胡泉,柴家科,楊紅明
燒沖復(fù)合傷肺損傷的研究進(jìn)展
胡泉,柴家科,楊紅明
隨著軍事沖突、恐怖襲擊、生產(chǎn)交通事故的不斷增多,燒沖復(fù)合傷的發(fā)病率逐年升高。燒沖復(fù)合傷由于存在兩種致傷因素,并發(fā)癥多,病死率高,其治療是臨床亟待解決的難題。肺部是燒沖復(fù)合傷受損最嚴(yán)重的器官,肺部受損后,通氣換氣功能障礙可以影響到全身組織的供氧,是導(dǎo)致休克等其他并發(fā)癥的主要病理生理基礎(chǔ)。既往研究發(fā)現(xiàn),燒沖復(fù)合傷后,肺部大量肺泡壁破裂,毛細(xì)血管斷裂,肺毛細(xì)血管內(nèi)皮細(xì)胞受損,造成肺水腫和肺出血,影響肺通氣換氣功能,導(dǎo)致全身臟器缺血缺氧損害。因此,在對(duì)燒沖復(fù)合傷的治療中,肺部損傷的治療尤為關(guān)鍵。本文就燒沖復(fù)合傷肺損傷發(fā)病機(jī)制及治療的研究現(xiàn)狀進(jìn)行簡(jiǎn)要綜述。
燒傷;高能量沖擊波;肺損傷
燒沖復(fù)合傷是指火焰、熱液、光輻射等熱力因素和沖擊波同時(shí)或先后依次作用于機(jī)體造成的復(fù)合傷。在軍事沖突、恐怖襲擊、生產(chǎn)交通事故等突發(fā)事件中,燒沖復(fù)合傷的發(fā)病率呈逐漸升高的趨勢(shì)[1]。在伊拉克和阿富汗戰(zhàn)爭(zhēng)中,爆炸造成了約35 000名傷員[2],其中燒沖復(fù)合傷傷員占35%以上。爆炸所致的燒沖復(fù)合傷由于兩種致傷因素同時(shí)作用于機(jī)體,對(duì)機(jī)體造成的損傷較單純的燒傷或沖擊傷更嚴(yán)重,具有呼吸障礙發(fā)生早、并發(fā)癥多、病死率高等特點(diǎn)[3-7]。肺部是受燒沖復(fù)合傷損傷最嚴(yán)重的器官[1,8-9],近年來(lái),國(guó)內(nèi)外學(xué)者進(jìn)行了一系列相關(guān)研究,以闡明其發(fā)病機(jī)制,提高臨床救治水平。
建立傷情穩(wěn)定、可重復(fù)性強(qiáng)、接近實(shí)際的燒沖復(fù)合傷動(dòng)物模型是實(shí)驗(yàn)研究的關(guān)鍵一步。大多數(shù)學(xué)者在建立燒沖復(fù)合傷模型時(shí)均先給予爆炸所致沖擊傷,然后再給予燒傷。既往報(bào)道的沖擊傷模型包括:沖擊波復(fù)合槍彈發(fā)射碎片致傷,生物激波管致傷,同步電雷管爆炸致傷等[10-12]。以沖擊波復(fù)合槍彈發(fā)射碎片致傷的實(shí)驗(yàn)?zāi)P?,雖然能達(dá)到?jīng)_擊波致傷的要求,但是由于其同步控制復(fù)雜,不能真正模擬沖擊傷的傷情特點(diǎn)[13-14];應(yīng)用生物激波管致沖擊傷具有定位準(zhǔn)確,可重復(fù)性強(qiáng)等優(yōu)點(diǎn),但沖擊傷僅限于某一部位或器官。最近有學(xué)者分別以EDCI混合炸藥或8701混合壓縮炸藥柱為爆炸源制備沖擊傷模型,可操作性強(qiáng),更加符合實(shí)際[13]。此外,在給予中度沖擊傷后15~30min,針對(duì)不同動(dòng)物分別采用94℃沸水燙傷,或5kW溴鎢燈光輻射燒傷,或凝固汽油燒傷等多種方法,均可造成體表Ⅲ°創(chuàng)面,面積在15%~25%TBSA[15-16]。
燒沖復(fù)合傷后肺內(nèi)循環(huán)血流速度減慢,血流量減少,所致心功能不全以及肺血管損傷會(huì)直接造成低排高阻型的全身血流動(dòng)力學(xué)紊亂[17],即心排量較傷前顯著下降,全身血管阻力和肺血管通透性升高。休克后交感-腎上腺素和腎素-血管緊張素系統(tǒng)功能亢進(jìn),會(huì)使肺血管收縮,毛細(xì)血管靜水壓增高,同時(shí)周圍血管阻力增高,左心負(fù)荷增加,右心舒張末壓力上升,肺毛細(xì)血管內(nèi)壓力增高;與此同時(shí),由于肺組織血液灌注不足,以及補(bǔ)液后的再灌注損傷,使得肺毛細(xì)血管內(nèi)皮細(xì)胞受損,通透性增高,加上循環(huán)中血管活性物質(zhì)增多,直接或間接增加了肺毛細(xì)血管的通透性,使肺血管收縮。綜合上述諸因素,將導(dǎo)致肺組織缺血缺氧和充血水腫[18]。
