趙畢剛
摘 要:介紹并對(duì)比了用于鋯石等副礦物測(cè)試的離子探針、激光探針、電子探針、質(zhì)子探針等幾種微區(qū)原位測(cè)試技術(shù)各自的特點(diǎn)。鋯石U-Pb 定年實(shí)現(xiàn)了對(duì)同一鋯石顆粒內(nèi)部不同成因的鋯石域進(jìn)行原位年齡的分析,給出了有關(guān)寄主巖石的源巖、地質(zhì)演化歷史等重要信息,為地質(zhì)過程的精細(xì)年齡框架的建立提供了有效的途徑。鋯石微量元素、同位素特征是譯解巖石來源和成因的指示器。鋯石Hf 同位素已成功地用于地球早期歷史、巖漿來源、殼幔相互作用、區(qū)域大陸地殼增長的研究等;鋯石氧同位素組成能有效地約束殼幔相互作用和示蹤巖漿來源等。
關(guān)鍵詞:鋯石;年代學(xué);地球化學(xué)特征;地質(zhì)應(yīng)用
隨著能夠顯示礦物內(nèi)部復(fù)雜化學(xué)分區(qū)的成像技術(shù)和高分辨率的微區(qū)原位測(cè)試技術(shù)的發(fā)展和廣泛應(yīng)用,研究顆粒鋯石等副礦物微區(qū)的化學(xué)成分、年齡、同位素組成及其地質(zhì)應(yīng)用等已成為國際地質(zhì)學(xué)界研究的熱點(diǎn)[1 ] 。鋯石U2Pb 法是目前應(yīng)用最廣泛的同位素地質(zhì)年代學(xué)方法,鋯石的化學(xué)成分、Hf 和O 同位素組成廣泛應(yīng)用于巖石成因、殼幔相互作用、區(qū)域地殼演化的研究等,對(duì)地球上古老鋯石的化學(xué)成分和同位素的研究是追朔地球早期歷史的有效工具。筆者著重綜述鋯石的化學(xué)成分、同位素組成特征及其在地質(zhì)學(xué)中的應(yīng)用。
1 微區(qū)原位測(cè)試技術(shù)
鋯石等副礦物在地質(zhì)學(xué)中的廣泛應(yīng)用與近年來原位分析測(cè)試技術(shù)的快速發(fā)展密不可分。代寫論文目前已廣泛應(yīng)用的微區(qū)原位測(cè)試技術(shù)主要有離子探針、激光探針和電子探針等。
1. 1 離子探針
離子探針( sensitive high resolution ion micro-probe ,簡(jiǎn)稱SHRIMP) 可用于礦物稀土元素、同位素的微區(qū)原位測(cè)試。在目前所有的微區(qū)原位測(cè)試技術(shù)中,SHRIMP 的靈敏度、空間分辨率最高(對(duì)U 、Th 含量較高的鋯石測(cè)年,束斑直徑可達(dá)到8μm) ,且對(duì)樣品破壞?。ㄊ咧睆?0~50μm ,剝蝕深度<5μm) [ 2-3 ] ,是最先進(jìn)、精確度最高的微區(qū)原位測(cè)年方法。其不足之處是儀器成本高,測(cè)試費(fèi)用昂貴,測(cè)試時(shí)間較長(每測(cè)點(diǎn)約需20 min) 。
2000 年,Cameca NanoSIMS 50 二次離子質(zhì)譜開始用于對(duì)顆粒大小為1~2μm 的副礦物進(jìn)行U-Th-Pb 年代學(xué)研究。代寫畢業(yè)論文 NanoSIMS 對(duì)粒度極細(xì)小的副礦物進(jìn)行定年要以降低精度為代價(jià),且用于U-Th-Pb 定年還沒有進(jìn)行試驗(yàn),還未完全估算出其準(zhǔn)確度和分析精度,有可能在西澳大利亞大學(xué)獲得初步的成功。
1. 2 激光探針
激光剝蝕微探針2感應(yīng)耦合等離子體質(zhì)譜儀(la-ser ablation micro2probe2inductively coupled plas-ma mass spect romet ry ,簡(jiǎn)稱LAM2ICPMS) ,即激光探針技術(shù)可實(shí)現(xiàn)對(duì)固體樣品微區(qū)點(diǎn)常量元素、微量元素和同位素成分的原位測(cè)定[ 5 ] 。近年研制成功的多接收等離子質(zhì)譜(MC-ICPMS) 可同時(shí)測(cè)定同位素比值,該儀器現(xiàn)今已經(jīng)成為Hf 同位素測(cè)定的常規(guī)儀器[6 ] 。