国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

青藏高原東北緣巖石圈厚度與上地幔各向異性

2013-09-22 06:43:42張洪雙滕吉文田小波張中杰
地球物理學(xué)報(bào) 2013年2期
關(guān)鍵詞:巖石圈昆侖塊體

張洪雙,滕吉文,田小波,張中杰,高 銳

1 中國地質(zhì)科學(xué)院地質(zhì)研究所,北京 100037

2 中國科學(xué)院地質(zhì)與地球物理研究所,北京 100029

1 引 言

作為青藏高原與華北克拉通的接壤地帶,青藏高原東北緣被三條大型左旋走滑斷裂包圍:南側(cè)是昆侖山斷裂、西北側(cè)是阿爾金斷裂,東北側(cè)是海原斷裂.相鄰的地體包括:南側(cè)的松潘—甘孜地體,西北側(cè)的塔里木盆地、北側(cè)的阿拉善地塊和東側(cè)的鄂爾多斯地塊(如圖1所示).自印度—?dú)W亞板塊碰撞以來,隨著青藏高原持續(xù)向北東方向發(fā)展[1-2],使得距匯聚前緣約一千公里的東北緣發(fā)生了中-晚新生代以來的地表抬升和造山運(yùn)動(dòng)[3].雖然東北緣與碰撞有關(guān)的斷層、沉積地層和抬升冷卻所對應(yīng)的年齡分布較寬(從碰撞開始至今),但多數(shù)研究都表明昆侖斷裂以北大部分的新生代構(gòu)造都晚于11Ma[3],也有研究認(rèn)為東北緣的隆升主要發(fā)生在上新世-第四紀(jì)[2].例如:近10Ma以來,昆侖斷裂與海原斷裂之間沿北東方向(~N30°E)至少縮短了150km[3];阿爾金斷裂13~16Ma以來再度活躍[4];昆侖山斷裂近7Ma以來發(fā)生了約75km的走滑位移[5];海原斷裂也于晚中新世開始變得活躍[6-7].祁連山逆沖帶大約9Ma以來迅速抬升[8].因此,可以認(rèn)為青藏高原東北緣尚處于地殼縮短和巖石圈變形的早期階段,研究東北緣的巖石圈-軟流圈邊界(LAB)形態(tài)和上地幔變形樣式,可為青藏高原隆升和側(cè)向生長研究提供邊界約束,并深化對陸-陸碰撞遠(yuǎn)程效應(yīng)和陸內(nèi)造山過程、機(jī)制的理解.

圖1 青藏高原東北緣地質(zhì)構(gòu)造和臺(tái)站分布圖KL-昆侖地塊;WQL-西秦嶺造山帶;BNS-班公-怒江縫合帶;JS-金沙江縫合帶;AKMS-阿尼瑪卿—昆侖縫合帶;SQS-南祁連縫合帶.Fig.1 Regional tectonic map of the NE Tibetan plateau and location of stations KL-Kunlun block;WQL-West Qinling orogen;BNS-Bangong-Nujiang suture;JS-Jinshajiang suture;AKMS-Ayimaqin-Kunlun-Mutztagh suture;SQS-South Qilian suture.

隨著地球物理觀測水平的提高,近20年來,在青藏高原東北緣地區(qū)已開展了多期次的以揭示殼、幔結(jié)構(gòu)為目標(biāo)的地球物理探測,然而,目前關(guān)于其巖石圈結(jié)構(gòu)和地幔變形樣式的認(rèn)識(shí)仍存在較大的爭議.體波和面波層析成像研究顯示昆侖斷裂以北柴達(dá)木盆地和祁連山推覆帶下方存在深達(dá)200km的高速異常,可能對應(yīng)著較穩(wěn)定的巖石圈地幔[9-13];而接收函數(shù)圖像卻顯示東北緣地區(qū)(包括柴達(dá)木盆地)下方的巖石圈并不厚(~120km),且正自昆侖斷裂帶向南俯沖到了松潘—甘孜地體巖石圈之下[14-17],這與層析成像結(jié)果顯示了完全不同的巖石圈結(jié)構(gòu)和地幔變形樣式;另外,高銳等[18]通過對深地震反射剖面的分析認(rèn)為青藏高原東北緣巖石圈變形以縮短變形為主要機(jī)制;Tian等[19]通過對研究區(qū)內(nèi)的接收函數(shù)分析認(rèn)為高原東北緣地殼縮短主要發(fā)生在上地殼部分;常利軍等[20]和王瓊等[21]分別利用剪切波分裂方法得到了青藏高原東北緣的上地幔各向異性圖像,其中前者結(jié)果顯示各向異性快波方向基本呈NW-SE方向,后者結(jié)果還揭示出高原東北緣上地幔各向異性存在明顯的塊體差異,既受到古構(gòu)造的影響,又受控于現(xiàn)今的區(qū)域構(gòu)造應(yīng)力場.

可見,青藏高原東北緣的巖石圈形態(tài)和上地幔變形方式,目前仍有待進(jìn)一步研究和完善.本研究利用青海和甘肅區(qū)域地震臺(tái)網(wǎng)的寬頻帶波形資料,得到了青藏高原東北緣的三維巖石圈厚度(即巖石圈-軟流圈邊界(LAB)深度)圖像和上地幔各向異性特征,為研究該地區(qū)巖石圈和地幔形變樣式提供了深部地球物理證據(jù)和約束.

2 資料與方法

2.1 研究資料

本研究利用了青海地震臺(tái)網(wǎng)(25個(gè)臺(tái)站)和甘肅地震臺(tái)網(wǎng)(44個(gè)臺(tái)站)2007—2009年記錄的遠(yuǎn)震波形資料,臺(tái)站主要分布于青藏高原東北緣的柴達(dá)木—昆侖地塊和祁連地塊,部分位于松潘—甘孜地塊北緣、阿拉善和鄂爾多斯地塊南緣、西秦嶺造山帶(如圖1所示).在巖石圈厚度研究中,我們挑選震中距范圍60°~85°,震級(jí)MS>5.8,S波初至清晰的遠(yuǎn)震S波波形提取S波接收函數(shù).在上地幔各向異性研究中,選擇震中距范圍85°~130°,震級(jí)MS>6.0,SKS震相明顯的遠(yuǎn)震SKS波形資料.在這個(gè)震中距范圍內(nèi)的SKS波是近似垂直入射的,能量較強(qiáng),有很高的切向分辨率.地震事件的震中分布如圖2所示.

2.2 S波接收函數(shù)方法

圖2 研究中所使用的地震事件的震中分布圖實(shí)心圓圈為用于提取S波接收函數(shù)的地震事件,空心圓圈為用于SKS分裂分析的地震事件.Fig.2 Spatial distribution of teleseismic events used in the study Black-filled circles represent events used to calculate S receiver functions,and the white-filled circles represent events used to analysis the SKS.