沖擊波由于其內(nèi)爆效應(yīng)和牽拉效應(yīng)[19]可對(duì)機(jī)體尤其是肺、結(jié)腸[20]、耳[17]等空腔臟器以及神經(jīng)系統(tǒng)[21]等造成嚴(yán)重?fù)p傷[2]。其中,肺部的主要病理表現(xiàn)為[8,22-27]:①肺出血。因傷情不同而有很大差異,從斑片狀淺表出血至全葉出血,氣管內(nèi)常有泡沫樣血液和血凝塊,并成為致死的主要原因,特征性表現(xiàn)為相互平行的血性肋間壓痕,甚至有學(xué)者發(fā)現(xiàn)由于肺泡腫脹和破裂,出現(xiàn)肺泡微小血管破裂出血。②肺水腫。傷后不久可見出血區(qū)周圍或更大范圍內(nèi)有水腫液,且與血液相混,呈紅色泡沫樣。③肺破裂和肺大泡。因動(dòng)壓使機(jī)體撞擊到堅(jiān)硬物體或被繼發(fā)投射物擊中而引起,肺大泡實(shí)際是淺層肺組織撕裂而肺膜完整的表現(xiàn)。④肺萎陷和肺氣腫。未發(fā)生肺出血的部位有部分肺組織發(fā)生萎陷和氣腫,有時(shí)因肺泡或細(xì)支氣管破裂,空氣進(jìn)入肺間質(zhì)而形成間質(zhì)性肺氣腫。
燒沖復(fù)合傷時(shí),兩個(gè)致傷因素同時(shí)作用于機(jī)體,肺部病變程度顯著加重[28]。X線檢查可見肺部有點(diǎn)狀、條索狀或片狀陰影,呈毛玻璃樣改變[29]。有些可見肺大泡或中等量以下血?dú)庑豙2],甚至由于沖擊波的牽拉作用損傷支氣管樹,造成支氣管瘺[30]。還可見氣管內(nèi)廣泛的黏膜充血、水腫,偶見脫落壞死黏膜[2-3]。柴家科等[31]對(duì)1例燒沖復(fù)合傷患者進(jìn)行尸檢發(fā)現(xiàn)雙肺彌漫性肺泡水腫伴片灶狀肺泡出血,肺泡腔充滿粉紅色水腫液,局部形成透明膜,部分區(qū)域混雜有大量紅細(xì)胞及含鐵血黃素細(xì)胞,肺間質(zhì)重度水腫,間質(zhì)血管擴(kuò)張淤血。
燒沖復(fù)合傷肺損傷的主要病理生理變化有:①肺血管通透性顯著增加。有學(xué)者通過99mTc-人聚巨蛋白標(biāo)記方法進(jìn)行肺臟血管通透性檢測(cè)發(fā)現(xiàn)[32],燒傷復(fù)合傷后肺血管通透性較單純燒傷或單純沖擊傷顯著增高。蔡建華等[33]通過對(duì)大鼠支氣管肺泡灌洗液蛋白濃度測(cè)定發(fā)現(xiàn),燒沖復(fù)合傷大鼠肺泡灌洗液中蛋白濃度高于單純燒傷或沖擊傷組。②肺毛細(xì)血管內(nèi)皮細(xì)胞受損更嚴(yán)重,甚至有內(nèi)皮細(xì)胞碎裂現(xiàn)象。復(fù)合傷時(shí)肺微血管病變的修復(fù)過程也較單純沖擊傷減慢,如內(nèi)皮細(xì)胞局灶水腫、空泡變性等一直持續(xù)至傷后7d。對(duì)同一動(dòng)物出血和未出血肺組織的病理觀測(cè)結(jié)果表明,微血管內(nèi)皮細(xì)胞的損傷是肺水腫的直接原因[2,18,34]。③炎性反應(yīng)重。電鏡下可發(fā)現(xiàn)燒沖復(fù)合傷后肺泡腔內(nèi)大量中性粒細(xì)胞在細(xì)胞間聚集。血液中可檢測(cè)到TNF-α,IL-6,IL-8以及內(nèi)皮素-1等炎癥因子表達(dá)上調(diào)[7,35]。④凝血系統(tǒng)障礙。燒沖復(fù)合傷患者均存在不同程度的凝血機(jī)制異常表現(xiàn)。