邢海燕, 陳一瑞, 劉家卓, 唐克晶, 田 征, 饒 青, 王 敏, 王建祥
(中國醫(yī)學(xué)科學(xué)院,北京協(xié)和醫(yī)學(xué)院血液學(xué)研究所,血液病醫(yī)院,實驗血液學(xué)國家重點實驗室,天津 300020)
PIG7與丙戊酸促進(jìn)人白血病細(xì)胞SKNO-1的分化和凋亡*
邢海燕▲, 陳一瑞▲, 劉家卓#, 唐克晶, 田 征, 饒 青, 王 敏, 王建祥△
(中國醫(yī)學(xué)科學(xué)院,北京協(xié)和醫(yī)學(xué)院血液學(xué)研究所,血液病醫(yī)院,實驗血液學(xué)國家重點實驗室,天津 300020)
目的研究p53誘導(dǎo)基因 7(PIG7)對人白血病細(xì)胞SKNO-1的作用及組蛋白脫乙酰酶抑制劑丙戊酸(VPA)的協(xié)同效應(yīng)。方法SKNO-1細(xì)胞經(jīng)不同濃度的VPA(1~10 mmol/L)分別作用后,用MTT法檢測VPA對SKNO-1細(xì)胞增殖的影響。通過病毒包裝及感染系統(tǒng)分別將帶有PIG7開放讀碼框和反義寡核苷酸片段的慢病毒載體導(dǎo)入SKNO-1細(xì)胞,用RT-PCR及Western blotting檢測SKNO-1細(xì)胞中PIG7 的mRNA及蛋白表達(dá)情況;用流式細(xì)胞術(shù)檢測VPA作用于病毒感染后SKNO-1細(xì)胞的凋亡率和分化抗原CD11b的表達(dá); DNA ladder實驗分析細(xì)胞的凋亡。結(jié)果VPA可明顯抑制SKNO-1細(xì)胞增殖,且具有時間、劑量依賴性。過表達(dá)PIG7促進(jìn)SKNO-1細(xì)胞的凋亡和分化, 聯(lián)合VPA作用后細(xì)胞分化抗原CD11b的表達(dá)水平和細(xì)胞凋亡率明顯高于空載體組(P<0.05),并出現(xiàn)典型的DNA梯狀條帶。結(jié)論VPA具有抑制SKNO-1細(xì)胞增殖和誘導(dǎo)其分化及凋亡的作用。過表達(dá)PIG7可促進(jìn)SKNO-1細(xì)胞的凋亡和分化,并增加SKNO-1細(xì)胞對VPA的敏感性。過表達(dá)PIG7聯(lián)合VPA有望成為白血病治療的新策略。
p53誘導(dǎo)基因7; 丙戊酸; 組蛋白脫乙酰酶; 白血??; 細(xì)胞凋亡
p53介導(dǎo)的凋亡是DNA受損細(xì)胞的重要凋亡途徑,對于維持細(xì)胞基因組的穩(wěn)定性起重要作用。p53誘導(dǎo)基因7 (p53-inducible gene 7,PIG7)是p53誘導(dǎo)細(xì)胞凋亡過程中涉及的關(guān)鍵基因之一,在乳腺癌、B細(xì)胞淋巴瘤、黑色素瘤及急性白血病中表達(dá)明顯下調(diào)[1-4]。應(yīng)用蛋氨酸誘導(dǎo)黑色素瘤細(xì)胞凋亡、全反式維甲酸誘導(dǎo)NB4細(xì)胞分化及苯丁酸鈉誘導(dǎo)Kasumi-1細(xì)胞凋亡的過程中,PIG7表達(dá)上調(diào)。因而,PIG7的異常在白血病和腫瘤的發(fā)生發(fā)展中可能起到重要作用。組蛋白脫乙酰酶(histone deacetylase, HDAC)水平與多種腫瘤的發(fā)生發(fā)展相關(guān),而HDAC抑制劑(histone deacetylase inhibitor, HDACi)可通過促進(jìn)組蛋白乙酰化,上調(diào)相關(guān)抑癌基因表達(dá),發(fā)揮抑制腫瘤細(xì)胞增殖、誘導(dǎo)分化或促進(jìn)凋亡的作用。丙戊酸(valproic acid,VPA)是目前臨床應(yīng)用廣泛的抗癲癇藥物,因其也具有很強(qiáng)的HDACi活性,近來在白血病及多種實體瘤中顯現(xiàn)出較好的抗腫瘤效應(yīng),但其具體作用機(jī)制尚未明了[5]。本研究利用慢病毒感染系統(tǒng)將PIG7導(dǎo)入攜帶有AML1-ETO融合基因的人白血病細(xì)胞系SKNO-1中,研究VPA與PIG7對細(xì)胞凋亡和分化的作用。
1材料
293T細(xì)胞為本室保存,SKNO-1細(xì)胞由上海交通大學(xué)醫(yī)學(xué)院陳國強(qiáng)教授惠贈。帶有PIG7開放讀碼框慢病毒表達(dá)載體pCDH-PIG7和PIG7反義RNA慢病毒載體pCDH-anti-PIG7 為本室構(gòu)建,包裝質(zhì)粒為本室保存。VPA購自Sigma,小鼠抗人PIG7抗體購自Abcam和小鼠抗人β-actin抗體購自Sigma。
