国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

聚苯胺-石墨烯-Co3O4納米復(fù)合材料的制備及其表征

2013-04-13 05:03劉攀博黃英
化學(xué)與粘合 2013年4期
關(guān)鍵詞:聚苯胺含氧結(jié)合能

劉攀博,黃英

(西北工業(yè)大學(xué)理學(xué)院應(yīng)用化學(xué)系空間應(yīng)用物理與化學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,陜西西安 710129)

聚苯胺-石墨烯-Co3O4納米復(fù)合材料的制備及其表征

劉攀博,黃英

(西北工業(yè)大學(xué)理學(xué)院應(yīng)用化學(xué)系空間應(yīng)用物理與化學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,陜西西安 710129)

首次以三步法制備了聚苯胺-石墨烯-Co3O4(PANI-RGO-Co3O4)納米復(fù)合材料。利用FT-IR,XRD,XPS和TEM對(duì)所制備的納米復(fù)合材料進(jìn)行表征,結(jié)果表明:PANI-RGO-Co3O4納米復(fù)合材料中氧化石墨(GO)的含氧官能團(tuán)數(shù)量大幅降低,GO已被還原成石墨烯(RGO);PANI和RGO之間具有較強(qiáng)的相互作用,且形成的Co3O4納米粒子分布在PANI-RGO表面,其粒徑在5~15nm之間,該納米復(fù)合材料有望在超級(jí)電容器材料、電極材料和吸波材料等領(lǐng)域有廣泛的應(yīng)用前景。

聚苯胺;石墨烯;納米粒子;復(fù)合材料

前言

石墨烯是一種具有二維蜂窩納米結(jié)構(gòu)、由單一碳原子緊密排列組成的的新型碳材料[1],它具有較大的比表面積、良好的電導(dǎo)率、機(jī)械穩(wěn)定性和熱穩(wěn)定性,因此在電子設(shè)備、電容器、復(fù)合物增強(qiáng)等方面都有廣泛的應(yīng)用[2~4]。石墨烯的制備方法主要有機(jī)械剝離法、外延生長(zhǎng)法、化學(xué)氣相沉積法和化學(xué)還原法等[5~9]。其中,化學(xué)還原法簡(jiǎn)單易行、成本低、可大量制備,因此被認(rèn)為是一種制備石墨烯的有效方法?;瘜W(xué)還原法制備的石墨烯(RGO)與其它物質(zhì)(如導(dǎo)電聚合物或納米粒子)摻雜之后可賦予其特殊的用途。如RGO與導(dǎo)電聚合物摻雜之后所制備的復(fù)合材料(石墨烯-聚苯胺(RGO-PANI)、石墨烯-聚吡咯(RGO-PPy)或石墨烯-聚3,4-乙烯二氧噻吩(RGO-PEDOT))可用來(lái)制備超級(jí)電容器材料[10~13]或吸波材料[14];與Co3O4納米粒子摻雜之后所制備的RGO-Co3O4復(fù)合材料可用來(lái)制備電極材料[15,16]或電容器材料[17];與Fe3O4納米粒子摻雜之后所制備的RGO-Fe3O4復(fù)合材料可用來(lái)制備吸波材料[18,19]等。但這些復(fù)合材料的制備僅限于二元復(fù)合(RGO-導(dǎo)電聚合物或RGO-納米粒子),而對(duì)于三元復(fù)合材料的研究報(bào)道較少(如RGO-導(dǎo)電聚合物-納米粒子)。

本文首次以三步法制備了聚苯胺-石墨烯-Co3O4(PANI-RGO-Co3O4)納米復(fù)合材料。利用FT-IR,XRD和XPS研究了RGO中含氧官能團(tuán)的變化及PANI和RGO之間的相互作用,并利用TEM對(duì)所制備的PANI-RGO-Co3O4納米復(fù)合材料中的納米粒子進(jìn)行了研究。

1 實(shí)驗(yàn)部分

1.1 制備

氧化石墨(GO)的制備:以天然鱗片石墨作為前驅(qū)體,采用Hummers法合成GO[20]。

PANI-RGO-Co3O4納米復(fù)合材料的制備:第一步,將0.2mL苯胺單體和2mL濃硫酸溶液加入100 mL的GO溶液(1mg/mL)中超聲2h,然后加入0.95 g(NH4)2S2O8,冰浴中攪拌24h后用去離子水洗滌數(shù)次并配成100mL溶液;第二步,將1.4g CoCl2·6H2O加入上述溶液,攪拌2h后倒入聚四氟乙烯內(nèi)襯的高壓釜中,然后加入0.94g NaOH和4mL H2O2(30 wt%)置于160℃烘箱中反應(yīng)24h,室溫冷卻后將所得的產(chǎn)物用去離子水洗滌數(shù)次并配成100mL溶液;第三步,將0.1mL水合肼溶液(80 wt%)加入上述溶液,在95℃中反應(yīng)24h后用乙醇和去離子水洗滌數(shù)次,然后將所得產(chǎn)物在真空干燥箱中60℃放置24h。