傷后機(jī)體血小板數(shù)量減少,凝血酶原時(shí)間延長(zhǎng),血漿纖維蛋白原濃度、D-二聚體含量顯著升高,直接誘發(fā)彌散性血管內(nèi)凝血(DIC),且遠(yuǎn)大于單純燒傷和單純沖擊傷的疊加,其原因可能與肺毛細(xì)血管內(nèi)皮細(xì)胞釋放纖溶酶原激活物有關(guān)[36]。纖溶活化使纖溶酶原轉(zhuǎn)變成纖溶酶,纖溶酶作用于纖維蛋白原和纖維蛋白產(chǎn)生纖維蛋白降解產(chǎn)物(FDP),從而激活凝血系統(tǒng),致使肺泡毛細(xì)血管內(nèi)出血難以控制,加重肺出血。
病理改變表明燒沖復(fù)合傷不是燒傷和沖擊傷的單純疊加,尤其是肺部損傷程度遠(yuǎn)遠(yuǎn)大于兩者的累加,其可能致病機(jī)制如下。
4.1沖擊波的直接損傷 肺受到?jīng)_擊波的影響,由于壓力和移位兩方面因素,導(dǎo)致肺泡和肺毛細(xì)血管瞬間膨脹和移動(dòng),肺泡壁和毛細(xì)血管壁破裂[2]。肺泡破裂直接影響肺通氣,造成通氣和換氣不足,導(dǎo)致全身缺氧。肺毛細(xì)血管破裂后,血液外漏,肺血流量減少,導(dǎo)致肺缺血缺氧[7]。
4.2栓塞 沖擊波的牽拉作用使肺泡破裂,肺微小血管內(nèi)出現(xiàn)廣泛氣體和脂肪栓塞,造成微血管循環(huán)障礙,組織缺氧[34]。
4.3肺毛細(xì)血管內(nèi)皮細(xì)胞損傷 沖擊波和燒傷后的應(yīng)激因素均可造成肺毛細(xì)血管內(nèi)皮細(xì)胞受損。肺毛細(xì)血管內(nèi)皮細(xì)胞通透性改變,可引發(fā)肺水腫和全身低血容量。一方面,肺毛細(xì)血管內(nèi)皮細(xì)胞釋放內(nèi)皮素,會(huì)使血管收縮絕對(duì)或相對(duì)增強(qiáng),血流灌注減少,同時(shí)傷后氧耗增加,氧供也出現(xiàn)絕對(duì)或相對(duì)不足,因而出現(xiàn)缺血缺氧性損傷加重現(xiàn)象[37];另一方面,肺毛細(xì)血管內(nèi)皮細(xì)胞受損后,會(huì)刺激內(nèi)皮素-1和細(xì)胞間黏附因子-1(ICAM-1)的表達(dá)上調(diào),促進(jìn)肺內(nèi)炎性因子釋放[33]。
4.4氧化反應(yīng) 有學(xué)者認(rèn)為紅細(xì)胞受損后可以引發(fā)瀑布效應(yīng),促進(jìn)多種血管活性因子和炎性因子的釋放[35]。觸發(fā)機(jī)制可能與血紅蛋白裂解后釋放血紅素鐵催化的氧化和硝化反應(yīng)有關(guān),其中涉及血紅蛋白的釋放,細(xì)胞因子的表達(dá),內(nèi)皮細(xì)胞和巨噬細(xì)胞以及其他免疫細(xì)胞的活化。氧化反應(yīng)有兩個(gè)途徑,即煙酰胺二核苷酸磷酸(NADPH)氧化酶和誘生型一氧化氮合成酶(iNOS)途徑[38]。NADPH氧化酶催化超氧化物的一個(gè)電子的氧分子還原,生成活性氧,過量的NO則通過炎癥或其他細(xì)胞中iNOS的上調(diào),產(chǎn)生特殊的氧自由基過氧亞硝酸鹽以促進(jìn)氧化和硝化損傷。活性氧和活性氮均可影響細(xì)胞膜和生物酶,對(duì)細(xì)胞的結(jié)構(gòu)和功能造成不可逆損傷[39]。