2方法
2.1細(xì)胞培養(yǎng) 293T和SKNO-1細(xì)胞分別培養(yǎng)于含10%胎牛血清的DMEM和15%胎牛血清的RPMI-1640(Gibco)完全培養(yǎng)基,其中SKNO-1細(xì)胞需補(bǔ)充10 μg/L 人粒細(xì)胞-巨噬細(xì)胞集落刺激因子(human granulocyte-macrophage colong-stimulating factor,hGM-CSF),置于37 ℃、5%CO2培養(yǎng)箱中培養(yǎng)。
2.2細(xì)胞對藥物敏感性的MTT測定 SKNO-1細(xì)胞用培養(yǎng)基調(diào)整細(xì)胞密度為5×108/L,接種于96孔培養(yǎng)板,每孔100 μL,每組設(shè)3個平行孔,VPA濃度分別為0、0.15、0.3、0.6、1.25、2.5、5和10 mmol/L,處理24 h、48 h和72 h后,每孔加5 g/L MTT 10 μL,繼續(xù)培養(yǎng)4 h,每孔加入50 μL 10% SDS (含5 mmol/L HCl),振蕩混勻,37 ℃孵育過夜。用酶標(biāo)儀檢測各孔吸光度,根據(jù)吸光度計算細(xì)胞生長抑制率,根據(jù)線性回歸方程求出VPA的半數(shù)抑制濃度(IC50),選擇合適的VPA濃度進(jìn)行細(xì)胞凋亡和分化的檢測。
2.3細(xì)胞轉(zhuǎn)染和病毒制備 轉(zhuǎn)染前24 h將5×106293T細(xì)胞接種于10 cm培養(yǎng)板中,培養(yǎng)至50%~70%匯合度時進(jìn)行磷酸鈣沉淀法轉(zhuǎn)染。分別于轉(zhuǎn)染后48 h、60 h和72 h 收集培養(yǎng)上清于50 mL 離心管中,室溫1 000 r/min離心10 min,收集上清;使用0.45 μm濾器過濾病毒上清后,置于50 mL超速離心管中,4 ℃、50 000×g離心90 min,棄上清;以培養(yǎng)上清1/50體積加入無血清DMEM,重懸病毒沉淀,分裝后置-80 ℃冰箱保存。
2.4慢病毒感染及VPA處理SKNO-1細(xì)胞 將對數(shù)生長期的SKNO-1細(xì)胞以2×105/well接種于24孔板中,加入以無血清DMEM稀釋至500 μL 的病毒液及6 mg/L polybrene,6 h后換新鮮的含10% FBS的 RPMI-1640培養(yǎng)液繼續(xù)培養(yǎng)。
后續(xù)實驗分為pCDH空病毒感染組、pCDH-PIG7感染組、pCDH-anti-PIG7感染組、pCDH+VPA(1或2 mmol/L)處理組、pCDH-PIG7+VPA處理組和pCDH-anti-PIG7+VPA處理組。
2.5PIG7 mRNA及蛋白表達(dá)檢測 收集各組細(xì)胞分別進(jìn)行RT-PCR及Western blotting分析PIG7的 mRNA及蛋白表達(dá)。PIG7引物序列: 5’-GCAGTACGGTCTACGTGCAG-3’,5’-CTTGTAGGTGCCCAGGAGAG-3’,擴(kuò)增片段長251 bp。GAPDH引物序列:5’-GAAGGTGAAGGTCGGAGTC-3’, 5’-GAAGATGGTGATGGGATTTC-3’,擴(kuò)增片段長度225 bp。
細(xì)胞經(jīng)RIPA細(xì)胞裂解液裂解后,進(jìn)行聚丙烯酰胺-SDS凝膠電泳,用半干電轉(zhuǎn)儀將蛋白轉(zhuǎn)移到硝酸纖維素膜上,5%脫脂牛奶封閉2 h,1∶2 000稀釋的小鼠抗人PIG7抗體和小鼠抗人β-actin抗體室溫孵育1 h后,置于4 ℃過夜,1∶2 000稀釋的辣根過氧化物酶標(biāo)記的羊抗小鼠Ⅱ抗室溫孵育1 h,化學(xué)發(fā)光法顯影。
2.6Annexin-V/7-AAD檢測細(xì)胞凋亡 收集各組細(xì)胞,重懸于1×binding buffer并調(diào)節(jié)細(xì)胞濃度為1×109cells/L。取100 μL細(xì)胞懸液于流式管中,加入5 μL annexin-V/PE和(或)5 μL 7-AAD, 混勻后室溫避光孵育15 min,在反應(yīng)管中補(bǔ)加200 μL 1×binding buffer,流式細(xì)胞儀檢測,比較pCDH-PIG7組及pCDH-anti-PIG7單獨或聯(lián)合VPA組(1或2 mmol/L)細(xì)胞凋亡率的變化。