PANI-RGO的制備:依照上述第一步和第三步過(guò)程,可制備PANI-RGO。

PANI的制備:將0.2mL苯胺單體和2mL濃硫酸溶液混合超聲2h,加入0.95g(NH4)2S2O8,冰浴中攪拌24h后用去離子水洗滌數(shù)次,然后將所得產(chǎn)物在真空干燥箱中60℃放置24h。

RGO的制備:將0.1mL水合肼溶液(80wt%)加入100mL的GO溶液(1mg/mL)中,在95℃中反應(yīng)24h后用乙醇和去離子水洗滌數(shù)次,然后將所得產(chǎn)物在真空干燥箱中60℃放置24h。

1.2 結(jié)構(gòu)表征

采用美國(guó)necolet公司型號(hào)為iS10的傅里葉變換紅外光譜儀對(duì)樣品的化學(xué)結(jié)構(gòu)進(jìn)行分析。采用日本SHI-MADZU公司型號(hào)為XRD-7000X的X射線衍射儀測(cè)試樣品的結(jié)構(gòu)。測(cè)試條件:采用Cu靶Kα輻射,入射波長(zhǎng)λ=0.154060nm,電壓40.0kV,電流40.0mA,掃描速度0.5°/min,掃描步長(zhǎng)0.002°。采用型號(hào)為Phoibos 100的X射線光電子能譜儀對(duì)樣品進(jìn)行元素分析。采用Tecnai F30 G2場(chǎng)發(fā)射透射電鏡對(duì)樣品的形貌進(jìn)行分析,加速電壓200kV。

2 結(jié)果與討論

2.1 FT-IR分析

由圖1可知,GO在1730cm-1處有一個(gè)明顯的吸收峰,對(duì)應(yīng)于C=O的伸縮振動(dòng),而在1224cm-1和1065cm-1處的強(qiáng)吸收峰則歸屬于C-O的伸縮振動(dòng),說(shuō)明GO中存在大量的含氧官能團(tuán)[21,22]。還原之后,所得的RGO在1730cm-1處的吸收峰明顯的降低,同時(shí),1224cm-1和1065cm-1處的吸收峰在一定程度上也有所降低,說(shuō)明還原之后GO中的含氧官能團(tuán)明顯降低[23]。RGO在1635cm-1處出現(xiàn)的較強(qiáng)的吸收峰則歸屬于C=C的伸縮振動(dòng),說(shuō)明還原之后所得的RGO的石墨化程度有所提高[24]。PANI-RGO-Co3O4在1585cm-1,1161cm-1和1495cm-1處出現(xiàn)較強(qiáng)的吸收峰,分別對(duì)應(yīng)于PANI中醌環(huán)和苯環(huán)的C=C伸縮振動(dòng)[10,25],而在1297cm-1和1238cm-1處的吸收峰則主要?dú)w屬于PANI中C-N和C=N的伸縮振動(dòng)[13],這說(shuō)明PANI已成功的覆蓋在RGO上且與RGO之間具有較強(qiáng)的相互作用。同時(shí),PANI-RGO-Co3O4在597cm-1和660cm-1處也出現(xiàn)兩個(gè)明顯的吸收峰,歸屬于Co-O的伸縮振動(dòng),說(shuō)明所制備的復(fù)合材料中存在Co3O4納米粒子[26]。