P波接收函數(shù)方法已廣泛應(yīng)用于殼、幔結(jié)構(gòu)和介質(zhì)屬性的研究,但由于P波接收函數(shù)中來自LAB的Ps轉(zhuǎn)換波與來自Moho的多次波到達(dá)時(shí)間相當(dāng),因此不適合用于巖石圈結(jié)構(gòu)的研究;而Sp轉(zhuǎn)換波比S波傳播得快,先于S波到達(dá)地震臺(tái)站,多次波均滯后于S波到達(dá),且Sp震相不會(huì)因傳播路徑上的介質(zhì)各向異性而發(fā)生分裂,因此,利用Sp震相(即S波接收函數(shù))研究巖石圈結(jié)構(gòu)受其他震相干擾相對較小[22-25],可以得到更為可靠的、高分辨的巖石圈厚度信息.

為保證數(shù)據(jù)的可靠性,研究中我們手動(dòng)截取S波初至清晰、延續(xù)時(shí)間小于15s的高信噪比S波波形記錄用于計(jì)算S波接收函數(shù);提取S波接收函數(shù)包括坐標(biāo)旋轉(zhuǎn)和反褶積計(jì)算兩個(gè)步驟.坐標(biāo)旋轉(zhuǎn)的目的是分離直達(dá)S波與轉(zhuǎn)換Sp波的能量,首先,將三分量地震記錄由地理坐標(biāo)系(Z-N-E)旋轉(zhuǎn)到臺(tái)站坐標(biāo)系(Z-R-T)下;由于遠(yuǎn)震S波中的Sp轉(zhuǎn)換波的入射角度可達(dá)45°[24],因此還需要將Z-R-T 分量再次旋轉(zhuǎn)到射線坐標(biāo)系(P-SV-SH)以充分分離S波與Sp波.二次坐標(biāo)旋轉(zhuǎn)的入射角度選擇以接收函數(shù)中的S波能量(“0”時(shí)刻振幅)最小為準(zhǔn)則[22-23].如圖3b所示,當(dāng)入射角度為20°時(shí),S波能量達(dá)極小,且Moho和LAB的轉(zhuǎn)換波振幅均達(dá)極大,因此,可以選擇20°為最優(yōu)射線入射角度.由于Sp震相主要出現(xiàn)在P分量上,利用SV分量對P分量做反褶積便可得到S波接收函數(shù);Sp震相與Ps震相的極性相反,且Sp波較S波傳播得快,為了使S波接收函數(shù)與傳統(tǒng)P波接收函數(shù)看起來相似,需要將反褶積得到的時(shí)間序列的時(shí)間軸和振幅極性反向.在提取S波接收函數(shù)時(shí),進(jìn)行了0.05~0.15Hz的帶通濾波以提高信噪比.

圖3 確定射線入射角度的示例(a)三分量地震波形,圖中直線標(biāo)出位置為S波初至?xí)r刻;(b)利用不同入射角計(jì)算的S波接收函數(shù),箭頭所指為理論入射角度,圓圈所示為所選最優(yōu)入射角度.Fig.3 Determination of optimal incidence angle by rotation of Rand Zcomponents into Pand SVcomponents for various incidence angles.(a)The Z-N-E component waveforms.The vertical line demarks rise of S wave onset.(b)The S receiver functions computed using different estimated angles of incidence.The arrow indicates the theoretical angle of incidence,and the circle marks the optimum angle of incidence according to our criteria.

2.3 SKS偏振分析方法

SKS波從震源出發(fā)時(shí)為S波,經(jīng)過液態(tài)的外核時(shí)轉(zhuǎn)換為P波,當(dāng)再次通過核-幔邊界時(shí)又由P波轉(zhuǎn)換為只有徑向偏振的S波,因此,在各向同性介質(zhì)中,臺(tái)站接收到的SKS波只有徑向分量(SV波),沒有切向分量(SH波).如果從核幔邊界到接收臺(tái)站存在各向異性介質(zhì),SKS波將分裂成一對偏振方向正交的快、慢波,質(zhì)點(diǎn)運(yùn)動(dòng)由原來的線性偏振變?yōu)闄E圓偏振.一般用參數(shù)對(φ,δt)描述SKS分裂特征,其中φ表示快波偏振方向,與介質(zhì)各向異性的快軸方向一致,δt表示快、慢波的到時(shí)差,由各向異性強(qiáng)度和層厚度決定.因此,通過對SKS波的偏振分析可以直觀的了解接收區(qū)下方核-幔邊界到臺(tái)站間介質(zhì)的各向異性特征.

本研究利用Tian等[26]提出的全局最小切向能量方法(GM)分析不同方位的單個(gè)事件,確定各向異性參數(shù)及其誤差,誤差估計(jì)采用95%的置信度[27],然后選擇測量的偏振角度誤差<20°,延遲時(shí)間誤差<δt/2的事件,并以此為權(quán)系數(shù)[28],分別對多個(gè)事件的φ和δt進(jìn)行加權(quán)疊加,得到臺(tái)站下方平均的各向異性特征.

構(gòu)造環(huán)境或磁場擾動(dòng)可能會(huì)造成野外地震臺(tái)站擺的水平分離偏離地理的北和東方向,使得利用傳統(tǒng)的最小切向能量方法(SC)[29]、相關(guān)系數(shù)方法(RC)[30]和特征值方法(EV)[29]得到的SKS分裂參數(shù)不一致(如圖4所示),難以確定測量結(jié)果的可靠性.GM方法考慮了地震擺偏角信息,在傳統(tǒng)的網(wǎng)格搜索過程中加入對地震擺偏角的掃描,從而得到φ-δt-θ域(θ為地震擺偏角校正量,取順時(shí)針方向?yàn)檎┣邢蚰芰孔钚r(shí)所對應(yīng)的φ和δt.這種方法消除了地震擺偏角的影響,能夠得到更為可靠的各向異性參數(shù).

為了突出SKS波的有效信息,對波形數(shù)據(jù)進(jìn)行了頻率為0.03~0.2Hz的帶通濾波.圖4是利用傳統(tǒng)方法對遠(yuǎn)震SKS波(圖4a)進(jìn)行分析的結(jié)果,其中SC方法測量的分裂參數(shù)為φ=84°,δt=0.6s(圖4b),RC和EV方法測量的分裂參數(shù)分別為φ=113°,δt=1.3s(圖4c)和φ=115°,δt=1.35s(圖4d),并且,經(jīng)過各向異性校正后的SKS波不呈線性偏振,說明SKS波沒有得到合理的校正.圖5是本研究中利用GM方法對圖4a的SKS波形進(jìn)行分析的結(jié)果,當(dāng)?shù)卣饠[偏角校正量θ=15°時(shí)(表明地震擺的北分量向西偏轉(zhuǎn)了15°),最小切向能量(MTE)達(dá)全局最小,得到的分裂參數(shù)為φ=100°和δt=1.4s.經(jīng)過擺偏角校正后,SC方法和RC、EV方法的測量結(jié)果(圖6)與GM方法的測量結(jié)果一致,并且經(jīng)過各向異性校正后的SKS波呈線性偏振,證明了GM方法的實(shí)用性.