4.5炎癥反應(yīng) 燒沖復(fù)合傷后肺部中性粒細(xì)胞爆發(fā),髓過氧化物酶表達(dá)上調(diào),與肺血管內(nèi)皮細(xì)胞黏附[39],釋放彈性蛋白酶、膠原蛋白酶、氧自由基等,對(duì)臟器的實(shí)質(zhì)細(xì)胞和基質(zhì)產(chǎn)生損傷,同時(shí)粒細(xì)胞彈性蛋白酶(NE)在肺損傷中也起重要作用[33],一方面上調(diào)ICAM-1,另一方面誘導(dǎo)IL-8促進(jìn)中性粒細(xì)胞爆發(fā)。肺組織對(duì)炎癥反應(yīng)的負(fù)調(diào)控可能有以下兩個(gè)途徑:①血紅素加氧酶-1途徑[40-41]。血紅素加氧酶可以誘導(dǎo)催化破損紅細(xì)胞的血紅素分解為CO、膽綠素和二價(jià)鐵。內(nèi)源性CO具有與NO類似的效果,包括舒張血管、抗氧化以及抑制炎性因子TNF-α,IL-6,IL-8以及內(nèi)皮素-1等。沖擊傷大鼠腹腔內(nèi)注射氯化血紅素,可以顯著降低炎性因子的表達(dá)。給予刺激因子氯化血紅素可使沖擊傷大鼠生存率增加[42]。②抗氧化酶途徑,如錳化超氧化物歧化酶(MnSOD)。創(chuàng)傷后早期,MnSOD可以被炎癥反應(yīng)激活,并通過降低誘生型一氧化氮合酶的表達(dá),對(duì)抗肺組織內(nèi)的氧化反應(yīng),減輕氧化應(yīng)激[41]。
最近實(shí)驗(yàn)證實(shí),沖擊傷休克復(fù)蘇時(shí),給予大劑量維生素C,可以明顯加強(qiáng)血液組織灌注,減少?gòu)?fù)蘇補(bǔ)液量,提高尿量,主要原因考慮維生素C為抗氧化劑,可以清除氧自由基,平滑血管壁,減少炎癥反應(yīng),提高組織供血,協(xié)助復(fù)蘇[43]。由于維生素C在燒傷后的復(fù)蘇中也起著重要作用,因此我們推測(cè),大劑量維生素C可以協(xié)助燒沖復(fù)合傷的休克復(fù)蘇,減輕組織受到二次打擊的影響,降低病死率。
4.6細(xì)胞凋亡 沖擊波對(duì)肺的損傷還包括呼吸道上皮細(xì)胞大量凋亡,此損傷在傷后48h達(dá)到最高峰,可能機(jī)制為大量中性粒細(xì)胞和巨噬細(xì)胞聚集,通過上調(diào)髓過氧化物酶的表達(dá),產(chǎn)生活性氧,啟動(dòng)細(xì)胞凋亡程序[44-45]。
在燒傷患者合并以下特征時(shí),應(yīng)高度懷疑燒沖復(fù)合傷伴肺損傷:①有接近爆炸物的病史;②進(jìn)行性呼吸困難;③胸部皮膚表面可見淤斑;④雙肺聽診可聞及廣泛散在的濕啰音;⑤X線檢查雙肺出現(xiàn)“蝴蝶斑”樣改變,有時(shí)可合并血?dú)庑睾托厍环e液[7, 46-47]。
大多數(shù)學(xué)者認(rèn)為,對(duì)燒沖復(fù)合傷特別是合并吸入性損傷的患者宜早期給予氣管切開[3]。有研究發(fā)現(xiàn),臨床有76%以上的患者需要機(jī)械通氣[24]。應(yīng)用呼吸機(jī)對(duì)肺損傷患者進(jìn)行機(jī)械輔助呼吸時(shí)應(yīng)注意:①使用壓力控制或輔助通氣,在保證基本潮氣量的情況下,使吸氣壓力控制在30~35cmH2O以內(nèi),避免呼吸機(jī)誘導(dǎo)的肺損傷[14,48];②采用“允許性高碳酸血癥”,減少潮氣量(6~8ml/kg或5~7ml/kg),防止肺泡的過度膨脹誘發(fā)呼吸機(jī)誘導(dǎo)的肺損傷[31];③加用低水平呼吸末正壓通氣(<15cmH2O),維持一定的功能殘氣量和肺泡的開放狀態(tài),避免肺泡反復(fù)關(guān)閉和開放產(chǎn)生的剪切力所致的呼吸機(jī)誘導(dǎo)的肺損傷[6];④通過100%氧流量和最大限度地增加自發(fā)通氣等方法,促進(jìn)吸收或避免氣栓[49]。
所有氣管切開患者均應(yīng)行床旁纖維支氣管鏡檢查和治療,清除氣道內(nèi)損傷脫落組織,吸凈分泌物,送細(xì)菌培養(yǎng)+藥敏試驗(yàn),應(yīng)用表皮生長(zhǎng)因子行肺泡灌洗,對(duì)氣道黏膜出血處用去甲腎上腺素鹽水滴入止血[3,50]。
抗感染首選有效的廣譜抗生素,并應(yīng)及時(shí)根據(jù)呼吸道分泌物的細(xì)菌培養(yǎng)和臨床變化不斷調(diào)整,同時(shí)兼顧抗炎治療。大劑量的烏司他丁可有效減少機(jī)體炎性反應(yīng),減輕滲出。應(yīng)適時(shí)使用抗真菌藥物,防治二重感染[1,3,51]。
