泡石的吸油率會提高.
以一種天然無機材料為基質(zhì),對其表面進行功能化制得的吸油材料稱為功能化改性無機吸附材料[48].馬希璐等[49]介紹了以無機材料硅膠為基質(zhì),對其表面進行有機功能化,制備出針對某種組分具有選擇性吸附性能的吸附材料.Barbey[50]將具有菱面體晶體結(jié)構(gòu)和含水量質(zhì)量分數(shù)0.1%~1.6%的碳酸鈣用微波加熱至100~145℃,加熱60~90min制得吸油效果良好的吸油材料.
人工合成無機吸附劑主要是指由鋁、鐵等金屬的化合物制備的吸附劑及一些磁性物質(zhì)[51].
Chi等人[52]證明了氟的金屬有機框架(FMOFs)是高度疏水性的多孔材料,在疏水性和毛細管作用下能夠很好的與碳氫化合物結(jié)合,具有高吸油倍率,特別是對C6~C8的油品有很好的吸附效果,在清除溢油方面起到很好的作用.Hu等[53]利用等離子體誘導(dǎo)嫁接技術(shù)將β-環(huán)糊精接枝到多壁碳納米管鐵氧化合物上得到磁性碳納米管復(fù)合材料,并將復(fù)合材料用于清除水中無機和有機污染物.研究結(jié)果表明制備的復(fù)合材料對1-酚萘的吸附量達到57.47mg/g.Fernando等[54]利用聚合物醇酸樹脂和磁赤鐵礦制備了一種磁性納米復(fù)合材料,這種材料被用于清除水中溢油,可以清除8g/g.
一般來講,有機吸油材料可以分為天然或天然改性的有機吸油材料[55]和人工合成的有機吸油材料兩類[56].有機吸油材料相較于無機吸油材料來說吸油速率快,循環(huán)利用率好,但是合成較為復(fù)雜,還不能普遍單獨的用于溢油的清理,一般將其與其他方法或者無機吸油材料一起處理溢油事故.
天然有機改性吸油材料已經(jīng)在水上溢油回收和含油廢水處理等方面得到了應(yīng)用[57],一般是采用將農(nóng)產(chǎn)品的廢棄物改性制備吸油材料.天然有機物高分子往往含有親水基,目前很多研究多集中在提高它們的疏水性上.
Hussein M等[58]將甘蔗渣在300℃下進行碳化2h處理,發(fā)現(xiàn)處理后的蔗渣對重油、低粘度油水、高粘度油都有很好的吸附能力,處理后的蔗渣對汽油和柴油的最高吸油倍率分別為23g/g和25g/g,并能循環(huán)使用,也可自然降解.Bayat等[59]以稻殼和蔗渣為原料制備出疏水的吸油材料,并將制備的材料與商業(yè)用聚丙烯相比較,得到的結(jié)果發(fā)現(xiàn)稻殼和蔗渣的吸油率較商業(yè)用吸附劑更高,且稻殼和蔗渣作為農(nóng)作物廢棄物,來源廣泛,能夠自然降解.Teik等[60]用木棉制備吸油材料,并將用木棉制備的吸油材料與商業(yè)用吸油材料聚丙烯比較,發(fā)現(xiàn)用木棉制備的新材料對柴油、液壓用油和機油的吸油倍率分別為36、43g/g和45g/g.同時,用木棉制備的吸油材料還有很好的疏水性和保油性,能夠循環(huán)利用.Suni等[61]研究了羊胡子草纖維、羊胡子草氈片對幾種油品的吸收倍率和吸收速率,并把它們同商業(yè)吸油材料作比較,發(fā)現(xiàn)羊胡子草制備的吸油材料吸收石油量大約是商業(yè)吸油材料的2~3倍,速度也是它的2~3倍,在測試中羊胡子草纖維幾乎不吸水,去除水面柴油時效率超過了99%,吸附劑吸附量為自身重量的20倍,而且具有生物降解性,是一種很好的吸油材料.Kathiresan等[62]以香蕉樹干的纖維為原料經(jīng)過油酸、硬脂酸、蓖麻油和棕櫚油改性后用于溢油回收,發(fā)現(xiàn)在硫酸催化作用下,經(jīng)過油酸改性后的橡膠樹干纖維的吸油效果最好,對機油的吸收倍率最高,并且具有很好的保油性,能夠多次循環(huán)使用.