3 結(jié)果與討論

3.1 巖石圈-軟流圈邊界(LAB)形態(tài)

已有的地震探測研究表明青藏高原東北緣地殼平均厚 度為 60±5km[18-19,31-39],為此,本研究將IASP91模型[40]的 Moho深度修正到60km,并以此作為參考模型來計(jì)算Sp震相的透射點(diǎn)位置和進(jìn)行時(shí)-深轉(zhuǎn)換計(jì)算.圖7顯示了150km深度處Sp震相的透射點(diǎn)位置,基本覆蓋了東北緣各個(gè)塊體,為研究該區(qū)巖石圈厚度提供了數(shù)據(jù)保障.

圖4 利用傳統(tǒng)方法進(jìn)行SKS偏振分析的示例(a)左圖為原始地震記錄的徑向(黑色曲線)和切向(灰色曲線)分量波形,兩條虛線之間為SKS波,右圖為SKS波的質(zhì)點(diǎn)軌跡;(b),(c)和(d)分別為利用最小切向能量方法(SC)、相關(guān)系數(shù)方法(RC)和特征值方法(EV)進(jìn)行SKS偏振分析的結(jié)果,其中左圖為切向能量譜,中間和右圖為經(jīng)各向異性校正后,SKS在徑向(黑色曲線)和切向(灰色曲線)分量上的波形和質(zhì)點(diǎn)運(yùn)動(dòng)軌跡.Fig.4 SKS splitting analysis by SC,RC and EV method(a)shows the original seismograms(left)with the radial(bold line)and the transverse(gray thin line)components as well as the selected time window(vertical dashed line)for the SKS phase analyzed.The right panel shows the initial particle motion.(b),(c)and(d)show splitting parameters calculated by the SC,RC and EV method.The left panel is the contour map of the transverse energy with the cross marking the best-fitting splitting parameters.The middle panel shows the corrected radial(bold line)and transverse (gray thin line)components,and the right panel is the corrected particle motion.

為了提高S波接收函數(shù)的信噪比,我們將研究區(qū)劃分成19個(gè)區(qū)域(圖7),并將透射點(diǎn)位于同一區(qū)域內(nèi)的S波接收函數(shù)進(jìn)行疊加.圖8展示了每個(gè)區(qū)域的疊加S波接收函數(shù)波形,為了方便讀取LAB的深度,我們還將S波接收函數(shù)由時(shí)間域轉(zhuǎn)換到深度域,考慮到地殼和地幔的橫向非均勻性(5%的速度擾動(dòng)),時(shí)-深轉(zhuǎn)換過程可能會(huì)導(dǎo)致±4.0km的誤差,這對于巖石圈尺度的研究是可以接受的.從圖8中可以識(shí)別出兩個(gè)清晰的震相:位于45~65km深度的正震相和120~200km深度的負(fù)震相.其中正震相為來自Moho界面的Sp波,負(fù)震相為來自LAB的Sp波,反映巖石圈的厚度信息.

圖6 利用傳統(tǒng)方法對經(jīng)擺偏角校正后的SKS波做偏振分析的示例(a)左圖為經(jīng)擺偏角校正后的地震記錄的徑向(黑色曲線)和切向(灰色曲線)分量波形,兩條虛線之間為SKS波,右圖為SKS波的質(zhì)點(diǎn)軌跡;(b),(c)和(d)分別為利用最小切向能量方法(SC)、相關(guān)系數(shù)方法(RC)和特征值方法(EV)進(jìn)行SKS偏振分析的結(jié)果,其中左圖為切向能量譜,中間和右圖為經(jīng)各向異性校正后,SKS在徑向(黑色曲線)和切向(灰色曲線)分量上的波形和質(zhì)點(diǎn)運(yùn)動(dòng)軌跡.Fig.6 SKS splitting analysis by SC,RC and EV method(a)shows the seismograms(left)with the radial(bold line)and the transverse(gray thin line)components as well as the selected time window(vertical dashed line)for the SKS phase analyzed.The seismograms are corrected with a 15osensor correction(θ;clockwise)applied to the north and east components.The right panel shows the initial particle motion.(b),(c)and(d)show splitting parameters calculated by the SC,RC and EV method.The left panel is the contour map of the transverse energy with the cross marking the bestfitting splitting parameters.The middle panel shows the corrected radial(bold line)and transverse(gray thin line)components,and the right panel is the corrected particle motion.

圖9 展示了研究區(qū)內(nèi)的巖石圈厚度分布,其中松潘—甘孜地體東北緣和西秦嶺造山帶下方具有較薄的巖石圈,LAB深度為125~135km;昆侖—阿尼瑪卿縫合帶以北地區(qū)的巖石圈厚度存在明顯的橫向變化,其中昆侖和祁連塊體下方大部分區(qū)域巖石圈厚度為145~175km,阿爾金斷裂與祁連山斷裂交匯部位巖石圈厚度約為130~140km,祁連塊體東部與阿拉善地塊銜接的部位巖石圈厚度約為175km;柴達(dá)木盆地北緣造山帶下方巖石圈厚達(dá)175km,盆地南緣造山帶下方巖石圈厚達(dá)190km;鄂爾多斯和阿拉善塊體下方的巖石圈厚度分別為170km和200km.本研究得到的LAB圖像與先前的層析成像研究所得的結(jié)論基本一致[9-13],層析成像研究揭示昆侖—阿尼瑪卿縫合帶以北的東北緣大部分區(qū)域和克拉通下方存在上地幔高速異常,而縫合帶以南的松潘—甘孜地體表現(xiàn)上地幔低速異常.

鄂爾多斯塊體一直被認(rèn)為是華北克拉通的一部分[41],雖然其邊緣(銀川、河套和山西、陜西)裂陷區(qū)發(fā)生了巖石圈的破壞和減薄,但內(nèi)部仍保留著克拉通屬性[42-44],本研究得到的塊體南部較厚的巖石圈圖像支持這一觀點(diǎn).阿拉善塊體的歸宿問題至今未有定論,一部分研究認(rèn)為它是從華北古陸上分離出的一個(gè)小塊體[45-46];也有研究認(rèn)為阿拉善、塔里木和柴達(dá)木塊體是具有統(tǒng)一發(fā)展共性的克拉通—西域板塊[47-49].盡管從現(xiàn)今地震活動(dòng)圖像看,阿拉善塊體與相鄰的鄂爾多斯塊體和塔里木盆地的缺震或少震圖像形成鮮明對照[45],但本研究顯示其巖石圈仍可與剛性和穩(wěn)定的克拉通媲美.作為青藏高原的鄰區(qū),鄂爾多斯和阿拉善剛性塊體對其北東向生長具有重要意義.

