陳 吉, 汪心怡, 陳 卓, 李菲菲, 鄭 紅, 瞿成奎,2, 汪思應(yīng)
(1安徽醫(yī)科大學(xué)病理生理教研室,安徽 合肥 230032; 2Case Western Reserve University, Cleveland, Ohio 44106 USA)
Gab2 在SHP-2酪氨酸磷酸酶激活突變所致小鼠髓系異常增殖中的作用*
陳 吉1, 汪心怡1, 陳 卓1, 李菲菲1, 鄭 紅1, 瞿成奎1,2, 汪思應(yīng)1
(1安徽醫(yī)科大學(xué)病理生理教研室,安徽 合肥 230032;2Case Western Reserve University, Cleveland, Ohio 44106 USA)
目的觀察SHP-2信號通路中關(guān)鍵接頭蛋白Gab2對SHP-2激活突變引發(fā)的小鼠髓系異常增殖是否具有調(diào)控作用。方法用Gab2-/-和SHP-2D61G/+模型小鼠建立4種基因型(SHP-2+/+、Gab2-/-、SHP-2D61G/+和SHP-2D61G/+/Gab2-/-)小鼠,解剖分析其脾大小,外周血白細(xì)胞計(jì)數(shù),流式細(xì)胞術(shù)檢測外周血及骨髓髓系細(xì)胞表面標(biāo)志分子Mac-1和Gr-1并計(jì)數(shù)Mac-1和Gr-1陽性髓系細(xì)胞比例,骨髓造血干/祖細(xì)胞集落形成實(shí)驗(yàn)檢測小鼠造血干細(xì)胞或祖細(xì)胞對細(xì)胞因子反應(yīng)性,Western blotting和免疫沉淀實(shí)驗(yàn)檢測骨髓來源肥大細(xì)胞經(jīng)IL-3刺激后磷酸化蛋白激酶B (p-Akt)和磷酸化胞外信號調(diào)節(jié)激酶(p-ERK)的活化水平,以及Gab2與SHP-2蛋白的結(jié)合情況。結(jié)果敲除Gab2后顯著減輕SHP-2激活突變導(dǎo)致的小鼠髓系增殖表型,主要表現(xiàn)在:脾指數(shù)減小,外周血白細(xì)胞減少,小鼠髓系來源的Mac-1和Gr-1陽性細(xì)胞比例降低。與SHP-2D61G/+小鼠相比,經(jīng)IL-3刺激后,骨髓細(xì)胞的集落形成能力顯著降低;骨髓來源肥大細(xì)胞內(nèi)p-ERK和p-Akt表達(dá)明顯下調(diào),SHP-2D61G/+/Gab2-/-小鼠肥大細(xì)胞內(nèi)無Gab2與SHP-2結(jié)合。結(jié)論敲除Gab2可以明顯減輕SHP-2D61G/+激活突變導(dǎo)致的小鼠髓系異常增殖,這種減輕作用可能與SHP-2無法與Gab2結(jié)合而導(dǎo)致下游信號途徑ERK和Akt活化減弱有關(guān)。
SHP-2酪氨酸磷酸酶; 基因激活突變; Gab2; 髓系增殖性疾病
髓系增殖性疾病(myeloproliferative disorders, MPD)屬骨髓增生異常綜合征(myelodysplastic syndrome, MDS)范疇,系干細(xì)胞來源的克隆性疾病。形態(tài)學(xué)觀察可見病態(tài)造血現(xiàn)象,其特點(diǎn)是骨髓有核細(xì)胞增多,增殖的細(xì)胞可向終末分化成熟,多不伴發(fā)育異常;外周血紅細(xì)胞、白細(xì)胞、血小板增多,可伴有肝脾腫大,后期出現(xiàn)骨髓纖維化、骨髓衰竭及轉(zhuǎn)化為急性白血病。最終因MDS期骨髓衰竭伴隨并發(fā)癥或到達(dá)白血病期而難以治療。為此MDS 也被稱為白血病前期[1]。在修訂的2008年WHO分類系統(tǒng)中,MPD改稱為骨髓增殖腫瘤(myeloproliferative neoplasms, MPN),并強(qiáng)調(diào)了這類疾病的本質(zhì)是腫瘤[1-3]。