Sun等[63]通過油酸酰氯和羧甲基殼聚糖反應(yīng)制備了一種改性殼聚糖作為水面溢油吸油材料,用于處理采油過程中產(chǎn)生的廢水和回收水面上的浮油,制備的吸油材料吸油速率明顯增加且能多次循環(huán)使用.Juuso等[64]用真空冷凍干燥技術(shù)出一種高孔隙率的納米纖維素氣凝膠,在二氧化鈦作用下纖維素水凝膠具有疏水親油性,可以有選擇的吸附油品,吸附油品后的材料通過清洗或者灼燒表面可以清除表面的油品,能夠多次循環(huán)利用.
合成有機吸油材料是20世紀60年代后期誕生的一種新型吸油材料[65],主要是指高吸油樹脂[66].
John 等[67]用 (CH3O)4Si和 CF3(CH2)2Si-(OCH3)3在甲醇中用氨催化再進行超臨界萃取制得一種疏水氣凝膠,經(jīng)過測試得到其吸附的油品質(zhì)量可以達到自身的237倍,但是制備比較昂貴.Deniz等[68]將丁基橡膠用一氯化硫硫化,得到一種多孔性的聚合物,經(jīng)過測試發(fā)現(xiàn)它對原油和石油產(chǎn)品以及多環(huán)芳烴具有很好的吸附效果,制備的吸油材料可以吸附15~23g/g的油品.Chitsan等[69]利用PP短纖廢料及廢舊輪胎的粉末制備一種吸油材料,它既能像PP短纖一樣具有吸油性,又具有輪胎的彈性可以多次循環(huán)利用.可以用作油品緊急泄露應(yīng)急處理時浮油回收的材料.Zhu等[70]在金屬銅的催化作用下,用聚氨酯制備了一種海綿狀的疏水性材料,這種材料能夠很好的吸附溢油,吸附倍率可以達到13g/g,而且通過簡單的機械擠壓可以使吸附的油品脫離出來,能夠循環(huán)使用多次,有很好的穩(wěn)定性.Zhou等[71]也用普通的商業(yè)聚氨酯制備了一種海綿狀的疏水性材料,使吸油倍率得到了提高,對油品的吸附多于20g/g,也可以通過反復(fù)的擠壓后循環(huán)使用.Li等[72]首次研究了超疏水共軛微孔聚合物對油水分離的作用,共軛微孔聚合物的空隙為開孔結(jié)構(gòu),表面具有較強的疏水性,便于油分子進入聚合物空間網(wǎng)格中,故而制備的吸油樹脂吸油速率非???,方便油水分離后的回收處理.周愛軍等[73]將丁苯橡膠和自制的高吸油樹脂為原料,以炭黑為補強劑、石油樹脂為軟化劑,用物理共混的方法制備了一種遇油膨脹橡膠,并對其吸油性能等進行了研究,結(jié)果表明高吸油樹脂和炭黑用量的增加對制備的吸油橡膠的吸油性能有較大影響.Swarnalatha等[74]將吸油性較差的天然橡膠與磁鐵礦納米粒子制備了一種復(fù)合材料,在環(huán)氧化作用下天然橡膠保留彈性的同時提高了吸油性,制備的材料選擇性吸附溢油而且吸附的油品可以完全解吸,可以循環(huán)多次使用.Yuan等[75]提出了一個全新的方案,用正辛烯、苯乙烯和二乙烯基苯單元交聯(lián)制備一種聚烯烴三元共聚物,制備的共聚物具有很好的疏水親油性,能夠吸附本身45倍重量的油品.
吸油材料作為清除溢油的一種方法,已經(jīng)越來越多的被用作溢油突發(fā)事故以及石油泄露等的清除.吸油材料不僅在清除水上溢油方面取得了一些進展,同時在清除水中的多環(huán)芳烴、金屬離子等方面也取得了一些成就.盡管吸油材料還存在一些不足,但是可以預(yù)料經(jīng)濟高效的吸油材料的研究仍能得到大力發(fā)展.
[1]Teas C,Kalligeros S,Zanikos F,et al.Investigation of the effectiveness of absorbent materials in oil spills clean up[J].Desalination,2001,140(3):259-264.