圖1 GO,RGO和PANI-RGO-Co3O4的FT-IR譜圖Fig.1FT-IR spectra of GO,RGO and PANI-RGO-Co3O4

2.2 XRD分析

圖2 RGO,PANI和PANI-RGO-Co3O4的XRD譜圖Fig.2XRD patterns of RGO,PANI and PANI-RGO-Co3O4

由圖2可知,RGO在2θ=24.5°出現(xiàn)一個(gè)較為明顯的衍射峰,根據(jù)布拉格公式2dsinθ=nλ(n=1)(式中d為晶面距離,θ為衍射角,n為衍射級(jí)數(shù), λ為X射線波長(zhǎng)),其晶面距離為0.36nm,與石墨的晶面距離(0.34nm)十分相近,說(shuō)明RGO已被基本還原且具有石墨的結(jié)構(gòu)。PANI-RGO在15.3°,20.7°和25.2°處出現(xiàn)明顯的衍射峰,分別對(duì)應(yīng)于PANI中(011),(020)和(200)的晶面,說(shuō)明PANI已成功的制備[27]。而PANI-RGO-Co3O4在19.2°,31.7°, 37.0°,38.3°,45.1°,56.1°,59.6°和65.6°處出現(xiàn)八個(gè)較為明顯的衍射峰,分別對(duì)應(yīng)于Co3O4中(111),(220),(311),(222),(400),(422),(511)和(440)的晶面,說(shuō)明所制備的復(fù)合材料中含有Co3O4納米粒子,同時(shí),這些衍射峰的強(qiáng)度都相對(duì)較弱,說(shuō)明形成的Co3O4納米粒子的尺寸較小。

2.3 XPS分析

圖3 GO和PANI-RGO-Co3O4的C 1s譜圖(a)和XPS譜圖(b);PANI-RGO-Co3O4的Co 2p譜圖(c)Fig.3C 1s spectra(a)and XPS spectra(b)of GO and PANI-RGOCo3O4,Co 2p spectra(c)of PANI-RGO-Co3O4

由圖3a可知,GO的C1s譜圖上有四種類(lèi)型的碳鍵,C=C/C-C鍵的結(jié)合能在284.5eV,C-O鍵的結(jié)合能在286.4eV,C=O鍵的結(jié)合能在287.8eV,O=C-OH鍵的結(jié)合能在289.0eV[28],且這四種碳鍵的結(jié)合能所對(duì)應(yīng)的峰的強(qiáng)度均相對(duì)較強(qiáng),說(shuō)明GO中含氧官能團(tuán)的含量較多。PANI-RGO-Co3O4中含氧官能團(tuán)的結(jié)合能對(duì)應(yīng)的峰的強(qiáng)度有所降低,尤其是C-O鍵的結(jié)合能所對(duì)應(yīng)的峰的強(qiáng)度降低很大,說(shuō)明還原之后GO中含氧官能團(tuán)的數(shù)量急劇下降,GO已大部分被還原成RGO[8]。而PANI-RGO-Co3O4在285.6eV出現(xiàn)的峰則對(duì)應(yīng)于PANI中C-N鍵的結(jié)合能。由圖3b可知,GO中僅含有C和O元素,而PANI-RGO-Co3O4中除了C和O元素之外,還存在N和Co元素,且其C和O元素的比值有所提高,說(shuō)明GO被還原。由圖3c可知,PANI-RGO-Co3O4在780.2 eV和795.6eV出現(xiàn)的峰分別對(duì)應(yīng)于Co 2p3/2和Co 2p1/2的結(jié)合能,說(shuō)明所形成的粒子為Co3O4納米粒子[29]。由以上分析可以,Co3O4成功地附著在PANI-RGO,這與XRD所得的結(jié)果一致。

2.4 TEM分析

圖4 PANI-RGO(a)的TEM圖;PANI-RGO-Co3O4的TEM圖(b),HRTEM圖(c)和能譜圖(d)Fig.4TEM image of PANI-RGO(a),TEM(b),HRTEM(c)and EDS image(d)of PANI-RGO-Co3O4

由圖4a可知,PANI-RGO具有紙張狀形態(tài),且其表面上具有較多的褶皺,這主要是因?yàn)镻ANI均勻地分布在RGO的表面上[30],且與RGO之間具有較強(qiáng)的相互作用。由圖4b可知,許多Co3O4納米粒子分布在PANI-RGO表面,其粒徑在5~15nm之間,粒徑較小,這與XRD所得的結(jié)果一致。由HRTEM可知(圖4c),Co3O4納米粒子的晶格距離為0.24nm,與Co3O4中(311)晶面對(duì)應(yīng)的晶格距離相同。由圖4d可知所制備的復(fù)合材料中含有C,O和Co元素(其中Cu元素來(lái)源于銅網(wǎng)),這與XPS所得的結(jié)果一致。

3 結(jié)論

(1)首次以三步法制備了PANI-RGO-Co3O4納米復(fù)合材料。

(2)PANI-RGO-Co3O4納米復(fù)合材料中GO的含氧官能團(tuán)數(shù)量急劇下降,合成的PANI附著在RGO表面且與RGO之間由較強(qiáng)的相互作用。

(3)生成的Co3O4納米粒子的粒徑在5~15nm之間。通過(guò)結(jié)構(gòu)測(cè)試結(jié)果,我們推測(cè)該納米復(fù)合材料有望在超級(jí)電容器、電極和吸波材料等領(lǐng)域有廣泛的應(yīng)用前景。

[1]NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric Field Effect in Atomically Thin Carbon Films[J].Science,2004, 306(22):666~669.