昆侖和祁連地塊是青藏高原東北緣地殼縮短變形最強(qiáng)烈的地區(qū),且存在明顯的東、西部差異.地質(zhì)學(xué)研究顯示高原東北緣周邊斷裂系的滑動(dòng)速率自西向東逐漸減小[50];GPS測量的研究區(qū)內(nèi)沿地殼縮短方向(~N30°E)的地表運(yùn)動(dòng)速率自西向東也逐漸變小[51].這些研究均表明西部地殼較東部受到更強(qiáng)的擠壓作用,變形更為強(qiáng)烈,從而導(dǎo)致西部主要發(fā)育一系列的逆沖推覆構(gòu)造(如祁連山逆沖帶),而東部還發(fā)育著一系列的山間盆地(如共和盆地、隴西盆地).從圖9可以看出高原東北緣巖石圈厚度同樣存在橫向變化,總體上看西部較東部厚,表明塊體內(nèi)部的東西變形差異可能是巖石圈尺度的.本研究得到的LAB圖像還顯示,祁連地塊東部與阿拉善地塊接壤的部位巖石圈較其他區(qū)域厚.先前的人工源地震探測揭示出阿拉善地塊向祁連地塊下方俯沖的巖石圈結(jié)構(gòu)[52],筆者推測該區(qū)域較厚的巖石圈可能與阿拉善地塊的俯沖有關(guān).

圖9 青藏高原東北緣LAB深度與上地幔各向異性圖像SKS分離參數(shù)分別來自 McNamara & Owens(1994)[69](棕色條榜)、Wang等(2008)[70](紫色條榜)和本研究結(jié)果(黑色和紅色條榜).Fig.9 Map of the study area showing the depth of the LAB(color coded boxes,see Fig.6)and averaged SKS splitting parameters(bars)Splitting parameters(fast directions and delay times)are from McNamara & Owens(1994)[69](brown bars),Wang et al.(2008)[70](purple bars)and this study(black and red bars for observations north and south of the Kunlun-Ayimaqin suture,respectively).

柴達(dá)木盆地下方巖石圈的變形方式問題一直飽受爭議[2-3,12,53-54].本研究顯示盆地南 緣和北 緣造山帶下方均具有較厚的巖石圈地幔,據(jù)此,我們推測柴達(dá)木盆地可能保留了原本剛性的巖石圈.有研究提出柴達(dá)木盆地和塔里木盆地在漸新世之前同屬一個(gè)塊體,之后由于阿爾金斷裂的左旋走滑運(yùn)動(dòng)而被分開[55].塔里木盆地為一穩(wěn)定的克拉通地塊已被地球物理探測所證實(shí)[12,56-57],作為塔里木盆地的亞塊體,柴達(dá)木盆地在走滑之后可能仍然保持著母塊體的剛性巖石圈性質(zhì),從而對向北挺進(jìn)的青藏高原地幔流起到了阻擋作用[58-60],這便從另一個(gè)角度解釋了為何在藏北巖石圈遭受大規(guī)模破壞[61-64]的背景下,祁連地塊卻保留了較厚的巖石圈.

本研究還顯示,在松潘—甘孜地體北緣和西秦嶺造山帶下方,巖石圈相對較薄,厚度大約為125~135km.這一結(jié)果與Su等[65]由西秦嶺石榴石相橄欖巖包體估計(jì)的巖石圈厚度(120km)相似,同樣,An &Shi[66]由上地幔溫度估算該地區(qū)的巖石圈厚度也僅為130km.緊鄰本研究區(qū)域,Hu等[67]和Zhang等[68]在青藏高原東緣的研究顯示四川盆地西緣具有超薄的巖石圈,他們的結(jié)果分別為100~120km和70~80km.這些研究均支持我們的S波接收函數(shù)結(jié)果.另外,深地震探測發(fā)現(xiàn)松潘—甘孜地塊和西秦嶺造山帶同屬統(tǒng)一的穩(wěn)定的大陸地塊[35],本研究得到的該區(qū)相似的巖石圈結(jié)構(gòu)支持這一觀點(diǎn).

3.2 上地幔各向異性與變形樣式

本研究利用GM方法得到了青藏高原東北緣的SKS分裂圖像(見表1,圖9中黑色和紅色條榜),從整體上看,該地區(qū)各向異性快軸方向(φ)為NWSE方向,快、慢波延遲時(shí)間(δt)變化較大,范圍為0.8~1.9s.先前,常利軍等[20]和王瓊等[21]曾利用甘肅區(qū)域臺(tái)網(wǎng)資料分析了東北緣的上地幔各向異性特征,其結(jié)果在快波方向上與本研究結(jié)果基本一致.王瓊等[21]在研究區(qū)東部的密集臺(tái)站資料顯示隴中盆地及其周緣上地幔各向異性快波偏振方向存在一定離散性,由于本研究中該區(qū)域臺(tái)站覆蓋較稀疏,沒有觀測到這一現(xiàn)象.

為了對比青藏高原內(nèi)部與東北緣的地幔變形樣式,我們引用了McNamara &Owens[69](圖9中棕色條榜)和 Wang等[70](圖9中紫色條榜)的研究結(jié)果.可以看出,昆侖斷裂帶兩側(cè)的SKS快波方向存在明顯差異,其南側(cè)自高原內(nèi)部呈順時(shí)針旋轉(zhuǎn),而北側(cè)基本沿NW-SE方向,表明高原內(nèi)部與東北緣在地幔變形上存在不一致,昆侖斷裂帶在上地幔變形中起到了調(diào)節(jié)作用.

3.3 地幔蓋層變形討論

青藏高原東北緣的地幔蓋層變形樣式是地學(xué)研究者關(guān)注的焦點(diǎn)之一,筆者通過對本研究得到的巖石圈厚度和上地幔各向異性的綜合分析得到了一些新的認(rèn)識(shí).

表1 SKS分裂參數(shù),σφ和σδt分別為φ和δt的測量誤差Table 1 SKS splitting parameters.σφandσδt are measurement errors forφandδt

從圖10可以看出,在昆侖—阿尼瑪卿縫合帶以北的昆侖和祁連地塊,SKS分裂延遲時(shí)間與巖石圈厚度成正比關(guān)系,比例系數(shù)為0.007,即100km厚的各向異性層將造成0.7s的快、慢波延遲時(shí)間,表明在這些地區(qū)測量的各向異性主要來自于地幔蓋層的變形.當(dāng)介質(zhì)各向異性程度達(dá)到4%時(shí),100km厚的各向異性層將產(chǎn)生1s的快、慢波延遲時(shí)間[71],因此本研究結(jié)果顯示青藏高原東北緣的地幔蓋層各向異性程度不足4%.