[2]YUAN Ji-kang,LIU Xiao-gang,AKBULUT Ozge,et al.Super wetting nanowire membranes for elective absorption[J].Nature Nanotechnology,2008(3):332-336.
[3]Allendorf M,Subramanian A,Rodriguez-Saona L.Application of a handheld portable mid-Infrared sensor[J].Journal of the American Oil Chemists'Society,2012,89(1):79-88.
[4]Tazaki K,Chaerun S K.Life in oil:Hydrocarbon-degrading bacterial mineralization in oil spill-polluted marine environment[J].Frontiers of Materials Science in China,2008,2(2):120-133.
[5]徐玲玲.海洋溢油污染的應(yīng)急處理[J].海洋環(huán)境保護,2011(3):17-19.XU Ling-ling.Emergency response in oil spill[J].Marine Environmental Protection,2011(3):17-19.(in Chinese)
[6]Adebajo M O,F(xiàn)rost R L,Kloprogge J T,et al.Porous materials for oil spill cleanup:a review of synthesis[J].Journal of Porous Materials,2003,10(3):159-170.
[7]Inagaki M,Kawahara A,Nishi Y,et al.Heavy oil sorption and recovery by using carbon fiber felts[J].Carbon,2002,40(9):1487-1492.
[8]Ugochukwu U C,Jones M D,Ian M H,et al.Biodegradation of crude oil saturated fraction supported on clays [J/OL]. Biodegradation,[2013-05-14].http://www.ncbi.nlm.nih.gov/pubmed/ 23670057.
[9]Chandra V,Park J,Chun Y,et al.Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal [J]. ACS Nano,2011,4 (7):3979-3986.
[10]Sharma P,Kaur H,Sharma M,et al.A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste[J].Environmental Monitoring and Assessment,2011,183(1-4):151-195.
[11]郭常穎,趙鵬程,肖靖.幾種吸附材料在含油廢水處理中的應(yīng)用[J].環(huán)境科學(xué)與管理,2010,35(3):96-98.GUO Chang-ying,ZHAO Peng-cheng,XIAO Jing.The treatment of adsorption material application in oil wastewater[J].Environmental science & management,2010,35(3):96-98.(in Chinese)
[12]Gui Xu-chun,Wei Jin-quan,Wang Kun-lin,et al.Carbon nanotube sponges[J].Advanced Materials,2010,22(5):617-621.
[13]Steenari B-M,Lindqvistb O.Fly ash characteristics in co-combustion of wood with coal,oil or peat[J].Fuel,1999,78(4):479-488.
[14]QI Xiao-wen,JIA Zhing-ning,YANG Yu-lin,et al.Sorption capacity of new type oil absorption felt for potential application to ocean oil spill[J].Procedia Environmental Sciences,2011(10):849-853.
[15]SUN Han-xue,LI An,ZHU Zhao-qi,et al.Superhydrophobic activated carbon-coated sponges for separation and absorption[J].Chem Sus Chem,2013,6(6):1057-1062.
[16]FAN Zhuang-jun,YAN Jun,NING Guo-qing,et al.Oil sorption and recovery by using vertically aligned carbon nanotubes[J].Carbon,2010,48(14):4197-4200.
[17]ZHU Ke,SHANG Yuan-Yuan,SUN Peng-zhan.Oil spill cleanup from sea water by carbon nanotube sponges[J].Frontiers of Materials Science,2013,7(2):170-176.
[18]GUI Xun-chun,ZENG Zhin-ping,LIN Zhin-qiang,et al.Magnetic and highly recyclable macroporous carbon nanotubes for spilled oil sorption and separation[J]. Mater.Interfaces,2013,5 (12):5845-5850.
[19]Kazuo Y.Manufacture of active coke useful as adsorbents in flue gas treatment:JP, 04363390,CAI18: 257963.
[20]CHUN Ying,PAN Qin-min.Three-dimensionally macroporous Fe/C nanocomposites as highly selective oil-absorption materials[J].Mater Interfaces,2012,4(5):2420-2425.
[21]Klymenko N A,Samsoni-Todorova E A,Patiuk L K.Restoration of activated carbon adsorption capacity after a long-term use of filters for add-on treatment of tap water [J].Journal of Water Chemistry and Technology,2013,35(4):159-164.