2.7DNA梯形片段電泳分析 離心收集2×106細(xì)胞,用1 mL裂解液吹打混勻,加入10 g/L RNase A 2 μL,37 ℃孵育2 h。再加入20 g/L蛋白酶K 5 μL,37 ℃消化3 h。Tris 飽和酚抽提1次,氯仿/異戊醇抽提2次,無水乙醇沉淀。將沉淀溶于TE 緩沖液,置于4 ℃ 24 h 以上,使其充分溶解,2%瓊脂糖凝膠電泳,照相。
2.8細(xì)胞分化抗原檢測 取1×106細(xì)胞,用含0.1% NaN3的PBS洗滌2次,加入5 μL PE標(biāo)記的人CD11b單克隆抗體,常溫避光孵育30 min,PBS洗滌,加入1%多聚甲醛PBS 300 μL固定,在2 h內(nèi)進(jìn)行流式細(xì)胞術(shù)檢測。
3統(tǒng)計學(xué)處理
采用SPSS 10.0軟件進(jìn)行統(tǒng)計學(xué)分析,計量資料用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,組間均數(shù)比較采用單因素方差分析,以P<0.05為差異有統(tǒng)計學(xué)意義。
1慢病毒感染及VPA處理后SKNO-1細(xì)胞PIG7的表達(dá)
pCDH-PIG7感染組及pCDH-PIG7+VPA處理組的PIG7 mRNA和蛋白表達(dá)水平顯著上調(diào),感染pCDH-anti-PIG7病毒的SKNO-1細(xì)胞PIG7 mRNA和蛋白的表達(dá)明顯受到抑制,見圖1。
Figure 1. The expression of PIG7 induced by lentivirus infection and VPA treatment. High levels of PIG7 product were detected in pCDH-PIG7 group, pCDH+VPA group and pCDH-PIG7+VPA group by RT-PCR (A) and Western blotting (B) after infected with lentivirus for 48 h. The up-regulated PIG7 expression was significantly abrogated by pCDH-anti-PIG7.
圖1病毒感染和VPA處理SKNO-1后PIG7的表達(dá)
2PIG7及VPA對SKNO-1細(xì)胞分化的影響
分別用0、0.15、0.30、0.60、1.25、2.50、5和10 mmol/L VPA處理SKNO-1細(xì)胞24 h、48 h和72 h,MTT結(jié)果顯示,VPA顯著抑制SKNO-1細(xì)胞的生長,并且有時間和劑量依賴性。pCDH-PIG7感染組CD11b陽性率 (17.1%) 較pCDH感染組 (8.2%) 明顯升高 (P<0.05)。經(jīng)1 mmol/L和2 mmol/L VPA處理后,pCDH-PIG7組CD11b分別升高到30.4%和42.4%,顯著高于pCDH+VPA組(P<0.05)。而轉(zhuǎn)染pCDH-anti-PIG7的SKNO-1細(xì)胞經(jīng)VPA處理前后CD11b陽性率均顯著低于pCDH-PIG7組 (P<0.05),見圖2。
3PIG7及VPA對SKNO-1細(xì)胞凋亡的影響
3.1Annexin-V/7-AAD檢測 pCDH-PIG7組細(xì)胞凋亡比例為20.3%,較pCDH組(6.8%)明顯升高(P<0.05)。經(jīng)1 mmol/L 和 2 mmol/L VPA處理后pCDH-PIG7組凋亡細(xì)胞分別升高至29.9%和61.4%,顯著高于pCDH組的12.4%和40.5%(P<0.05)。轉(zhuǎn)染pCDH-anti-PIG7的SKNO-1細(xì)胞經(jīng)VPA處理前后細(xì)胞凋亡率均比pCDH-PIG7組明顯降低 (P<0.05),見圖3。
Figure 2. The differentiation of SKNO-1 cells after lentivirus infection and VPA treatment.Mean±SD.n=3.*P<0.05vspCDH alone;#P<0.05vspCDH-PIG7 with the same concentration of VPA.