[2]BALANDIN A A,GHOSH S,BAO W,et al.Superior Thermal Conductivity of Single-Layer Graphene[J].Nano Lett,2008,8 (3):902~907.

[3]RAO C N R,SOOD A K,SUBRAHMANYAM K S,et al.Graphene:The New Two-Dimensional Nanomaterial[J].Angew.Chem.Int.Ed,2009,48(42):7752~7778.

[4]PARK S,SUK J W,AN J,et al.The effect of concentration of graphene nanoplatelets on mechanical and electrical properties of reducedgrapheneoxidepapers[J].Carbon,2012,50(12):4573~4578.

[5]BERGER C,SONG Z M,LI X B,et al.Electronic Confinement and Coherence in Patterned Epitaxial Graphene[J].Science,2006,312 (5777):1191~1196.

[6]KIM K S,ZHAO Y,JANG H,et al.Large-scale pattern growth of graphene films for stretchable transparent electrodes[J].Nature,2009,457:706~710.

[7]ZHANGY,GOMEZL,ISHIKAWAFN,etal.ComparisonofGraphene Growth on Single-Crystalline and Polycrystalline Ni by Chemica l VaporDeposition[J].J.Phys.Chem.Lett,2010,1:3101~3107.

[8]STANKOVICH S,DIKIN D A,PINER R D,et al.Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J].Carbon,2007,45(7):1558~1565.

[9]ZHANG S,SHAO Y Y,LIAO H G,et al.Polyelectrolyte-Induced Reduction of Exfoliated Graphite Oxide:A Facile Route to Synthesis of Soluble Graphene Nanosheets[J].ACS Nano,2011, 5(3):1785~1791.

[10]ZHANG K,ZHANG L L,ZHAO X S,et al.Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes[J].Chem.Mater,2010,22(4):1392~1401.

[11]LIU A R,LI C,BAI H,et al.Electrochemical Deposition of Polypyrrole/Sulfonated Graphene Composite Films[J].J.Phys.Chem.C,2010,114(51):22783~22789.

[12]XU Y F,WANG Y,LIANG J J,et al.A Hybrid Material of Graphene and Poly(3,4-ethyldioxythiophene)with High Conductivity,Flexibility,and Transparency[J].Nano Res,2009,2 (4):343~348.

[13]ZHANG J T AND ZHAO X S.Conducting Polymers Directly Coated on Reduced Graphene Oxide Sheets as High-Performance Supercapacitor Electrodes[J].J.Phys.Chem.C,2012,116 (9):5420~5426.

[14]YU H L,WANG T S,WEN B,et al.Graphene/polyaniline nanorod arrays:synthesis and excellent electromagnetic absorption properties[J].J.Mater.Chem,2012,22:21679~21685.

[15]LI B J,CAO H Q,SHAO J,et al.Co3O4@graphene Composites as Anode Materials for High-PerformanceLithium Ion Batteries[J].Inorg.Chem,2011,50(5):1628~1632.

[16]WU Z S,RENW C,WEN L,et al.Graphene Anchored with Co3O4Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance[J].ACS Nano, 2010,4(6):3187~3194.

[17]WANG X W,LIU S Q,WANG H Y,et al.Facile and green synthesis of Co3O4nanoplates/graphene nanosheets composite for supercapacitor[J].JSolidStateElectrochem,2012,16(11):3593~3602.

[18]XU H L,BI H,YANG R-B.Enhanced microwave absorption property of bowl-like Fe3O4hollow spheres/reduced graphene oxide composites[J].J.Appl.Phys,2012,111:07A522.

[19]HE H K AND GAO C.Preparation of reduced graphene oxide/ Fe3O4nanocomposite and its microwave electromagnetic properties[J].ACS Appl.Mater.Interfaces,2010,2(11):3201~3210.

[20]HUMMERS W S,OFFEMAN R E.Preparation of Graphitic Oxide[J].J.Am.Chem.Soc,1958,80(6):1339~1339.

[21]ZHANG J,YANG H.SHEN G,et al.Reduction of graphene oxide viaL-ascorbic acid[J].Chem.Commun,2010,46:1112~1114.