總之,隨著全球恐怖襲擊事件日益增多,危害增大,受傷人數(shù)增加,燒沖復(fù)合傷的研究迫在眉睫。大量實(shí)驗(yàn)證實(shí),復(fù)合傷的傷情較兩者單純傷疊加要大得多,說明兩者之間有協(xié)同作用,導(dǎo)致機(jī)體尤其是肺部遭受到更為嚴(yán)重的損傷。單純的沖擊傷和燒傷的發(fā)病機(jī)制及治療日益明了,但其復(fù)合傷的發(fā)病機(jī)制還有待進(jìn)一步研究。特別是燒傷和沖擊傷,兩者均是通過氧化應(yīng)激和炎癥反應(yīng)對(duì)肺毛細(xì)血管內(nèi)皮細(xì)胞造成損傷,使其通透性增加,血容量下降,全身休克程度加重,但兩者是同時(shí)加重同一個(gè)損傷途徑還是通過不同途徑的協(xié)同作用影響內(nèi)皮細(xì)胞尚待進(jìn)一步探討。同時(shí),燒沖復(fù)合傷的患者需要更加有效的液體復(fù)蘇以緩解機(jī)體的缺血缺氧狀況。一方面,燒傷患者尤其是大面積危重?zé)齻颊咝枰焖?、有效的液體復(fù)蘇;另一方面,沖擊傷后肺部血管通透性增加、大量毛細(xì)血管破裂,大量快速補(bǔ)液容易加重肺水腫,影響肺通氣換氣功能。所以,對(duì)燒沖復(fù)合傷休克進(jìn)行液體復(fù)蘇時(shí),補(bǔ)液的種類和速度還有待進(jìn)一步研究。
[1] DePalma RG, Burris DG, Champion HR, et al. Blast injuries[J]. N Engl J Med, 2005, 352(13): 1335-1342.
[2] Champion HR, Holcomb JB, Young LA. Injuries from explosions: physics, biophysics, pathology, and required research focus[J]. J Trauma, 2009, 66(5): 1468-1477.
[3] Chai JK, Sheng ZY, Lu JY, et al. Characteristics of and strategies for patients with severeburn-blast combined injury[J]. Chin Med J (Engl), 2007, 120(20): 1783-1787.
[4] Cernak I, Noble-Haeusslein LJ. Traumatic brain injury: an overview ofpathobiology with emphasis on military populations[J]. J Cereb Blood Flow Metab, 2010, 30(2): 255-266.
[5] Arnold JL, Halpern P, Tsai MC, et al. Mass casualty terrorist bombings: a comparison of outcomes by bombing type[J]. Ann Emerg Med, 2004, 43(2): 263-273.
[6] Almogy G, Rivkind AI. Terror in the 21st century: milestones and prospects-part I[J]. Curr Probl Surg, 2007, 44(9): 496-554.
[7] Wolf SJ, Bebarta VS, Bonnett CJ, et al. Blast injuries[J]. Lancet, 2009, 374(9687): 405-415.