圖10 SKS快、慢波延遲時(shí)間與巖石圈厚度的關(guān)系黑色和藍(lán)色填充的紫色圓圈對應(yīng)圖9中昆侖—阿尼瑪卿縫合帶以北的結(jié)果;紅色圓圈對應(yīng)圖9中昆侖—阿尼瑪卿縫合帶以南的結(jié)果;圖中虛線是對縫合帶以北結(jié)果的擬合.Fig.10 Relationship between the splitting delay times and lithospheric thickness in the study area The dashed line is fitted to observations north of the Kunlun-Ayimaqin suture from this study (black circles),and from Wang et al.(2008;purple circles;blue fill).

上地幔各向異性被認(rèn)為是由橄欖石等礦物在應(yīng)力作用下的晶格優(yōu)勢排列導(dǎo)致的[72-74],通過地震波測量的快波方向與地幔形變方向一致[75].本研究通過SKS分裂測量的青藏高原東北緣地震波快波方向?yàn)镹W-SE向,表明昆侖—阿尼瑪卿縫合帶以北地區(qū)的地幔蓋層變形方向?yàn)镹W-SE向,與印度—?dú)W亞板塊匯聚所產(chǎn)生的NE-SW向的應(yīng)力方向垂直,說明該區(qū)地幔蓋層發(fā)生了伸展變形,由于該地區(qū)上地幔各向異性程度不足4%,可以認(rèn)為東北緣地幔蓋層還處于變形的初級(jí)階段.

與昆侖—阿尼瑪卿縫合帶以北不同,在松潘—甘孜地體北緣和西秦嶺造山帶,SKS分裂延遲時(shí)間變化相當(dāng)劇烈,并且與巖石圈厚度不存在明顯的相關(guān)性,這種隨機(jī)關(guān)系表明這里的各向異性不可能只來源于地幔蓋層的變形,而更應(yīng)該來源于軟流圈或更深部地幔物質(zhì)的流動(dòng).Hu等[68]通過對青藏高原東緣巖石圈厚度的研究認(rèn)為,在印度—?dú)W亞板塊碰撞作用的驅(qū)使下,青藏高原軟流圈物質(zhì)持續(xù)向東流動(dòng)[38,76],當(dāng)遇到堅(jiān)硬的四川盆地巖石圈[77-79]的阻擋后,一部分物質(zhì)流轉(zhuǎn)向了高原東南緣[60,67,80-81],同時(shí),還有部分物質(zhì)流沿四川盆地西緣向北流動(dòng)[67];并且,Huang等[82]認(rèn)為秦嶺造山帶下方的強(qiáng)地幔各向異性(SKS分裂時(shí)間≥1.80s)是由來自青藏高原的地幔流導(dǎo)致的.本研究中松潘—甘孜地體北緣和西秦嶺造山帶是這支向北流動(dòng)的物質(zhì)流的必經(jīng)之地,該區(qū)較薄的巖石圈和強(qiáng)地幔各向異性特征為這一模型提供了新的證據(jù).

4 結(jié) 論

本研究中,利用青海和甘肅區(qū)域地震臺(tái)網(wǎng)的寬頻帶遠(yuǎn)震資料,采用S波接收函數(shù)方法和SKS波分裂分析方法,獲取了青藏高原東北緣的巖石圈厚度和上地幔各向異性圖像,結(jié)合該區(qū)已有的地質(zhì)、地球物理研究成果,主要得到以下幾點(diǎn)認(rèn)識(shí):

(1)昆侖—阿尼瑪卿縫合帶以北的青藏高原東北緣地區(qū)保留了較厚的巖石圈,平均厚度接近160km,并向柴達(dá)木盆地(175~190km)、阿拉善地塊(200km)和鄂爾多斯地塊(170km)下方增厚(圖9);祁連地塊東部與阿拉善地塊接壤部位較厚的巖石圈反映了后者向祁連下方的俯沖.該區(qū)快、慢波延遲時(shí)間與巖石圈厚度的關(guān)系(圖10)表明SKS測量的上地幔各向異性主要來源于地幔蓋層的伸展變形.

(2)昆侖—阿尼瑪卿縫合帶以南的松潘—甘孜地體北緣和西秦嶺造山帶下方的巖石圈較薄,厚度只有125~135km(圖9).SKS快、慢波延遲時(shí)間與巖石圈厚度的關(guān)系(圖10)顯示,這里上地幔各向異性主要來源于軟流圈和其下方地幔的流動(dòng).

(3)結(jié)合本研究結(jié)果和 McNamara & Owens[69]與Wang等[70]的上地幔各向異性圖像,我們發(fā)現(xiàn)昆侖斷裂帶兩側(cè)的SKS快波方向存在較大差異,其南側(cè)的SKS快波方向自高原內(nèi)部發(fā)生順時(shí)針旋轉(zhuǎn),而北側(cè)的東北緣地區(qū)基本呈統(tǒng)一的NW-SE方向,表明斷裂兩側(cè)上地幔變形存在不一致性,這可能是導(dǎo)致昆侖斷裂左旋走滑運(yùn)動(dòng)的機(jī)制之一.

致 謝 中國地震局地球物理研究所鄭秀芬研究員和中國地震局地震預(yù)測研究所石玉濤助理研究員提供了青海和甘肅臺(tái)網(wǎng)的地震資料;評審專家在審閱稿件的過程中提出了不少新穎的建議,在此一并表示衷心感謝.

(References)

[1]England P, Houseman G.Extension during continental convergence,with application to the Tibetan plateau.J.Geophys.Res.,1989,94(B12):17561-17579.

[2]Tapponnier P,Xu Z Q,F(xiàn)rancoise R,et al.Oblique stepwise rise and growth of the Tibet plateau.Science,2001,294(5547):1671-1677,doi:10.1126/science.105978.

[3]Meyer B,Tapponnier P,Bourjot L,et al.Crustal thickening in Gansu-Qinghai,lithospheric mantle subduction,and oblique,strike-slip controlled growth of the Tibet plateau.Geophys.J.Int.,1998,135(1):1-47.

[4]Yue Y J,Liou J G.Two-stage evolution model for the Altyn Tagh fault,China.Geology,1999,27(3):227-230,doi:10.1030/0091-7613.

[5]Fu B H,Awata Y.Displacement and timing of left-lateral faulting in the Kunlun Fault Zone,northern Tibet,inferred from geologic and geomorphic features.J.Asian Earth Sci.,2007,29(2-3):253-265.

[6]Zheng D W,Zhang P Z,Wan J L,et al.Rapid exhumation at~8Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology:Implications for growth of the northeastern Tibetan Plateau margin.Earth Planet.Sci.Lett.,2006,248(1-2):198-208,doi:10.1016/j.epsl.2006.05.023.

[7]Li C Y,Zhang P Z,Yin J H,et al.Late Quaternary leftlateral slip rate of the Haiyuan fault,northeastern margin of the Tibetan Plateau.Tectonics,2009,28(5):TC5010,doi:10.1029/2008TC002302.

[8]Zheng D W,Clark M K,Zhang P Z,et al.Erosion,fault initiation and topographic growth of the North Qilian Shan(Northern Tibetan Plateau).Geosphere,2010,6(6):937-941,doi:10.1130/GES00523.1.