MPD的發(fā)病機(jī)制不清,研究認(rèn)為,蛋白酪氨酸激酶(protein tyrosine kinases,PTKs)信號轉(zhuǎn)導(dǎo)途徑過度活化是MPN重要的發(fā)病機(jī)制。同時(shí)也發(fā)現(xiàn),PTKs信號通路負(fù)性調(diào)控基因PTPN11激活突變可能與其有關(guān)[4]。PTPN11編碼的蛋白SHP-2是蛋白酪氨酸磷酸酶(protein tyrosine phosphatases, PTPs)家族成員之一,廣泛表達(dá)于機(jī)體各組織細(xì)胞中,參與調(diào)節(jié)包括 Ras-ERK 在內(nèi)的多條信號通路[5-7],與細(xì)胞的存活、遷移、黏附、細(xì)胞骨架形成等關(guān)系密切[8-9]。作為一種酪氨酸磷酸酶,SHP-2通過將與其結(jié)合的信號轉(zhuǎn)導(dǎo)分子去磷酸化,從而阻斷局部信號轉(zhuǎn)導(dǎo)。但是,SHP-2在大部分信號通路中卻是起到增強(qiáng)信號轉(zhuǎn)導(dǎo)的作用。研究發(fā)現(xiàn),SHP-2在造血細(xì)胞中高表達(dá),對造血細(xì)胞的發(fā)育、分化起正調(diào)控作用,促進(jìn)血細(xì)胞的增殖和分化[6,9]。此外,SHP-2在IL-3介導(dǎo)的造血細(xì)胞信號轉(zhuǎn)導(dǎo)中除了起磷酸酶催化活性依賴的作用外,其還發(fā)揮了催化活性非依賴的接頭蛋白功能[9-10]。2001年以來,SHP-2激活突變體在Noonan綜合征(伴MPD)、MPD、幼年型粒單細(xì)胞白血病及其它白血病和一些實(shí)體瘤中陸續(xù)發(fā)現(xiàn)[11-14],提示SHP-2與白血病的發(fā)生密切相關(guān)。為了更好地研究SHP-2突變體引發(fā)疾病的機(jī)制,Neel實(shí)驗(yàn)室建立了SHP-2D61G/+基因敲入小鼠模型,在該模型小鼠中并沒有發(fā)現(xiàn)白血病,但出現(xiàn)Noonan綜合癥和MPD表型[6,15-16]。
本課題組前期運(yùn)用SHP-2D61G/+模型小鼠,觀察SHP-2激活突變對小鼠髓系增殖及相關(guān)信號通路的影響,發(fā)現(xiàn)SHP-2D61G/+小鼠出現(xiàn)明顯的髓系異常增殖,并且可能與Ras-ERK及 PI3K-Akt的活化有關(guān)[17]。進(jìn)一步研究發(fā)現(xiàn),SHP-2D61G/+小鼠分離得到的肥大細(xì)胞對IL-3反應(yīng)性增高,可能由于在此過程中SHP-2發(fā)揮接頭蛋白的功能,激活突變的SHP-2與Gab2結(jié)合增多所致[6,17-18]。
Gab2蛋白是SHP-2介導(dǎo)的信號通路中關(guān)鍵的接頭蛋白,它屬于Gab蛋白家族的一員,其結(jié)構(gòu)中缺乏酶活性結(jié)構(gòu)域,可以通過其自身的PH結(jié)構(gòu)域、脯氨酸富集區(qū)及多個(gè)酪氨酸位點(diǎn)與其它信號分子結(jié)合,參與多種細(xì)胞信號調(diào)控,在細(xì)胞增殖、分化、凋亡及遷移等生理過程中發(fā)揮重要作用。目前認(rèn)為,Gab2激活后主要通過下游的 Ras-ERK及 PI3K-Akt 等途徑傳遞信號[19]。Gab2 結(jié)構(gòu)中包含2個(gè) SHP-2的綁定位點(diǎn),是SHP-2重要的結(jié)合分子[18-21]。