圖2病毒感染和VPA處理SKNO-1前后細(xì)胞分化抗原CD11b的表達(dá)
Figure 3. The apoptosis of SKNO-1 cells after lentivirus infection and VPA treatment.Mean±SD.n=3.*P<0.05,**P<0.01vspCDH alone;#P<0.05vspCDH-PIG7 with the same concentration of VPA.
圖3病毒感染和VPA處理對SKNO-1細(xì)胞凋亡的影響
3.2DNA梯形片段電泳分析 轉(zhuǎn)導(dǎo)pCHD-PIG7的SKNO-1細(xì)胞出現(xiàn)凋亡的典型梯形條帶,經(jīng)VPA處理后,pCDH-PIG7感染組的梯形條帶比pCDH組及pCDH-anti-PIG7組更為明顯,見圖4。
Figure 4. Typical DNA ladder was observed after lentivirus infection and VPA treatment in pCDH-PIG7 group and VPA group, especially in pCDH-PIG7+VPA group. No DNA ladder was observed in pCDH group and pCDH-anti-PIG7 group.M: marker.
圖4病毒感染和VPA處理SKNO-1細(xì)胞后細(xì)胞凋亡的DNA梯形條帶
PIG7,又稱脂多糖誘導(dǎo)的腫瘤壞死因子α因子(lipopolysaccharide-induced tumor necrosis factor-alpha factor,LITAF) 或 溶酶體/晚期內(nèi)體小膜內(nèi)在蛋白(small integral membrane protein of the lysosome/late endosome, SIMPLE),其羧基端含有高度保守的SIMPLE-樣結(jié)構(gòu)域,氨基端含有2個PPXY元件介導(dǎo)蛋白之間的相互作用。盡管其細(xì)胞定位和作用在不同細(xì)胞中并不一致,但大多研究認(rèn)為其在LPS誘導(dǎo)的TNF-α表達(dá)過程中起轉(zhuǎn)錄激活作用,定位于晚期內(nèi)體/溶酶體、高爾基體或細(xì)胞膜,參與蛋白分泌和降解途徑[6-8]。
轉(zhuǎn)錄因子AML1在胚胎形成初期即已出現(xiàn)并廣泛表達(dá)于所有造血細(xì)胞,它與抑癌因子核心結(jié)合因子β形成異二聚體,通過調(diào)節(jié)多種造血相關(guān)基因來促進(jìn)造血干細(xì)胞的發(fā)育和分化。t(8;21)易位形成的特異性融合蛋白AML1-ETO作為轉(zhuǎn)錄抑制因子,異常募集核輔助抑制復(fù)合物N-CoR/mSin3/HDAC,使組蛋白脫乙酰化而抑制AML1靶基因的轉(zhuǎn)錄,干擾AML1的正常功能,抑制造血干/祖細(xì)胞分化成熟,是t(8;21) 急性髓系白血病發(fā)生的重要機(jī)制。HDACi通過抑制HDAC活性使組蛋白乙酰化,重新激活受抑制的基因,誘導(dǎo)多種腫瘤細(xì)胞生長阻滯、分化及凋亡。
研究發(fā)現(xiàn)VPA可有效地抑制肝癌細(xì)胞HepG2的增殖并誘導(dǎo)其發(fā)生線粒體依賴的凋亡,與地西他濱聯(lián)合應(yīng)用可顯著促進(jìn)胃癌細(xì)胞MGC-803的凋亡和G0/G1期的阻滯[9-10]。VPA已在臨床用于治療急性髓系白血病和骨髓增殖性疾病[11-12]。VPA可抑制P糖蛋白(P-gP) 和多藥耐藥相關(guān)蛋白(MRP1)高表達(dá)的白血病細(xì)胞增殖,并誘導(dǎo)其凋亡,但對Bcl-2高表達(dá)的白血病細(xì)胞卻無能為力[13]。當(dāng)VPA與Bcl-2的小分子配體HAl4-1聯(lián)合應(yīng)用時可促進(jìn)高表達(dá)Bcl-2的人急性B細(xì)胞白血病BALL-1的凋亡,并明顯延長接種了BALL-1細(xì)胞的NOD/SCID小鼠的生存期[14]。因而,對多種耐藥白血病應(yīng)探索新的聯(lián)合用藥方案。