[22]CHEN Ning,PAN Qin-min.Versatile fabrication of ultralight magnetic foams and application for oil-water separation[J]. Acs Nano,2013,7 (8):6875-6883.
[23]BI Heng-chang,XIN Zong-you,CAO Xie-h(huán)ong,et al.Carbon fiber aerogel made from raw cotton:a novel,efficient and recyclable sorbent for oils and organic solvents[J/OL]. Advanced Materials,[2013-08-19].http://www.ncbi.nlm.nih.gov/pubmed/ 24038404.
[24]Iqbal M Z,Abdala A A.Oil spill cleanup using graphene[J].Environmental Science and Pollution Research,2013,20(5):3271-3279.
[25]徐靜莉,梁莉,王軍,等.活性炭去除稠油污水中的COD[J].油氣田地面工程,2012,31(4):17-18.XU Jing-li,LIANG Li,WANG Jun,et al.Activated carbon to remove COD in thick oil sewage [J].Oil&Gas Field Surface Engineering,2012,31(4):17-18(in Chinese)
[26]Ayanda O S,F(xiàn)atoki O S,Adekola F A,et al.Utilization of nSiO2,fly ash,and nSiO2/fly ash composite for the remediation of triphenyltin(TPT)from contaminated seawater[J].Environ Science Pollution Res,2013,20:8172-8181.
[27]姚樂.PDMDAAC改性粉煤灰吸附處理含油廢水實驗研究[J].科學(xué)技術(shù)與工程,2009,9(22):6926-6928.YAO Le.PDMDAAC modified fly ash adsorption oily wastewater treatment[J].Science Technology&Engineering,2009,9(22):6926-6928 (in Chinese)
[28]Banerjee S S,Joshi M V,Jayaram R V.Treatment of oil spills using organo-fly ash[J].Desalination,2006,195(1-3):32-39.
[29]Sakthivel T,Reid D L,Goldstein I,et al.Hydrophobic high surface area zeolites derived from fly ash for oil spill remediation [J].Enviromental Science&Technology,2013,47(11):5843-5840.
[30]Karakasi O K,Moutsatsou A.Surface modification of high calcium fly ash for its application in oil spill clean up[J].Fuel,2010,89(12):3966-3970.
[31]Kolemen S,Acarali N B,Tugrul N,et al.The zinc adsorption study by using orhaneli fly ash,bentonite and molasses in wastewater[J].Water Air Soil Pollut,2013,224(1367):4-10.
[32]郝志濤,吳靜,陸正禹,等.粉煤灰對采油廢水中污染物 質(zhì) 的 吸 附 研 究 [J].化 工環(huán)保,2004(24):341-344.HAO Zhi-tao,WU Jing,LU Zheng-yu,et al.The study of fly ash on the adsorption in oil extraction wastewater pollutants[J].Chemical Industry and Environmental Protection,2004(24):341-344 (in Chinese)
[33]LIU Xiu-qi,XING He-qin.Adsorption behavior on modified fly ash/EPDM composite for application in machine oil[J].Applied Mechanics and Materials,2011,117-119:1289-1292.
[34]Nguyen D D,Nyan-H,Lee San-Boh.Superhydrophobic and superoleophilic properties of graphenebased sponges fabricated using a facile dip coating method [J].Energy & Environmental Science,2012,5(7):7908-7912.
[35]BI Heng-chang,XIE Xiao,KUI Bo.Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents[J].Materials Science,2012,22(21):4421-4425.
[36]HE Yong-qiang,LIU Yue,WU Tao,et al.An environmentally friendly method for the fabrication of reduced graphene oxide foam with a super oil absorption capacity[J].Journal of Hazardous Materials,2013,260:796-805.
[37]DONG Xiao-chen,CHEN Jun,MA Yan-wen,et al.Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water[J].Chem Commun,2012,48:10660-10662.