由此設(shè)想,在SHP-2激活突變導(dǎo)致的髓系異常增殖過程中,減少Gab2的作用是否可以降低MPD的發(fā)生。為此,我們運(yùn)用SHP-2D61G/+及Gab2-/-模型小鼠,建立SHP-2+/+、Gab2-/-、SHP-2D61G/+和SHP-2D61G/+/Gab2-/-4種基因型小鼠,探尋敲除Gab2對SHP-2激活突變導(dǎo)致的髓系異常增殖有無影響及其機(jī)制。
1材料
1.1藥品與試劑 生理鹽水購于北京雙鶴藥業(yè),RPMI-1640培養(yǎng)基和胎牛血清購于Gibco,F(xiàn)ITC標(biāo)記的Mac-1和Gr-1抗體購于北京博奧森生物公司,Western blotting 所用ERK、Akt、p-ERK、p-Akt、SHP-2、p-Tyr、Gab2等抗體及 protein A/G瓊脂糖珠均購于Santa Cruz。
1.2動物 C57BL/6品系SHP-2D61G/+及Gab2-/-小鼠由美國Case Western Reserve大學(xué)瞿成奎教授提供。用Gab2-/-和SHP-2D61G/+小鼠雜交,鑒定出雌雄SHP-2D61G/+/Gab2+/-小鼠作為種鼠雜交,生產(chǎn)并鑒定出本實(shí)驗(yàn)所需的4種基因型小鼠,分別為:SHP-2+/+、Gab2-/-、SHP-2D61G/+和SHP-2D61G/+/Gab2-/-。取10周齡小鼠配對備用。
2方法
2.1脾指數(shù)的測定 小鼠頸椎脫臼處死,稱取體重(g),分離脾臟稱重(mg),計(jì)算脾指數(shù)=脾重(mg)/體重(g)。
2.2外周血白細(xì)胞(white blood cell ,WBC)計(jì)數(shù) 小鼠摘取眼球取血約300 μL于2% EDTA-K2抗凝劑的采血管中,紅細(xì)胞破壞法(3%乙酸溶液∶血液=19∶1)獲得白細(xì)胞,應(yīng)用F2800微細(xì)胞儀計(jì)數(shù)小鼠白細(xì)胞。
2.3骨髓細(xì)胞的分離 處死小鼠,無菌分離雙側(cè)股骨和脛骨并剪去骨端,用3 mL RPMI-1640培養(yǎng)液沖洗骨髓3次,收集沖洗液,吹打混勻成單細(xì)胞懸液,用白細(xì)胞稀釋液稀釋,作骨髓有核細(xì)胞計(jì)數(shù)后備用。
2.4流式細(xì)胞術(shù)檢測骨髓細(xì)胞表面標(biāo)記 骨髓細(xì)胞離心洗滌后,用含2% BSA的PBS制備成細(xì)胞懸液,加2 ng Fc受體阻斷抗體,室溫孵育15 min,離心洗滌1次,每管加入細(xì)胞1×106個(gè),體積為100 μL,分別加FITC標(biāo)記的相關(guān)抗體(Mac-1和Gr-1),冰浴30 min,加3 mL預(yù)冷PBS后,離心洗滌,每管加500 μL PBS(1% BSA)重懸細(xì)胞,流式細(xì)胞儀檢測分析。
2.5骨髓細(xì)胞集落形成檢測 骨髓細(xì)胞建立后,按2×107/L接種于含造血細(xì)胞生長因子IL-3的甲基纖維素半固體培養(yǎng)基中,37 ℃、5% CO2及飽和濕度的培養(yǎng)箱內(nèi)進(jìn)行培養(yǎng)。培養(yǎng)7 d后在倒置顯微鏡下觀察集落形成,并分別計(jì)數(shù)骨髓細(xì)胞的集落數(shù)(≥50個(gè)細(xì)胞組成的細(xì)胞團(tuán))。