我們的前期研究發(fā)現(xiàn),作為一種HDACi,苯丁酸鈉可以誘導(dǎo)t(8;21)白血病細(xì)胞系Kasumi-1分化、凋亡,同時伴有PIG7基因表達(dá)顯著上調(diào)[4]。AML1能夠與PIG7的啟動子區(qū)結(jié)合并促進(jìn)PIG7的轉(zhuǎn)錄和表達(dá),AML1-ETO競爭性拮抗這種活化作用,過表達(dá)PIG7能夠促進(jìn)部分白血病細(xì)胞的分化和凋亡[15]。SKNO-1細(xì)胞來源于t(8;21)白血病患者,攜帶有特征性AML1-ETO融合蛋白。在SKNO-1細(xì)胞中過表達(dá)PIG7并加入VPA,SKNO-1細(xì)胞的分化和凋亡水平均比單純轉(zhuǎn)染PIG7或單用VPA顯著升高,表明PIG7的過表達(dá)和VPA聯(lián)合應(yīng)用對帶有AML1-ETO融合蛋白的白血病細(xì)胞的分化和凋亡具有協(xié)同效應(yīng),對于臨床聯(lián)合用藥具有新的指導(dǎo)意義。推測PIG7和VPA聯(lián)合應(yīng)用可能通過PIG7部分封閉AML1-ETO的作用, 加上VPA抑制HDAC活性, 重新激活因AML1-ETO募集核輔助抑制復(fù)合物而表達(dá)受阻的基因,誘導(dǎo)白血病細(xì)胞的分化凋亡,二者具體作用機(jī)制還需更深入的研究。
[1] Abba MC, Drake JA, Hawkins KA, et al. Transcriptomic changes in human breast cancer progression as determined by serial analysis of gene expression [J]. Breast Cancer Res, 2004, 6(5):R499-R513.
[2] Mestre-Escorihuela C, Rubio-Moscardo F, Richter JA, et al. Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas [J]. Blood, 2007, 109(1):271-280.
[3] Kokkinakis DM, Brickner AG, Kirkwood JM, et al. Mitotic arrest, apoptosis, and sensitization to chemotherapy of melanomas by methionine deprivation stress [J]. Mol Cancer Res, 2006, 4(8):575-589.
[4] Wang D, Liu J, Tang K, et al. Expression ofpig7 gene in acute leukemia and its potential to modulate the chemosensitivity of leukemic cells [J]. Leuk Res, 2009, 33(1):28-38.
[5] Mottet D, Castronovo V. Histone deacetylases: target enzymes for cancer therapy [J]. Clin Exp Metastasis, 2008, 25(2):183-189.
[6] Moriwaki Y, Begum NA, Kobayashi M, et al.MycobacteriumbovisBacillus Calmette-Guerin and its cell wall complex induce a novel lysosomal membrane protein, SIMPLE, that bridges the missing link between lipopolysaccharide and p53-inducible gene,LITAF(PIG7), and estrogen-inducible gene,EET-1 [J]. J Biol Chem, 2001, 276(25):23065-23076.
[7] Eaton HE, Desrochers G, Drory SB, et al. SIMPLE/LITAF expression induces the translocation of the ubiquitin ligase itch towards the lysosomal compartments [J]. PLoS One, 2011, 6(2):e16873.
[8] Eaton HE, Metcalf J, Lacerda AF, et al. Accumulation of endogenous LITAF in aggresomes [J]. PLoS One, 2012, 7(1):e30003.
[9] Wang W, Liao XL, Chen JH, et al. Sodium valproate induces mitochondria-dependent apoptosis in human hepatoblastoma cells [J]. Chin Med J (Engl), 2011, 124(14):2167-2172.