[22]PARK S,AN J,PINER R D,et al.Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets[J].Chem.Mater,2008,20(21):6592~6594.

[23]SONG P,ZHANG X Y,SUN M X.Synthesis of graphene nanosheets via oxalic acid-induced chemical reduction of exfoliated graphite oxide[J].RSC Adv,2012,2:1168~1173.

[24]BOSE S,KUILA T,MISHRA A K,et al.Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene:an environmentally friendly method[J].J.Mater.Chem,2012,22:9696~9703.

[25]PANDEY R K,LAKSHMINARAYANAN V.Electro-Oxidation of Formic Acid,Methanol,and Ethanol on Electrodeposited Pd-Polyaniline Nanofiber Films in Acidic and Alkaline Medium[J].J.Phys.Chem.C,2009,113(52):21596~21603.

[26]DONG Z,FU Y Y,HAN Q,et al.Synthesis and Physical Properties of Co3O4Nanowires[J].J.Phys.Chem.C,2007,111(50):18475~18478.

[27]YAN J,WEI T,SHAO B,et al.Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance[J].Carbon,2010,48(2):487~493.

[28]STANKOVICH S,PINER R D,CHEN X,et al.Stable Aqueous Dispersions of Graphitic Nanoplatelets via the Reduction of Exfoliated Graphite Oxide in the Presence of Poly(Sodium 4-styrenesulfonate)[J].J.Mater.Chem,2006,16:155~158.

[29]WU Z S,REN W C,WENL,et al.Graphene Anchored with Co3O4Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance[J].ACS Nano, 2010,4(6):3187~3194.

[30]LI Y,PENG H R,LI G C,et al.Synthesis and electrochemical performance of sandwich-like polyaniline/graphene composite nanosheets[J].Eur.Polym.J,2012,48(8):1406~1412.

Preparation and Characterization of Polyaniline-Reduced Graphene Oxide-Co3O4Nano-composites

LIU Pan-bo and HUANG Ying

(Key Laboratory of Space Applied Physics and Chemistry,Ministry of Education,College of Science,Northwestern Polytechnical University,Xi'an 710129,China)

The polyaniline-reduced graphene oxide-Co3O4(PANI-RGO-Co3O4)nanocomposites were synthesized through a three-step approach for the first time.The nanocomposites were characterized by FT-IR,XRD,XPS and TEM.The results indicated that the oxygen-containing functional groups of GO decreased to a great extent;the GO had been reduced into RGO.The PANI greatly interacted with RGO and the formed Co3O4nanoparticles,with a particle size of 5~15 nm,were closely anchored on the surface of PANI-RGO.The nanocomposites were expected to have wide applications in super capacitor,electrode and wave-absorbing materials.

Polyaniline;reduced graphene oxide;nanoparticles;composites

TQ322.95

A

1001-0017(2013)04-0017-04

2013-04-26

劉攀博(1986-),男,陜西西安人,博士,主要從事石墨烯的研究。

猜你喜歡
聚苯胺含氧結(jié)合能
晶體結(jié)合能對(duì)晶格動(dòng)力學(xué)性質(zhì)的影響
有關(guān)烴的含氧衍生物的“反應(yīng)原理”薈萃
借鑒躍遷能級(jí)圖示助力比結(jié)合能理解*
烴的含氧衍生物知識(shí)測(cè)試題
烴的含氧衍生物知識(shí)鏈接
三維鎳@聚苯胺復(fù)合電極的制備及其在超級(jí)電容器中的應(yīng)用
ε-CL-20/F2311 PBXs力學(xué)性能和結(jié)合能的分子動(dòng)力學(xué)模擬
聚苯胺導(dǎo)電復(fù)合材料研究進(jìn)展
聚苯胺復(fù)合材料研究進(jìn)展
聚酰亞胺/聚苯胺/炭黑抗靜電復(fù)合薄膜的制備與表征
延寿县| 南阳市| 荣昌县| 望都县| 乌鲁木齐县| 吐鲁番市| 永顺县| 丰台区| 淮滨县| 榕江县| 静海县| 芮城县| 平阳县| 新兴县| 修文县| 礼泉县| 梓潼县| 得荣县| 昌都县| 安康市| 侯马市| 奈曼旗| 嘉黎县| 淅川县| 公主岭市| 土默特右旗| 麦盖提县| 西林县| 莱阳市| 牙克石市| 浮山县| 成都市| 卢龙县| 登封市| 中卫市| 黑龙江省| 会东县| 达日县| 五台县| 大港区| 奎屯市|