2.6骨髓中單個(gè)核細(xì)胞的分離 用來分離骨髓單個(gè)核細(xì)胞的分層液比重是1.120±0.001的聚蔗糖-泛影葡胺分層液。離心后,紅細(xì)胞、粒細(xì)胞比重大,沉于管底;淋巴細(xì)胞和單核細(xì)胞的比重小于分層液比重,漂浮于分層液的上方,也可有少部分細(xì)胞懸浮于分層液中。吸取分層液液面的細(xì)胞,就可以從骨髓中分離到單個(gè)核細(xì)胞,主要包括淋巴細(xì)胞和單核細(xì)胞。將細(xì)胞置于另一短管中,加入5倍體積的Hanks液,離心洗滌細(xì)胞2次,棄上清,加入含有10% FBS和0.5 μg/L IL-3的RPMI-1640培養(yǎng)液,重懸細(xì)胞,常規(guī)培養(yǎng)。
2.7肥大細(xì)胞的獲取和培養(yǎng) 骨髓細(xì)胞分離后,用含10% FBS和0.5 μg/L IL-3的RPMI-1640培養(yǎng)液,細(xì)胞按1.0×109/L接種于培養(yǎng)皿,37 ℃、5% CO2及飽和濕度的培養(yǎng)箱內(nèi)進(jìn)行培養(yǎng),48 h后貼壁生長細(xì)胞為巨噬細(xì)胞,吸取懸浮細(xì)胞于另一培養(yǎng)皿中。每72 h更換培養(yǎng)基,每周更換培養(yǎng)皿,同樣條件下培養(yǎng)2周后即為肥大細(xì)胞。
2.8Western blotting檢測信號分子ERK及Akt的活化情況 取4組指數(shù)生長期的肥大細(xì)胞,饑餓培養(yǎng)6 h后,用2.0 μg/L IL-3刺激0、5和15 min,提總蛋白,10% SDS-PAGE凝膠電泳,轉(zhuǎn)膜,封閉,分別加入p-ERK、p-Akt、Akt和ERK抗體 (4 ℃孵育過夜)及相應(yīng)經(jīng)辣根過氧化物酶標(biāo)記的Ⅱ抗 (常溫孵育1 h),用ECL系統(tǒng)進(jìn)行檢測。
2.9免疫沉淀(immunoprecipitation,IP)檢測Gab2與SHP-2的結(jié)合情況 取4組指數(shù)生長期的肥大細(xì)胞,饑餓培養(yǎng)6 h后,用2.0 μg/L IL-3刺激0、5和15 min,預(yù)冷PBS洗滌,加入 IP裂解液緩沖液裂解1 h,離心取上清,加入protein A/G agarose,翻轉(zhuǎn)混勻預(yù)吸附,離心取上清。按實(shí)驗(yàn)需要加入不同Ⅰ抗(SHP-2、Gab2和p-Tyr),翻轉(zhuǎn)混勻,最后加入protein A/G agarose 20 μL,4 ℃翻轉(zhuǎn)孵育過夜。洗滌,沉淀后加上樣緩沖液,100 ℃,煮沸10 min。離心取上清,20 μL上樣于15% SDS-PAGE進(jìn)行Western blotting檢測。
3統(tǒng)計(jì)學(xué)處理
數(shù)據(jù)用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,SPSS 13.0統(tǒng)計(jì)軟件對數(shù)據(jù)進(jìn)行方差分析。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
1Gab2敲除后,由SHP-2突變導(dǎo)致的小鼠脾臟增大表型明顯改善
與SHP-2+/+小鼠相比,Gab2敲除小鼠脾臟大小沒有明顯差異,而SHP-2D61G/+小鼠脾臟明顯增大;在SHP-2D61G/+小鼠中敲除Gab2后,SHP-2D61G/+/Gab2-/-小鼠脾指數(shù)明顯低于SHP-2D61G/+小鼠(P<0.05),見圖1,提示Gab2敲除能減輕SHP-2突變導(dǎo)致的小鼠脾臟增大。
Figure 1. The spleen index ofSHP-2D61G/+/Gab2-/-mice obviously decreased, compared withSHP-2D61G/+mice. Mean±SD.**P<0.01vsSHP-2+/+;△P<0.05vsGab2-/-.