[10] 張國強(qiáng), 彭敏霞, 王曄愷, 等. 地西他濱聯(lián)合丙戊酸鈉促進(jìn)胃癌MGC-803細(xì)胞凋亡和G0/G1期阻滯的機(jī)制研究[J]. 中國病理生理雜志,2012,28(10):1856-1860.
[11] Kuendgen A, Schmid M, Schlenk R, et al. The histone deacetylase (HDAC) inhibitor valproic acid as monotherapy or in combination with all-transretinoic acid in patients with acute myeloid leuke-mia [J]. Cancer, 2006, 106(1):112-119.
[12] Voso MT, Santini V, Finelli C, et al. Valproic acid at therapeutic plasma levels may increase 5-azacytidine efficacy in higher risk myelodysplastic syndromes [J]. Clin Cancer Res, 2009, 15(15):5002-5007.
[13] Tang R, Faussat AM, Majdak P, et al. Valproic acid inhibits proliferation and induces apoptosis in acute myeloid leukemia cells expressing P-gp and MRP1 [J]. Leukemia, 2004, 18(7):1246-1251.
[14] 薛紅漫, 陳 純, 張建瑜, 等. VPA聯(lián)合HA14-1對Bcl-2高表達(dá)的BALL-1 細(xì)胞作用的實驗研究[J]. 中國病理生理雜志, 2006, 22(11):2227-2230.
[15] Liu J, Xing H, Chen Y, et al. PIG7, transactivated by AML1, promotes apoptosis and differentiation of leukemia cells withAML1-ETOfusion gene [J]. Leukemia, 2012, 26(1):117-126.
PIG7andvalproicacidpromotedifferentiationandapoptosisofhumanleukemiaSKNO-1cells
XING Hai-yan, CHEN Yi-rui, LIU Jia-zhuo, TANG Ke-jing, TIAN Zheng, RAO Qing, WANG Min, WANG Jian-xiang
(StateKeyLaboratoryofExperimentalHematology,InstituteofHematology&BloodDiseaseHospital,ChineseAcademyofMedicalSciences&PekingUnionMedicalCollege,Tianjin300020,China.E-mail:wangjx@ihcams.ac.cn)
AIM: To investigate the synergistic effect of p53-inducible gene 7 (PIG7) and histone deacetylase (HDAC) inhibitor valproic acid (VPA) on the differentiation and apoptosis of human leukemia SKNO-1 cells.METHODSThe DNA fragments containingPIG7 open reading frame or antisense oligonucleotides were subcloned into lentiviral vector. SKNO-1 cells were transduced with prepared lentivirus. Transgene expression was detected by semi-quantitative RT-PCR and Western blotting. The expression of myeloid cell differentiation antigen CD11b and the apoptotic cells were analyzed by flow cytometry. DNA fragmentation analysis was also used to observe the apoptosis of SKNO-1 cells.RESULTSVPA inhibited the proliferation of SKNO-1 cells in a dose- and time-dependent manner. Compared with control group, the differentiation and apoptosis of SKNO-1 cells were significantly induced by ectopically expressed PIG7 (P<0.05). The apoptosis induced by ectopically expressed PIG7 was further enhanced by VPA treatment (P<0.05), and the typical DNA ladders were also observed. The proportion of CD11b+SKNO-1 cells notably increased after infection with lentivirus containingPIG7 as compared with empty vector group (P<0.05). Up-regulation of PIG7 also enhanced the susceptibility of the cells to the induction of differentiation by VPA.CONCLUSIONVPA inhibits the proliferation and induces the differentiation and apoptosis of SKNO-1 cells. Enforced expression of PIG7 enhances the differentiation and apoptosis of SKNO-1 cells and promotes the sensitivity of SKNO-1 cells to VPA. Over-expression of PIG7 combined with VPA may provide a new strategy for treatment of leukemia.
p53-inducible gene 7; Valproic acid; Histone deacetylase; Leukemia; Apoptosis
R733.7
A
10.3969/j.issn.1000- 4718.2013.06.009
1000- 4718(2013)06- 1009- 05
2012- 12- 05
2013- 05- 02
國家自然科學(xué)基金資助項目(No.30971290;No.81270635)
△通訊作者 Tel: 022-23909120; E-mail: wangjx@ihcams.ac.cn
▲共同第一作者
#現(xiàn)工作單位: 四川大學(xué)華西醫(yī)院血液科, 四川 成都 610041