[8] Almogy G, Mintz Y, Zamir G, et al. Suicide bombing attacks: can external signs predict internal injuries[J]? Ann Surg, 2006, 243(4): 541-546.
[9] Irwin RJ, Lerner MR, Bealer JF, et al. Shock after blast wave injury is caused by a vagally mediated reflex[J]. J Trauma, 1999, 47(1): 105-110.
[10] Ramasamy A, Harrisson SE, Clasper JC, et al. Injuries from roadside improvised explosive devices[J]. J Trauma, 2008, 65(4): 910-914.
[11] Cooper, GJ. Protection of the lung from blast overpressure by thoracic stress wave decouplers[J]. J Trauma, 1996, 40(Suppl 3): S105-S110.
[12] Ling F, Li BC, Li SG. A control system about explosive injury model in laboratory[J]. Explore Shock Waves, 1999, 19(3): 286-288. [凌烽, 李兵倉(cāng), 李曙光. 實(shí)驗(yàn)室爆炸傷致傷模型控制系統(tǒng)[J]. 爆炸與沖擊, 1999, 19(3): 286-288.]
[13] Garner JP, Wattss S, Parry C, et al. Development of a large animal model for investigating resuscitation after blast and hemorrhage[J]. World J Surg, 2009, 33(8): 2194-2202.
[14] Kirman E, Watts S, Cooper G. Blast injury research models[J]. Philos Trans R Socland B Biol Sci, 2011, 366(1562): 144-159.
[15] Hu Q, Hu S, Chai JK, et al. Influence of enteral administration of hypertonic electrolyte glucose solution on the intestinal barrier and organ functions in dogs with severe burn[J]. Chin J Burns, 2010, 26(1): 41-44. [胡泉, 胡森, 柴家科, 等. 腸內(nèi)輸入高滲電解質(zhì)葡萄糖液對(duì)35%TBSA燒傷犬小腸屏障及臟器功能的影響[J]. 中華燒傷雜志, 2010, 26(1): 41-44.]
[16] Zhu PF, Wang ZG. Bum-blast combined injury[J]. Chin J Burns, 2008, 24(5): 384-386. [朱佩芳, 王正國(guó). 燒沖復(fù)合傷[J]. 中華燒傷雜志, 2008, 24(5): 384-386.]
[17] Miller K, Chang A. Acute inhalation injury[J]. Emerg Med Clin North Am, 2003, 21(2): 533-757.
[18] Lioy PJ, Weisel CP, Millette JR, et al. Characterization of the dust/smoke aerosol that settled east of the World Trade Center (WTC) in lower Manhattan after the collapse of the WTC 11 September 2001[J]. Environ Health Perspect, 2002, 110(7): 703-714.
[19] Lai XN, Wang ZG, Zhan G, et al. Hemodynamic responses in dogs exposed to blast-burn combined injuries followed by immersion in seawater[J]. Med J Chin PLA, 2004, 29(12): 1028-1030. [賴西南, 王正國(guó), 詹剛, 等. 犬沖燒復(fù)合傷合并海水浸泡的血流動(dòng)力學(xué)研究[J]. 解放軍醫(yī)學(xué)雜志, 2004, 29(12): 1028-1030.]
[20] Zheng HS, Cheng TM, Lin Y, et al. Ultrastructural changes in pulmonary microvascular damage in rats inflicted with burn, blast and combined burn-blast injury[J]. Chin J Plast Surg Burns, 1995, 11(5): 425-429.[鄭懷思, 程天民, 林遠(yuǎn), 等. 燒傷、沖擊傷和燒沖復(fù)合傷大鼠肺微血管超微結(jié)構(gòu)病變[J].中華整形外科雜志, 1995, 11(5): 425-429.]
[21] Ritenour AE, Baskin TW. Primary blast injury: Update on diagnosis and treatment[J]. Crit Care Med, 2008, 36(Suppl 7): S311-S317.
[22] Enkhbaatar P, Wang J, Saunders F, et al. Mechanistic aspects of inducible nitric oxide synthase-induced lung injury in burn trauma[J]. Burns, 2011, 37(4): 638-645.
[23] Garner J, Brett SJ. Mechanisms of injury by explosive devices[J]. Anesthesiol Clin, 2007, 25(1): 147-160.
[24] Avidan V, Hersch M, Armon Y, et al. Blast lung injury: Clinical manifestations, treatment and outcome[J]. Am J Surg, 2005, 190(6): 927-931.