圖1Gab2敲除后,SHP-2D61G/+/Gab2-/-小鼠脾指數(shù)比SHP-2D61G/+小鼠明顯下降
2敲除Gab2降低SHP-2突變導(dǎo)致的小鼠異常增加的外周血白細(xì)胞
4組小鼠外周血白細(xì)胞計(jì)數(shù)結(jié)果顯示,與SHP-2+/+小鼠相比,Gab2敲除小鼠外周血白細(xì)胞數(shù)沒有明顯變化,SHP-2D61G/+小鼠外周血白細(xì)胞數(shù)明顯增加,而SHP-2D61G/+/Gab2-/-小鼠白細(xì)胞數(shù)明顯低于SHP-2D61G/+小鼠(P<0.05),見圖2,提示Gab2敲除能降低SHP-2突變導(dǎo)致的小鼠外周血白細(xì)胞異常增加。
3敲除Gab2降低SHP-2突變小鼠骨髓細(xì)胞中髓系比例
Gab2敲除后,SHP-2激活突變導(dǎo)致外周血白細(xì)胞以及骨髓細(xì)胞中髓系異常增加的現(xiàn)象均得到改善。圖3顯示SHP-2D61G/+/Gab2-/-小鼠骨髓Mac-1和Gr-1陽性細(xì)胞比例明顯低于SHP-2D61G/+組小鼠(外周血結(jié)果相同,未列出)。
Figure 2.Gab2 knockout reduced the number of peripheral white blood cells that increased by theSHP-2D61G/+mutation. Mean±SD.**P<0.01vsSHP-2+/+;△P<0.05vsGab2-/-.
圖2敲除Gab2降低SHP-2D61G/+突變導(dǎo)致的外周血白細(xì)胞異常增高
Figure 3. The proportion of Mac-1 and Gr-1 positive cells obviously decreased in the bone marrow (BM) cells ofSHP-2D61G/+/Gab2-/-mice. Mean±SD.**P<0.01vsSHP-2+/+;△P<0.05vsGab2-/-.
圖3SHP-2D61G/+/Gab2-/-小鼠骨髓細(xì)胞Mac-1和Gr-1陽性比例明顯低于SHP-2D61G/+小鼠
4SHP-2D61G/+/Gab2-/-小鼠骨髓細(xì)胞對IL-3的反應(yīng)性降低
在甲基纖維素半固體培養(yǎng)系統(tǒng)中,用不同濃度IL-3 (0、0.2、2和10 μg/L)培養(yǎng)骨髓細(xì)胞,可以刺激骨髓造血祖細(xì)胞或干細(xì)胞向髓系分化增殖并形成集落。如圖4所示,經(jīng)IL-3刺激后,Gab2敲除小鼠骨髓細(xì)胞對IL-3的反應(yīng)性降低,集落形成小而少;SHP-2D61G/+/Gab-2-/-小鼠來源的骨髓細(xì)胞集落形成能力明顯低于SHP-2D61G/+單一突變的小鼠骨髓細(xì)胞,在IL-3濃度為2 μg/L時(shí)尤為顯著。
Figure 4.Gab2 knockout reduced the hypersensitivity of myeloid progenitor cells inSHP-2D61G/+mutation mice induced by IL-3. Mean±SD.*P<0.05,**P<0.01vsSHP-2+/+.