[9]Wittlinger G, Masson F,Poupinet G,et al.Seismic tomography of northern Tibet and Kunlun:Evidence for crustal blocks and mantle velocity contrasts.Earth Planet.Sci.Lett.,1995,139(1-2):263-279.

[10]丁志峰,何正勤,吳建平等.青藏高原地震波三維速度結(jié)構(gòu)的研究.中國地震,2001,17(2):202-209.Ding Z F,He Z Q,Wu J P,et al.Research on the 3-D seismic velocity structures in Qinghai-Xizang plateau.Earthquake Research in China (in Chinese),2001,17(2):202-209.

[11]Huang Z X,Su W,Peng Y J,et al.Rayleigh wave tomography of China and adjacent regions.J.Geophys.Res.,2003,108(B2):2073,doi:10.1029/2001JB001696.

[12]Huang J L,Zhao D P.High-resolution mantle tomography of China and surrounding regions.J.Geophys.Res.,2006,111(B9):B09305,doi:10.1029/2005JB004066.

[13]Chen Y,Badal J, Hu J F.Love and Rayleigh wave tomography of the Qinghai-Tibet Plateau and surrounding areas.Pure Appl.Geophys.,2010,167(10):1171-1203.

[14]Kind R,Yuan X,Saul J,et al.Seismic images of crust and upper mantle beneath Tibet:Evidence for Eurasia plate subduction.Science,2002,298(5596):1219-1221.

[15]Wittlinger G,F(xiàn)arra V,Vergen J.Lithospheric and upper mantle stratifications beneath Tibet:New insight from Sp conversions.Geophys.Res.Lett.,2004,31:L19615,doi:10.1029/2004GL020955.

[16]Zhao J,Yuan X,Liu H,et al.The boundary between the Indian and Asian tectonic plates below Tibet.Proc.Natl.Acad.Sci.,2010,107:11229-11233.

[17]Zhao W J,Kumar P, Mechie J,et al.Tibetan plate overriding the Asian plate in central and northern Tibet.Nature Geoscience,2011,4:870-873,doi:10.1038/NGEO1309.

[18]高銳,王海燕,王成善等.青藏高原東北緣巖石圈縮短變形——深地震反射剖面再處理提供的證據(jù).地球?qū)W報(bào),2011,32(5):513-520.Gao R,Wang H Y,Wang C S,et al.Lithospheric deformation shortening of the northeastern Tibetan plateau:Evidence from reprocessing of deep seismic reflection data.Acta Geoscientica Sinica (in Chinese),2011,32(5):513-520.

[19]Tian X B,Zhang Z J.Crustal thickness and Vp/Vsratios from the northeastern Tibetan Plateau:Evidence of internal crustal deformation.Gondwana Research,2012,submitted.

[20]常利軍,王椿鏞,丁志峰等.青藏高原東北緣上地幔各向異性研究.地球物理學(xué)報(bào),2008,51(2):431-438.Chang L J,Wang C Y,Ding Z F,et al.Seismic anisotropy of upper mantle in the northeastern margin of the Tibetan plateau.Chinese J.Geophys.(in Chinese),2008,51(2):431-438.

[21]王瓊,高原,石玉濤等.青藏高原東北緣上地幔各向異性.地球物理學(xué)報(bào),2013,待刊.Wang Q,Gao Y,Shi Y T,et al.Seismic anisotropy in the uppermost mantle beneath the northeastern margin of Qinghai-Tibet plateau.Chinese J.Geophys.(in Chinese),2013,in press.

[22]Kumar P,Yuang X H,Kind R,et al.Imaging the colliding Indian and Asian lithospheric plates beneath Tibet.J.Geophys.Res.,2006,111(B6):B06308,doi:10.1029/2005JB003930.

[23]Kumar P,Yuan X H,Kumar M R,et al.The rapid drift of the Indian tectonic plate.Nature,2007,449(7164):894-897,doi:10.1038/nature06214.

[24]Wilson D C,Angus D A,Ni J F,et al.Constraints on the interpretation of S-to-P receiver functions.Geophys.J.Int.,2006,165(3):969-980.

[25]Yuan X H,Kind R,Li X Q,et al.The S receiver functions:synthetics and data example.Geophys.J.Int.,2006,165(2):555-564.

[26]Tian X B,Zhang J L,Si S K,et al.SKS splitting measurements with horizontal component misalignment.Geophys.J.Int.,2011,185(1):329-340,doi:10.1111/j.1365-246X.2011.04936.x.

[27]Kiefer J."Conditional Confidence Statements and Confidence Estimators (with discussion)".Journal of the American Statistical Association,1977,72:789-827.

[28]Wolfe C J,Silver P G.Seismic anisotropy of oceanic upper mantle:shear wave splitting methodologies and observations.J.Geophys.Res.,1998,103(B1):749-771.

[29]Silver P G, Chan W W.Shear wave splitting and subcontinental mantle deformation.J.Geophys.Res.,1991,96(B10):16429-16454.

[30]Bowman J R,Ando M.Shear-wave splitting in the uppermantle wedge above the Tonga subduction zone.Geophys.J.Roy.Astr.Soc.,1987,88(1):25-41.

[31]Vergne J,Wittlinger G,Hui Q,et al.Seismic evidence for stepwise thickening of the crust across the NE Tibetan plateau.Earth Planet.Sci.Lett.,2002,203(1):25-33.

[32]GalvéA,Hirn A,Jiang M,et al.Modes of raising northeastern Tibet probed by explosion seismology.Ear.Plan.Sci.Lett.,2002,203(1):35-43.

[33]Li S G,Mooney W D,F(xiàn)an J C.Crustal structure of mainland China from deep seismic sounding data.Tectonophysics,2006,420(1-2):239-252.

[34]Liu M G,Mooney W D,Li S D,et al.Crustal structure of the northeastern margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin.Tectonophysics,2006,420(1-2):253-266.

[35]高銳,王海燕,馬永生等.松潘地塊若爾蓋盆地與西秦嶺造山帶巖石圈尺度的構(gòu)造關(guān)系——深地震反射剖面探測成果.地球?qū)W報(bào),2006,27(5):411-418.Gao R,Wang H Y,Ma Y S,et al.Tectonic relationships between the Zoigêbasin of the Song-Pan block and the west Qinling orogen at lithosphere scale:Results of deep seismic reflection profiling.Acta Geoscientica Sinica (in Chinese),2006,27(5):411-418.

[36]高銳,熊小松,李秋生等.由地震探測揭示的青藏高原莫霍面深度.地球?qū)W報(bào),2009,30(6):761-773.Gao R,Xiong X S,Li Q S,et al.The Moho depth of Qinghai-Tibet plateau revealed by seismic detection.Acta Geoscientia Sinica (in Chinese),2009,30(6):761-773.