近年來激光探針技術(shù)在原位測(cè)定含U 和含Th 副礦物的U-Pb 、Pb-Pb 年齡或Th-Pb 年齡方面進(jìn)展極快,在一定的條件下可獲得與SHRIMP 技術(shù)相媲美的準(zhǔn)確度和精確度,且經(jīng)濟(jì)、快速(每個(gè)測(cè)點(diǎn)費(fèi)時(shí)< 4 min ,可以直接在電子探針片內(nèi)進(jìn)行分析[5 ,7-8 ] ) ;但與SHRIMP 相比,激光探針要求樣品數(shù)量較大,對(duì)樣品破壞大(分析束斑大小一般為30~60μm ,剝蝕深度為10~20μm) ,其空間分辨率和分析精度一般低于SIMS、SHRIMP[ 1 ,9210 ] 。
2 鋯石U-Th-Pb 同位素年代學(xué)
2. 1 鋯石U-Th-Pb 同位素體系特征及定年進(jìn)展
由于鋯石具有物理、化學(xué)性質(zhì)穩(wěn)定,普通鉛含量低,富含U 、Th[ w (U) 、w ( Th) 可高達(dá)1 %以上] ,離子擴(kuò)散速率很低[17 ] ,封閉溫度高等特點(diǎn),因此鋯石已成為U-Pb 法定年的最理想對(duì)象 。
雖然鋯石通常能較好地保持同位素體系的封閉,但在某些變質(zhì)作用或無明顯地質(zhì)作用過程中亦可能丟失放射性成因鉛,使得其t (206 Pb/ 238 U) 和t (207 Pb/ 235 U) 兩組年齡不一致。造成鋯石中鉛丟失的一個(gè)最主要原因是鋯石的蛻晶化作用;此外,部分重結(jié)晶作用也是導(dǎo)致鋯石年齡不一致的又一原因[18-19 ] 。
近年來,鋯石年代學(xué)研究實(shí)現(xiàn)了對(duì)同一鋯石顆粒內(nèi)部不同成因的鋯石域進(jìn)行微區(qū)原位年齡分析,提供了礦物內(nèi)部不同區(qū)域的形成時(shí)間,使人們能夠獲得一致的、清楚的、容易解釋的地質(zhì)年齡,目前已經(jīng)能夠?qū)δ切┯涗浽阡喪瘍?nèi)部的巖漿結(jié)晶作用、變質(zhì)作用、熱液交代和退變質(zhì)作用等多期地質(zhì)事件進(jìn)行年齡測(cè)定,從而建立起地質(zhì)過程的精細(xì)年齡框架。
2. 2 鋯石微區(qū)定年的示蹤作用
火成巖中耐熔的繼承鋯石可以保持U-Pb 同位素體系和稀土元素(REE) 的封閉,從而包含了關(guān)于深部地殼和花崗巖源區(qū)的重要信息[22-23 ] ,可用于花崗巖物源和基底組成的示蹤。代寫職稱論文筆者在研究江西九嶺花崗巖中的鋯石時(shí),發(fā)現(xiàn)部分鋯石邊部發(fā)育典型的巖漿成因的環(huán)帶,其中心具有熔融殘余核(圖1) 。SHRIMP 分析表明,這2 部分的年齡組成有明顯的差別,環(huán)帶部分的年齡約為830 Ma ,而核部的年齡集中在1 400~1 900 Ma ,核部年齡可能代表花崗巖源巖的鋯石組成年齡。
3、 結(jié)語
鋯石的結(jié)構(gòu)和成分記錄了巖石所經(jīng)歷的復(fù)雜地質(zhì)過程。對(duì)內(nèi)部結(jié)構(gòu)復(fù)雜的鋯石進(jìn)行同位素和化學(xué)成分的微區(qū)原位分析,必須在對(duì)其內(nèi)部結(jié)構(gòu)進(jìn)行詳細(xì)研究的基礎(chǔ)上進(jìn)行。
由于幔源鋯石和殼源巖漿鋯石的化學(xué)組成存在較明顯的區(qū)別,因而容易區(qū)分,但利用殼源巖漿鋯石的微量元素、稀土元素特征識(shí)別其寄主巖石的類型還有待于成因明確的鋯石微區(qū)原位測(cè)試數(shù)據(jù)的積累,因?yàn)槟壳坝糜诮ⅰ芭袆e樹”的數(shù)據(jù)比較有限,且有些數(shù)據(jù)的來源不太明確。此外,在原始成因產(chǎn)狀不清楚的情況下(如碎屑鋯石) ,變質(zhì)鋯石和巖漿鋯石的區(qū)分除利用w ( Th) / w (U) 比值外,能否通過其他的微量元素、稀土元素的比值或圖解來有效區(qū)分,這方面的研究目前報(bào)道較少。