圖4與SHP-2D61G/+小鼠相比,SHP-2D61G/+/Gab2-/-小鼠骨髓細(xì)胞對IL-3的反應(yīng)性降低
5Gab2基因敲除后,SHP-2D61G/+蛋白無法與Gab2蛋白結(jié)合從而阻斷下游信號途徑活化
SHP-2在細(xì)胞信號調(diào)控過程中可以和Gab2結(jié)合,對MAPK及PI3K信號途徑活化起重要作用。 實(shí)驗(yàn)發(fā)現(xiàn),SHP-2激活突變的細(xì)胞在IL-3刺激下,SHP-2與Gab2結(jié)合增加,磷酸化ERK和Akt水平增高;Gab2敲除阻斷了SHP-2D61G/+與Gab2結(jié)合,與SHP-2D61G/+小鼠相比,SHP-2D61G/+/Gab2-/-小鼠的肥大細(xì)胞在IL-3刺激下,ERK和Akt磷酸化水平降低,見圖5、6。
我們前期研究發(fā)現(xiàn)SHP-2D61G/+模型小鼠出現(xiàn)明顯的髓系增殖現(xiàn)象,主要表現(xiàn)在:脾臟明顯增大,外周血白細(xì)胞增多,且外周血和骨髓細(xì)胞中髓系細(xì)胞比例明顯升高,其機(jī)制可能與SHP-2激活突變后導(dǎo)致的與細(xì)胞增殖密切相關(guān)的MAPK及PI3K信號途徑異?;罨嘘P(guān)[17-18]。 但SHP-2是酪氨酸磷酸酶,其激活突變引起的磷酸酶活性升高理論上應(yīng)該導(dǎo)致細(xì)胞內(nèi)酪氨酸磷酸化蛋白水平降低,多種細(xì)胞信號活性可能會受到抑制。為何在SHP-2D61G/+細(xì)胞內(nèi)出現(xiàn)下游信號的增強(qiáng)呢,這可能與SHP-2還具有接頭蛋白功能有關(guān)。 激活突變的SHP-2可以結(jié)合更多的Gab2,進(jìn)而活化Ras-ERK和PI3K-Akt信號通路[6,17-18]。我們設(shè)想,除了抑制激活突變SHP-2的功能外,抑制Gab2的功能有可能減輕SHP-2激活突變導(dǎo)致的髓系異常增殖。為此,我們建立了SHP-2+/+、Gab2-/-、SHP-2D61G/+和SHP-2D61G/+/Gab2-/-4種基因型小鼠,觀察模型小鼠髓系增殖情況,果然發(fā)現(xiàn)SHP-2D61G/+/Gab2-/-小鼠無論是脾臟增大、外周血白細(xì)胞增多及髓系細(xì)胞比例都較SHP-2D61G/+小鼠明顯改善,Gab2缺失使SHP-2激活突變的骨髓細(xì)胞對IL-3反應(yīng)性也明顯降低。IP結(jié)果證實(shí),Gab2缺失阻斷了骨髓來源的肥大細(xì)胞(經(jīng)IL-3刺激)內(nèi)SHP-2與Gab2的結(jié)合,且ERK和Akt 的活化也明顯減弱。這些結(jié)果表明,當(dāng)SHP-2與Gab2的結(jié)合被阻斷后,SHP-2激活突變導(dǎo)致的小鼠髓系異常增殖現(xiàn)象明顯減輕,并且ERK和Akt的磷酸化水平也顯著降低。這提示在SHP-2激活突變導(dǎo)致的小鼠髓系異常增殖過程中Gab2起到關(guān)鍵的接頭蛋白作用,這種作用可能還會參與SHP-2激活突變相關(guān)腫瘤的發(fā)生與發(fā)展。本研究結(jié)果揭示了SHP-2激活突變導(dǎo)致髓系增殖等疾病的分子機(jī)制,也為SHP-2激活突變相關(guān)白血病的治療提供一個(gè)潛在的作用靶點(diǎn)。
Figure 5. The binding capacity of SHP-2D61G/+with Gab2.
圖5SHP-2D61G/+蛋白能與Gab2蛋白結(jié)合
Figure 6.Gab2 knockout reduced the phosphorylation levels of ERK and Akt inSHP-2D61G/+mast cells.