[38]王淑釗,曹貴貞,趙曉兵.膨脹石墨對含油廢水的吸附性能研究[J].科技創(chuàng)新導(dǎo)報,2011(22):7-8.WANG Shu-zhao,CAO Gui-zhen,ZHAO Xiaobing.Expanded graphite the adsorption study of oily waste water[J].Science&Technology Innovation Herald,2011(22):7-8.(in Chinese)
[39]龐秀言,任海麗,鞏菲,等.膨脹石墨對油的吸附性能及其再生處理方法[J].河北大學(xué)學(xué)報:自然科學(xué)版,2008,28(5):512-516.PANG Xiu-yan,REN Hai-li,GONG Fei,et al.The process of expanded graphite for oil adsorption and regeneration process[J].Journal of Hebei University,2008,28(5):512-516.(in Chinese)
[40]WANG Guo-liang,SUNB Qing-rong,ZHANG Yanqing.Sorption and regeneration of magnetic exfoliated graphite as a new sorbent for oil pollution[J].Desalination,2010,263(1-3):183-188.
[41]WU Lin-mei,ZHOU Chun-h(huán)ui,KEELING John,et al.Towards an understanding of the role of clay minerals in crude oil formation,migration and accumulation[J].Earth-Science Review,2012,115(4):373-386.
[42]Arbatana T,F(xiàn)angb X,Shen W.Superhydrophobic and oleophilic calcium carbonate powder as a selective oil sorbent with potential use in oil spill cleanups[J].Chemical Engineering Journal,2011,166(2):787-791.
[43]Shavandi M A,Haddadian Z,Ismail M H S,et al.Removal of residual oils from palm oil mill effluent by adsorption on natural zeolite[J].Water,Air,&Soil Pollution,2012,223(7):4017-4027.
[44]Moura F C C,Lago R M.Catalytic growth of carbon nanotubes and nanofibers on vermiculite to produce floatable hydrophobic “nanosponges”for oil spill remediation[J].Applied Catalysis B:Environmental,2009,90(3/4):436-440.
[45]Medeiros M D A,Oliveira D L D,Sansiviero M T C,et al.Use of the glycerol by-product of biodiesel to modify the surface of expanded vermiculite to produce an efficient oil absorbent[J].Journal of Chemical Technology and Biotechnology,2010,85(4):447-452.
[46]ZHAO Meng-qiang,HUANG Jia-qi,ZHANG Qiang,et al.Improvement of oil adsorption performance by a sponge-like natural vermiculitecarbon nanotube hybrid[J].Applied Clay Science,2011,53(1):1-7.
[47]Zadaka-Amir D,Bleiman N,Mishael Y G.Sepiolite as an effective natural porous adsorbent for surface oil-spill[J].Microporous and Mesoporous Materials,2013,169:153-159.
[48]Young W J D.Oil Sorption Material:US, 3888766[P].1975-06-10.
[49]馬希璐,曲榮君,孫昌梅,等.硅膠基吸附材料的合成方法[J].魯東大學(xué)學(xué)報:自然科學(xué)版,2013,29(1):54-65.MA Xi-lu,QU Rong-jun,SUN Chang-mei,et al.The synthesis of silica gel adsorption material[J].Between the University Journal,2013,29(1):54-65.(in Chinese)
[50]Edouard B.Calcium sulfate absorbent for hydrocarbon oils:Can,CA 2036329[P].2013-12-05.
[51]Shen Y F,Tang J,Nie H,et al.Tailoring size and structural distortion of Fe3O4nanoparticles for the purification of contaminated water[J].Bioresource Technology,2009,100(18):4139-4146.
[52]Yang C,Kaipa U,Mather Q Z,et al.Fluorous metal-organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage[J].Journal of the American Chemical Society,2011,133(45):18094-18097.
[53]Hu J,Shao D,Chen C,et al.Plasma-Indoced grafting of cyclodextrin onto multiwall carbon nanotube/iron oxides for adsorbent application[J].The Journal of Physical Chemistry B,2010,114(20):6779-6785.
[54]Jr F G d S,Marins J A,Rodrigues C H M,et al.A magnetic composite for cleaning of oil spills on water[J].Macromolecular,2010,295:942-948.
[55]CHOL Hyung-Mln.Natural sorbents in oil spill cleanup[J].Environmental Science & Technology,1992,26:772-776.
[56]Yang C,Kaipa U,Mather Q Z.Fluorous metal-organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage[J].J Am Chem Soc,2011,133(45):18094-18097.
[57]Korhonen J T,Ketunen M.Hydrophobic nanocellulose aerogels as floating,sustainable/reusable,and recyclable oil absorbents[J].ACS Appl Mater Interfaces,2011(3):1813-1816.