[37]王海燕,高銳,馬永生等.若爾蓋與西秦嶺地震反射巖石圈結(jié)構(gòu)和盆山耦合.地球物理學(xué)報(bào),2007,50(2):472-481.Wang H Y,Gao R,Ma Y S,et al.Basin-range coupling and lithosphere structure between the Zoigêand the west Qinling.Chinese J.Geophys.(in Chinese),2007,50(2):472-481.

[38]滕吉文,白登海,楊輝等.2008年汶川Ms8.0地震發(fā)生的深層過程和動(dòng)力學(xué)響應(yīng).地球物理學(xué)報(bào),2008,51(5):1385-1402.Teng J W,Bai D H,Yang H,et al.Deep processes and dynamic responses associated with the Wenchuan Ms8.0 earthquake of 2008.Chinese J.Geophys.(in Chinese),2008,51(5):1385-1402.

[39]Zhang Z J,Klemperer S,Bai Z M,et al.Crustal structure ofthe Paleozoic Kunlun orogeny from an active-source seismic profile between Moba and Guide in East Tibet,China.Gond.Res.,2010,19(4):994-1007,doi:10.1016/j.gr.2010.09.008.

[40]Kennett B L N,Engdahl E R.Traveltimes for global earthquake location and phase identification.Geophys.J.Int.,1991,105(2):429-465.

[41]Zhao G C,Sun M,Wilde S A,et al.Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited.Precambrian Res.,2005,136(2):177-202.

[42]Tian Y,Zhao D P,Sun R M,et al.Seismic imaging of the crust and upper mantle beneath the North China Craton.Physics of the Earth and Planetary Interiors,2009,172(3-4):169-182.

[43]陳凌,危自根,程騁.從華北克拉通中、西部結(jié)構(gòu)的區(qū)域差異性探討克拉通破壞.地學(xué)前緣,2010,17(1):212-228.Chen L,Wei Z G,Cheng C.Significant structural variations in the Central and Western North China craton and its implications for the craton destruction.Earth Science Frontiers(in Chinese),2010,17(1):212-228.

[44]Tian X B,Teng J W,Zhang H S,et al.Structure of crust and upper mantle beneath the Ordos Block and the Yinshan Mountains revealed by receiver function analysis.Physics of the Earth and Planetary Interiors,2011,184(3-4):186-193.

[45]王萍,王增光.阿拉善活動(dòng)塊體的劃分及歸宿.地震,1997,17(1):103-112.Wang P,Wang Z G.Division of the Alxa block and its attribution.Earthquake (in Chinese),1997,17(1):103-112.

[46]馬杏垣.中國及鄰近海域巖石圈動(dòng)力學(xué)圖(1∶400萬).北京:地質(zhì)出版社,1986.Ma X Y.Lithospheric Dynamics Map of China and Adjacent Areas(in Chinese).Beijing:Geological Publishing House,1986

[47]葛肖虹,劉俊來.被肢解的“西域克拉通”.巖石學(xué)報(bào),2000,16(1):59-66.Ge X H,Liu J L.Broken“Western China Craton”.Acta Petrologica Sinica (in Chinese),2000,16(1):59-66.

[48]葛肖虹,任收麥,劉永江等.中國西部的大陸構(gòu)造格架.巖石學(xué)報(bào),2001,22(5):1-5.Ge X H,Ren S M,Liu Y J,et al.Continental tectonic framework of west China.Acta Petrologica Sinica(in Chinese),2001,22(5):1-5.

[49]葛肖虹,馬文璞,劉俊來等.對中國大陸構(gòu)造格架的討論.中國地質(zhì),2009,36(5):949-965.Ge X H,Ma W P,Liu J L,et al.A discussion on the tectonic framework of Chinese mainland.Geology in China(in Chinese),2009,36(5):949-965.

[50]Kirby E,Harkins N,Wang E Q,et al.Slip rate gradients along the eastern Kunlun fault.Tectonics,2007,26(2),doi:10.1029/2006TC002033.

[51]Gan W J,Zhang P Z,Shen Z K,et al.Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements.J.Geophys.Res.,2007,112(B8),doi:10.1029/2005JB004120.

[52]高銳,李朋武,李秋生等.青藏高原北緣碰撞變形的深部過程——深地震探測成果之啟示.中國科學(xué)(D輯:地球科學(xué)),2001,31(增刊):66-71.Gao R,Li P W,Li Q S,et al.Deep process of the collision and deformation on the northern margin of the Tibetan Plateau:Revelation from investigation of the deep seismic profiles.Science in China (Series D),2001,44(S1):71-78.

[53]宋仲和,安昌強(qiáng),陳國英等.中國西部三維速度結(jié)構(gòu)及其各向異性.地球物理學(xué)報(bào),1991,34(6):694-707.Song Z H,An C Q,Chen G Y,et al.Study on 3Dvelocity structure and anisotropy beneath the west China from the Love wave dispersion.Acta Geophysica Sinica(Chinese J.Geophys.)(in Chinese),1991,34(6):694-707.

[54]朱仁學(xué),胡祥云.格爾木—額濟(jì)納旗地學(xué)斷面巖石圈電性結(jié)構(gòu)的研究.地球物理學(xué)報(bào),1995,38(增刊II):46-57.Zhu R X,Hu X Y.Study on the resistivity structure of the lithosphere along the Golmud-Ejin Qi geoscience transect.Acta Geophysica Sinica (Chinese J.Geophys.)(in Chinese),1995,38(S2),46-57.

[55]Meng Q R,Hu J M,Yang F Z.Timing and magnitude of displacement on the Altyn Tagh fault:constraints from stratigraphic correlation of adjoining Tarim and Qaidam basins,NW China.Terra Nova,2001,13(2):86-91,doi:10.1046/j.1365-3121.2001.00320.x.

[56]王良書,李成,楊春.塔里木盆地巖石層熱結(jié)構(gòu)特征.地球物理學(xué)報(bào),1996,39(6):794-803.Wang L S,Li C,Yang C.The lithospheric thermal structure beneath Tarim basin,Western China.Acta Geophysica Sinica (Chinese J.Geophys.)(in Chinese),1996,39(6):794-803.

[57]Xu Y,Liu F T,Liu J H,et al.Crust and upper mantle structure beneath western China from P wave travel time tomography.J.Geophys.Res.,2002,107(B10):ESE4-1-ESE4-15,doi:1029/2001JB000402.

[58]Basu A R,Wang J W,Huang W K,et al.Major element,REE,and Pb,Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China:Implications for their origin from suboceanic-type mantle reservoirs.Earth Planet.Sci.Lett.,1991,105(1-3):149-169.

[59]Flower M,Tamaki K,Hoang N.Mantle extrusion:A model for dispersed volcanism and DUPAL-like asthenosphere in East Asia and the western Pacific.∥Flower M F J ed.Mantle Dynamic and Plate Interaction in East Asia.Washington:AGU.Geodyn.Ser.,1998,27:67-88.