圖6Gab2敲除后,SHP-2突變導(dǎo)致的ERK和Akt活化減弱
[1] Hamidah NH, Farisah NR, Azlinda AB, et al. A study of JAK2 (V617F) gene mutation in patients with chronic myeloproliferative disorders[J]. Clin Ter, 2012, 163(2):109-113.
[2] Abraham S, Salama M, Hancock J, et al. Congenital and childhood myeloproliferative disorders with eosinophilia responsive to imatinib[J]. Pediatr Blood Cancer, 2012, 59(5):928-929.
[3] De T, Prabhakar P, Nagaraja D, et al. Janus kinase (JAK) 2 V617F mutation in Asian Indians with cerebral venous thrombosis and without overt myeloproliferative disorders[J]. J Neurol Sci, 2012, 323(1-2):178-182.
[4] Nabinger SC, Chan RJ. Shp2 function in hematopoietic stem cell biology and leukemogenesis[J]. Curr Opin Hematol, 2012, 19(4):273-279.
[5] Tartaglia M, Zampino G, Gelb BD. Noonan syndrome:clinical aspects and molecular pathogenesis[J]. Mol Syndromol, 2010, 1(1):2-26
[6] Xu D, Wang S, Yu WM, et al. A germline gain-of-function mutation inPtpn11 (SHP-2) phosphatase induces myeloproliferative disease by aberrant activation of hematopoietic stem cells[J]. Blood, 2010, 116(18):3611-3621.
[7] Xu D, Liu X, Yu WM, et al. Non-lineage/stage-restricted effects of a gain-of-function mutation in tyrosine phosphatasePtpn11 (Shp2) on malignant transformation of hematopoietic cells[J]. J Exp Med, 2011, 208(10):1977-1988.
[8] Qu CK. The SHP-2 tyrosine phosphatase: signaling me-chanisms and biological function[J]. Cell Res, 2000, 10(4): 279-288.
[9] Qu CK, Nguyen S, Chen J, et al. Requirement of SHP-2 tyrosine phosphatase in lymphoid and hematopoietic cell development[J]. Blood, 2001, 97(4): 911-914.
[10] Mohi MG, Neel BG. The role of Shp2 (PTPN11) in cancer[J]. Curr Opin Genet Dev, 2007, 17(1): 23-30.
[11] Wang S, Yu WM, Zhang W, et al. Noonan syndrome/leukemia-associated gain-of-function mutations in SHP-2 phosphatase (PTPN11) enhance cell migration and angiogenesis[J]. J Biol Chem, 2009, 284(2): 913-920.
[12] Grossmann KS. The tyrosine phosphatase Shp2 in development and cancer[J]. Adv Cancer Res, 2010, 106: 53-89.
[13] Martinelli S, Nardozza AP, Delle Vigne S, et al. Counteracting effects operating on Src homology 2 domain-containing protein tyrosine phosphatase 2 (SHP2) function drive selection of the recurrent Y62D and Y63C substitutions in Noonan syndrome[J]. J Biol Chem, 2012, 287(32):27066-27077.
[14] Liu X, Qu CK. Protein tyrosine phosphatase SHP-2 (PTPN11) in hematopoiesis and leukemogenesis[J]. J Signal Transduct, 2011,2011:195239.
[15] Araki T, Mohi MG, Ismat FA, et al. Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects ofPtpn11 mutation[J]. Nat Med, 2004, 10(8):849-857.
[16] Yu WM, Daino H, Chen J, et al. Effects of a leukemia-associated gain-of-function mutation of SHP-2 phosphatase on interleukin-3 signaling[J]. J Biol Chem, 2006, 281(9):5426-5434.
[17] 張 薇,楊金蓮,胡中倩,等.SHP-2酪氨酸磷酸酶激活突變導(dǎo)致小鼠髓系異常增殖[J].中國病理生理雜志, 2011,27(4):682-687.