[58]Hussein M,Amer A A,Sawsan I I.Oil spill sorption using carbonized pith bagasse:trial for practical application[J].Environ Sci Tech,2008,5(2):233-242.
[59]Bayat A,Aghamiri S F,Moheb A.Oil spill cleanup from sea water by sorbent materials[J].Chemical Engineering & Technology,2005,28 (12):1525-1528.
[60]Lim Teik-Thye,Huang Xiao-feng.Evaluation of kapok as a natural hollow hydrophobic-oleophilic fibrous sorbent for oil spill cleanup[J].Chemosphere,2007,66(5):955-963.
[61]Suni S,Kosunenc A-L,Hautalad M,et al.Use of a by-product of peat excavation,cotton grass fiber,as a sorbent for oil-spills[J].Marine Pollution Bulletin,2004,49(11/12):916-921.
[62]Sathasivam K,Hari M R H M.Adsorption kinetics and capacity of fatty acid-modified[J].Water Air Soil Pollution,2010,213:413-423.
[63]Sun G Z,Chen X G,Zhang J.Effect of molecular weight on the oleoyl-chitosan nanoparticles as carriers for doxorubicin[J].Water Science Technology,2010(61):2363-2374.
[64]Korhonen J T,Kettunen M,Robin H A,et al.Hydrophobic nanocellulose aerogels as floating,sustainable,reusable,and recyclable oil absorbents[J].Mater Interfaces,2011,3(6):1813-1816.
[65]徐龍宇,朱靖,閆向陽,等.吸油材料對溢油吸附的研究 進 展 [J]. 化 工 新 型 材 料,2013,41(2):141-143.Xu Long-yu,Zhu Jing,Yan Xiang-yang,et al.The research progress of oil absorption material for adsorption of oil spill[J].Chemical New Materials,2013,41(2):141-143.(in Chinese)
[66]Reynolds J G,Coronado P R,Hrubesh L W.Hydrophobic aerogels for oil-spill cleanup intrinsic absorbing properties [J].Energy Sources,2001,23(9):831-843.
[67]Reynolds J G J,Coronado P R,Hrubesh L W.Hydrophobic aerogels for oil-spill clean up-synthesis and characterization [J].Non-crystalline Solids,2001(292):127-137.
[68]Ceylan D,Dogu S,Karacik B,et al.Evaluation of butyl rubber as sorbent material for the removal of oil and polycyclic aromatic hydrocarbons from seawater[J]. Environ Sci Technol,2009 (43):3846-3852.
[69]Lin C,Hong Y J,Hu A H.Using a composite material containing waste tire powder and polypropylene fiber cut end to recover spilled oil[J].Waste Management,2010(30):263-267.
[70]ZHU Qing,PAN Qin-min,LIU Fa-tang,et al.Facile removal and collection of oils from water surfaces through superhydrophobic and superoleophilic sponges[J].The Journal of Physical Chemistry,2011,115(35):17464-17470.
[71]ZHOU Xiao-yan,ZHANG Zhao-zhu,XU Xianghui,et al.Facile fabrication of superhydrophobic sponge with selective absorption and collection of oil from water[J].Ind Eng Chem Res,2013,52(27):9411-9416.
[72]LI An,SUN Han-xue,TAN Da-zhi,et al.Superhydrphobic conjugated isopodous polymers for separation and Adsorption [J].Energy& Environmental Scienc,2011(4):2062-2065..
[73]周愛軍,萬香港,鐘毅,等.遇油膨脹丁苯橡膠的配方設(shè)計與性能研究[J].武漢工程大學(xué)學(xué)報,2012,34(7):41-44.ZHOU Ai-jun,WAN Xiang-gang,ZHONG Yi,et al.In oil expansion of styrene butadiene rubber formulation design and performance study[J].Journal of Wuhan University Institute of Technology,2012,34(7):41-44.(in Chinese)
[74]Venkatanarasimhana S,Raghavachari D.Epoxidized natural rubber-magnetite nanocomposites for oil spill recovery[J].Journal of Materials Chemistry A,2013,48(3):868-876.
[75]Yuan Xue-peng,Chung T C M.Novel solution to oil spill recovery:using thermodegradable polyolefin oil superabsorbent polymer[J].Energy Fuels,2012,26(8):4896-4902.