[60]Liu M,Cui X,Liu,F(xiàn).Cenozoic rifting and volcanism in eastern China:A mantle dynamic link to the indo-Asian collision?Tectonophysics,2004,393(1-4):29-42.

[61]Brandon C,Romanowicz B.A ‘‘no-lid’’zone in the central Chang-Thang platform of Tibet:Evidence from pure pathphase velocity measurements of long period Rayleigh waves.J.Geophys.Res.,1986,91(B6):6547-6564.

[62]McNamara D E,Owens T J,Walter W R.Observations of regional phase propagation across the Tibetan Plateau.J.Geophys.Res.,1995,100(B11):22215-22229.

[63]Owens T J,Zandt G.Implications of crustal property variations for models of Tibetan plateau evolution.Nature,1997,387(6628):37-43.

[64]Rodgers A J,Schwartz S Y.Lithospheric structure of the Qiangtang Terrane,northern Tibetan Plateau,from complete regional waveform modeling:Evidence for partial melt.J.Geophys.Res.,1998,103(B4):7137-7152.

[65]Su B X,Zhang H F,Sakyi P A,et al.Compositionally stratified lithosphere and carbonatite metasomatism recorded in mantle xenoliths from the Western Qinling(Central China).Lithos.,2010,116(1-2):111-128.

[66]An M J,Shi Y L.Lithospheric thickness of the Chinese continent.Phys.Earth Planet.Inter.,2006,159(3-4):257-266.

[67]Hu J F,Xu X Q,Yang H Y,et al.S receiver function analysis of the crustal and lithospheric structures beneath eastern Tibet.Ear.Plan.Sci.Lett.,2011,306(1-2):77-85,doi:10.1016/j.epsl.2011.03.034.

[68]Zhang Z J,Yuan X H,Chen Y,et al.Seismic signature of the collision between the east Tibetan escape flow and the Sichuan Basin.Earth and Planet.Sci.Let.,2010,292(3-4):254-264.

[69]McNamara D E,Owens T J,Silver P G.Shear wave anisotropy beneath the Tibetan plateau.J.Geophys.Res.,1994,99(B7):13655-13665.

[70]Wang C Y,F(xiàn)lesch L M,Silver P G,et al.Evidence for mechanically coupled lithosphere in central Asia and resulting implications.Geology,2008,36(5):363-366,doi:10.1130/G24450A.

[71]Silver P G,Chan W W.Implications for continental structure and evolution from seismic anisotropy.Nature,1988,335(6185):34-39.

[72]Christensen N I.The magnitude,symmetry and origin of upper mantle anisotropy based on fabric analyses of ultramafic tectonites.Geophys.J.R.Astron.Soc.,1984,76(1):89-111.

[73]Nicolas A,Christensen N I.Formation of anisotropy in upper mantle peridotites-a review.∥ Fuchs K,F(xiàn)roideveaux C,eds.Composition,Structure and Dynamics of the Lithosphere-Asthenosphere System.Washington:American Geophysical Union.Geodyn.Ser.,1987,16:111-123.

[74]Zhang S Q,Karato S I.Lattice preferred orientation of olivine aggregates deformed in simple shear.Nature,1995,415(6534):777-780.

[75]Long M D,Silver P G.Shear wave splitting and mantle anisotropy:measurements,interpretations,and new directions.Surv.Geophys.,2009,30(4-5):407-461.

[76]滕吉文.強(qiáng)烈地震孕育與發(fā)生的地點(diǎn)、時(shí)間及強(qiáng)度預(yù)測的思考與探討.地球物理學(xué)報(bào),2010,53(8):1749-1766.Teng J W.Ponder and research on the genesis and occurrence of strong earthquakes and the prediction of their place,time and intensity.Chinese J.Geophys.(in Chinese),2010,53(8):1749-1766.

[77]孫若昧,劉福田,劉建華.四川地區(qū)的地震層析成像.地球物理學(xué)報(bào),1991,34(6):708-716.Sun R M,Liu F T,Liu J H.Seismic tomography of Sichuan.Acta Geophysica Sinica (Chinese J.Geophys.)(in Chinese),1991,34(6):708-716.

[78]張雪梅,孫若昧,滕吉文.青藏高原及其鄰區(qū)地殼、巖石圈和軟流層厚度研究.科學(xué)通報(bào),2007,52(3):332-338.Zhang X M,Sun R M,Teng J W.Study on crustal,lithospheric and asthenospheric thickness beneath the Qinghai-Tibet plateau and its adjacent areas.Chinese Science Bulletin,2007,52(6):797-804.

[79]雷建設(shè),趙大鵬,蘇金蓉等.龍門山斷裂帶地殼精細(xì)結(jié)構(gòu)與汶川地震發(fā)震機(jī)理.地球物理學(xué)報(bào),2009,52(2):339-345.Lei J S,Zhao D P,Su J R,et al.Fine seismic structure under the Longmenshan fault zone and the mechanism of the large Wenchuan earthquake.Chinese J.Geophys.(in Chinese),2009,52(2):339-345.

[80]Clark M K,Royden L H.Topographic ooze:Building the eastern margin of Tibet by lower crustal flow.Geology,2000,28(8):703-706.

[81]Cook K L,Royden L H.The role of crustal strength variations in shaping orogenic plateaus,with application to Tibet.J.Geophys.Res.,2008,113(B8):B08407,doi:10.1029/2007JB005457.

[82]Huang Z C,Xu M J,Wang L S,et al.Shear wave splitting in the southern margin of the Ordos Block,north China.Geophys.Res.Lett.,2008,35(19):l19301,doi:10.1029/2008GL035188.

猜你喜歡
巖石圈昆侖塊體
《昆侖之境》
我在南昌 你在哪
心聲歌刊(2022年3期)2022-06-06 06:31:42
第四章 堅(jiān)硬的巖石圈
跨越昆侖
一種新型單層人工塊體Crablock 的工程應(yīng)用
昆侖
巖石圈磁場異常變化與巖石圈結(jié)構(gòu)的關(guān)系
地震研究(2017年3期)2017-11-06 21:54:14
2014年魯?shù)?—5級(jí)地震相關(guān)斷裂的巖石圈磁異常分析
地震研究(2017年3期)2017-11-06 01:58:51
一種Zr 基塊體金屬玻璃的納米壓入蠕變行為研究
上海金屬(2015年3期)2015-11-29 01:09:58
塊體非晶合金及其應(yīng)用
剑河县| 开鲁县| 思茅市| 名山县| 乐清市| 原平市| 卓尼县| 宜兰市| 桐城市| 班戈县| 富阳市| 潼南县| 和硕县| 武平县| 宜良县| 白银市| 福清市| 米脂县| 定襄县| 沧源| 论坛| 车险| 比如县| 大邑县| 山东省| 黑龙江省| 阿勒泰市| 黔西| 建始县| 秀山| 长垣县| 汽车| 宿松县| 萨迦县| 新民市| 社旗县| 兴海县| 玉屏| 台东县| 疏附县| 林口县|