[18] 霍寅萍,儲著朗,余科科,等.SHP-2酪氨酸磷酸酶激活突變的肥大細(xì)胞對IL3呈高增殖敏感性[J].安徽醫(yī)科大學(xué)學(xué)報(bào), 2010, 45(5):593-596.
[19] Nishida K, Yamasaki S, Hasegawa A, et al. Gab2, via PI-3K, regulates ARF1 in FcεRI-mediated granule translocation and mast cell degranulation[J]. J Immunol, 2011, 187(2):932-941.
[20] Vaughan TY, Verma S, Bunting KD. Grb2-associated binding (Gab) proteins in hematopoietic and immune cell biology[J]. Am J Blood Res, 2011, 1(2):130-134.
[21] Futami M, Zhu QS, Whichard ZL, et al. G-CSF receptor activation of the Src kinase Lyn is mediated by Gab2 recruitment of the Shp2 phosphatase[J]. Blood, 2011, 118(4):1077-1086.
RoleofGab2inmousemyeloidabnormalproliferationinducedbySHP-2D61G/+mutation
CHEN Ji1, WANG Xin-yi1, CHEN Zhuo1, LI Fei-fei1, ZHENG Hong1, QU Cheng-kui1, 2, WANG Si-ying1
(1DepartmentofPathophysiology,AnhuiMedicalUniversity,Hefei230032,China;2CaseWesternReserveUniversity,Cleveland,Ohio44106,USA.E-mail:sywang@ahmu.edu.cn)
AIM: To investigate whether Gab2, the key adapter protein in the SHP-2 signaling pathway, is involved in mouse myeloid abnormal proliferation induced bySHP-2D61G/+mutation.METHODSFour kinds of mouse model genotyped asSHP-2+/+,Gab2-/-,SHP-2D61G/+andSHP-2D61G/+/Gab2-/-were generated from crossbreeding ofGab2-/-mice andSHP-2D61G/+mice. The mouse spleen size was analyzed. The number of peripheral blood leukocytes was counted by cell counting and the percentage of Mac-1 or Gr-1 positive myeloid cells in the bone marrow was detected by flow cytometry. The proliferation ability of bone marrow hematopoietic stem/progenitor cells in response to cytokines was assayed by colony formation. The expression of p-ERK and p-Akt and the binding capacity of SHP-2 with Gab2 in the bone marrow-derived mast cells stimulated with IL-3 were detected by Western blotting and immunoprecipitation.RESULTSThe phenotype of myeloproliferative disorder, such as enlarged spleen size, increased leukocyte number and high percentage of myeloid cells, inSHP-2D61G/+mutant mice was found, and was dramatically improved inSHP-2D61G/+/Gab2-/-double mutation mice. Furthermore, compared withSHP-2D61G/+mutation mice, significantly decreased colony formation ability of the bone marrow cells with IL-3 stimulation was observed inSHP-2D61G/+/Gab2-/-double mutation mice. A reduced phosphorylation level of ERK/Akt, and SHP-2 without binding of Gab2 were found inSHP-2D61G/+/Gab2-/-bone marrow-derived mast cells with IL-3 stimulation.CONCLUSIONGab2 knockout significantly reduces mouse myeloid abnormal proliferation induced bySHP-2D61G/+mutation. The molecular mechanism may be associated with reduced binding ofSHP-2D61G/+underGab2 knockout, and further weakened the activation of downstream signaling pathways of ERK and Akt.
SHP-2 tyrosine phosphatase; Genetic gain-of-function mutation; Gab2; Myeloproliferative disorders
R363
A
10.3969/j.issn.1000- 4718.2013.06.008
1000- 4718(2013)06- 1003- 06
2012- 12- 28
2013- 04- 17
國家自然科學(xué)基金資助項(xiàng)目(No. 30873046; No.30973424; No.81272258); 教育部博士點(diǎn)基金資助項(xiàng)目(No. 200803660005);安徽省出國留學(xué)回國人員科技項(xiàng)目(N0. 2009-2011)
△通訊作者 Tel: 0551-65137833; E-mail: sywang@ahmu.edu.cn