[25] Leibovici D, Gofrit ON, Shapira SC. Eardrum perforation in explosion survivors: is it a marker of pulmonary blast injury[J]? Ann Emerg Med, 1999, 34(2): 168-172.
[26] Wightman JM, Gladish SL. Explosions and blast injuries[J]. Ann Emerg Med, 2001, 37(6): 664-678.
[27] Wang ZG. Primary blast lung injury[J]. Chin J Lung Dis (Electron Edition), 2010, 3(4): 1-3. [王正國(guó). 原發(fā)肺沖擊傷[J]. 中華肺部疾病雜志(電子版), 2010, 3(4): 1-3.]
[28] Lavery GG, Lowry KG. Management of blast injuries and shock lung[J]. Curr Opin Anaesthesiol, 2004, 17(2): 151-157.
[29] Elsayed NM, Gorbunov NV. Pulmonary biochemical and histological alterations after repeated low-level blast overpressure exposures[J]. Toxicol Sci, 2007, 95(1): 289-296.
[30] Argyros GJ. Management of primary blast injury[J]. Toxicology, 1997, 12(1): 105-115.
[31] Chai JK, Sheng ZY, Lu JY, et al. Clinical characteristics and treatment of combined burn-blast injury[J]. Chin J Traumatol, 2007, 23(1): 57-61. [柴家科, 盛志勇, 陸江陽(yáng), 等. 成批燒沖復(fù)合傷患者的臨床救治[J]. 中華創(chuàng)傷雜志, 2007, 23(1): 57-61.]
[32] Qu JF, Zheng HE, Lin Y, et al. Roles of endothelin and nitric oxide in pulmonary tissue damage after combined burn-blast injury[J]. Acta Acad Med Militaris Tertiae, 2003, 25(115): 1361-1364. [屈紀(jì)富, 鄭懷恩, 林遠(yuǎn), 等. 內(nèi)皮素和一氧化氮在燒沖復(fù)合傷肺損傷中的作用[J]. 第三軍醫(yī)大學(xué)學(xué)報(bào), 2003, 25(115): 1361-1364.]
[33] Cai JH, Chai JK, Shen CA, et al. Early changes in serum neutrophil elastase in rats with burn, blast injury or combined burn-blast injury and its significance[J]. National Med J China, 2010, 90(24): 1707-1710. [蔡建華, 柴家科, 申傳安, 等. 燒傷、沖擊傷及燒沖復(fù)合傷后大鼠早期血清中性粒細(xì)胞彈性蛋白酶的變化及意義[J]. 中華醫(yī)學(xué)雜志, 2010, 90(24): 1707-1710.]
[34] Tsokos M, Paulsen F, Petri S. Histologic, immunohistochemical, and ultrastructural findings in human blast lung injury[J]. Am J Respir Crit Care Med, 2003, 168(5): 549-555.
[35] Chavko M, Prusaczyk WK, McCarron RM. Lung injury and recovery after exposure to blast overpressure[J]. J Trauma, 2006, 61(4): 933-942.
[36] Zeerleder S, Hack CE, Wuillemin WA. Disseminated intravascular coagulation in sepsis[J]. Chest, 2005, 128(4): 2864-2875.
[37] Jin RB, Zhu PF, Wang ZG, et al. Early changes of pulmonary intercellular adhesion molecule 1 expression and its significance in burn blast combined injury[J]. Chin J Traumatol, 1997, 13(5): 281-283. [金榕兵, 朱佩芳, 王正國(guó), 等. 燒沖復(fù)合傷早期細(xì)胞間粘附分子-1的表達(dá)變化及意義[J]. 中華創(chuàng)傷雜志, 1997, 13(5): 281-283.]
[38] Elsayed NM, Gorbunov NV, Kagan VE. A proposed biochemical mechanism for blast overpressure induced hemorrhagic injury[J]. Toxicology, 1997, 121(1): 81-90.
[39] Lang JD, McArdle PJ, O'Reilly PJ, et al. Oxidant-antioxidant balance in acute lung injury[J]. Chest, 2002, 122(Suppl 6): 314S-320S.
[40] Zhou JH, Zhu PF, Liu HL, et al. PAM and PMN respiratory burst function and circulating endothelial cell changes after burn-blast combined injury in rats[J]. Acta Acad Med Militaris Tertiae, 1994, 16(1): 61-62. [周繼紅, 朱佩芳, 劉懷林, 等. 大鼠燒沖復(fù)合傷后PAM和PMN呼吸爆發(fā)功能及循環(huán)內(nèi)皮細(xì)胞變化[J].第三軍醫(yī)大學(xué)學(xué)報(bào), 1994, 16(1): 61-62.]
[41] Clerch LB, Massaro D. Tolerance of rats to hyperoxia. Lung antioxidant enzyme gene expression[J]. J Clin Invest, 1993, 91(2): 499-508.
[42] Kahn SA, Beers RJ, Lentz CW. Resuscitation after severe burn injury using high-dose ascorbic acid: a retrospective review[J]. J Burn Care Res, 2011, 32(1): 110-117.
[43] Chavko M, Prusaczyk WK, McCarron RM. Protection against blast-induced mortality in rats by hemin[J]. J Trauma, 2008, 65(5): 1140-1145.
[44] Liener UC, Knoferl MW, Strater J, et al. Induction of apoptpsis following blunt chest trauma[J]. Shock, 2003, 20(6): 511-516.
[45] Seitz DH, Perl M, Mangold S, et al. Pulmonary contusion induces alveolar type 2 epithelial cell apoptosis: role of alveolar macrophages and neutrophils[J]. Shock, 2008, 30(5): 537-544.
[46] Avidan V, Hersch M, Armon Y, et al: Blast lung injury: Clinical manifestations, treatment and outcome[J]. Am J Surg, 2005, 190(6): 927-931.
[47] Sorkine P, Szold O, Kluger Y, et al. Permissive hypercapnea ventilation in patients with severe pulmonary blast injury[J]. J Trauma, 1998, 45(1): 35-38.
[48] Stein M, Hirshberg A. Medical consequences of terrorism: the conventional weapon threat[J]. Surg Clin North Am, 1999, 79(6): 1537-1552.
[49] Halpern P, Tsai MC, Arnold JL, et al. Mass-casualty, terrorist bombings: implications for emergency department and hospital emergency response[J]. Prehospital Disaster Med, 2003, 18(3): 235-241.
[50] Ho AM, Ling E. Systemic air embolism after lung trauma[J]. Anesthesiology, 1999, 90(2): 564-575.
[51] Sun SG, Wang LX, Sun JZ, et al. Burn-blast combined injury clinical characteristics and treatment[J]. Tianjin Med J, 2009, 37(4): 323-324. [孫曙光, 王良喜, 孫建忠, 等. 燒沖復(fù)合傷臨床特征和救治[J]. 天津醫(yī)學(xué), 2009, 37(4): 323-324.]
Research progression of lung injury after burn-blast combined injury
HU Quan, CHAI Jia-ke, YANG Hong-ming
Burns Institute, First Affiliated Hospital of General Hospital of PLA, Beijing 100048, China
*
, E-mail: cjk304@126.com
As a result of military conflict, terrorist attacks, industrial and traffic accidents, the incidence of burn-blast combined injury would be escalating. The burn-blast combined injury was a major clinical problem accompanied by multiple complications and high mortality. The lungs were the most severely injured organ in burn-blast combined injury. Dysfunction of ventilation and gas exchange produced by lung damage could affect oxygen supply to organs and systemic tissues, and is one of the pathophysiological changes resulting in shock and other complications. Previous research has indicated that most of alveolar walls were ruptured, capillaries ruptured, and pulmonary capillary endothelial cells were damaged in the lungs after burn-blast combined injury, and they were followed by pulmonary edema and hemorrhage followed by disorders in ventilation and gas exchange, ending in ischemia and hypoxia of systemic organs. So the treatment of lung injury is the major measure for the treatment of burn-blast combined injury. The pathogenesis and treatment of lung injury in burn-blast combined injury are briefly summarized in this article.
burns; high-energy shock waves; lung injury
R644;R642
A
0577-7402(2013)05-0428-05
2012-11-08;
2013-03-20)
(責(zé)任編輯:胡全兵)
全軍醫(yī)院重大高新技術(shù)項(xiàng)目(2010gxjs095);首都醫(yī)學(xué)發(fā)展科研基金資助項(xiàng)目(2009-2040)
100048 北京 解放軍總醫(yī)院第一附屬醫(yī)院全軍燒傷研究所(胡泉、柴家科、楊紅明)
柴家科,E-mail:cjk304@126.com
This work was supported by Military Hospital Clinically Significant High Technology Project (2010gxjs095), and Capital Medical Development Scientific Research Fund (2009-2040)