張征數(shù)
(山西省機電設(shè)計研究院,太原 030009)
當今節(jié)能性、安全性、舒適性和易維修性正受到國際工程車輛行業(yè)的普遍關(guān)注,逐步成為衡量產(chǎn)品質(zhì)量與技術(shù)水平的重要標志[1]。目前,大部分工程車輛采用半剛性和剛性懸架,在車輛行駛時產(chǎn)生的自激振動易造成車輛縱向仰俯振動、反彈、附著力下降等現(xiàn)象(如圖1所示),僅依靠輪胎減振已無法滿足車輛快速、平穩(wěn)行駛的要求,必須采取有效措施控制整機的振動。國外的一些相關(guān)企業(yè)在解決此問題時,根據(jù)油氣懸架的減振原理提出了應(yīng)用行駛穩(wěn)定系統(tǒng)進行相應(yīng)控制的新方法,主要有被動蓄能式行駛穩(wěn)定系統(tǒng)、可充液蓄能式行駛穩(wěn)定系統(tǒng)等。行駛穩(wěn)定系統(tǒng)將工程車輛的工作裝置油缸作為液力減振器,可通過控制車架與工作裝置間的耦合振動來快速消除整機的振動[2]。國內(nèi)的一些企業(yè)、研究機構(gòu)、高校對油氣懸架進行了多方面的研究,但主要以仿真為主,缺少對油氣懸架進行系統(tǒng)性和基礎(chǔ)性的研究。由于缺乏必要的分析方法和設(shè)計理論的指導(dǎo),消化國外引進技術(shù)時無法考慮整機的耦合減振控制問題,嚴重制約著國內(nèi)工程車輛的發(fā)展。
隨著國際環(huán)保法規(guī)的日趨嚴格,世界上許多國家已將工程車輛振動和噪聲指標作為限制進口的技術(shù)壁壘,國產(chǎn)工程車輛在整車振動和噪聲控制技術(shù)方面差距較大,僅以價格而非高技術(shù)含量為依托的出口優(yōu)勢正在減弱[3]。與油氣懸架系統(tǒng)不同,因車輛的行駛穩(wěn)定系統(tǒng)與整車結(jié)構(gòu)、液壓系統(tǒng)、工作裝置、行走機構(gòu)等多個系統(tǒng)相關(guān),國內(nèi)外尚無系統(tǒng)的設(shè)計理論[4],對工程車輛行駛過程中的減振控制研究仍主要集中在油氣懸架方面[5-6]。筆者將建立具有行駛穩(wěn)定系統(tǒng)的整車機液耦合多系統(tǒng)模型,研究不同行駛工況下系統(tǒng)主要參數(shù)對車輛行駛平順性的影響規(guī)律,為工程車輛行駛穩(wěn)定系統(tǒng)耦合減振控制理論與現(xiàn)代設(shè)計方法提供理論依據(jù)。
本文在建立裝載機虛擬樣機模型的基礎(chǔ)上[7],將后橋和鏟斗質(zhì)心作為測試點,以加速度均方根值作為評價車輛行駛平順性的指標,研究行駛穩(wěn)定系統(tǒng)中蓄能器初始充氣壓力、額定容積、節(jié)流參數(shù)以及管路直徑等結(jié)構(gòu)參數(shù)對行駛平順性的影響,為工程車輛行駛穩(wěn)定系統(tǒng)的設(shè)計提供依據(jù)。
輪式裝載機結(jié)構(gòu)較為復(fù)雜,但僅從研究減振系統(tǒng)對整機振動衰減影響考慮,可以對輪式裝載機結(jié)構(gòu)進行簡化,只要能夠反映其實際振動情況即可[8]。為提高仿真的精度,本文在ADAMS/view環(huán)境下建立輪式裝載機三維模型。在建立模型時,忽略鏟斗連桿機構(gòu)和鏟斗油缸,將動臂和鏟斗看作一個構(gòu)件,重點考慮動臂舉升機構(gòu)(包括油缸和活塞桿)模型、輪胎模型的建立。機械模型建立后,根據(jù)構(gòu)件的運動情況相應(yīng)地添加驅(qū)動和約束條件,建立裝載機的簡化系統(tǒng)動力學(xué)模型,如圖2所示。
圖2 機械模型
ADAMS/Hydraulics模塊能夠很好地耦合機械系統(tǒng)模塊,模擬復(fù)雜液壓機械系統(tǒng)的動力學(xué)性能[9]。Hydraulics模塊自身擁有液壓元件和液壓油等模型,在ADAMS/View中加載該模塊后,可建立行駛穩(wěn)定液壓系統(tǒng)與整機相互作用的模型,確定液壓元件的參數(shù),并按照圖3將各元件連接起來。為了保證虛擬樣機模型的準確性,必須對其進行檢驗。
圖3 裝載機行駛穩(wěn)定系統(tǒng)
根據(jù)裝載機的工作環(huán)境情況,在建立D級路面數(shù)學(xué)模型時,使用有理函數(shù)參數(shù)估計方法;在建立D級路面激勵時域仿真模型時,采用ADAMS和MATLAB軟件。式(1)是單個車輪的路面激勵時域數(shù)學(xué)模型:
式中:q(t)為車輪受到的路面隨機激勵;w(t)為白噪聲;v為車速,取15km/h,即4.167m/s;α為所選路面的空間頻率,D級路面的α=0.1007(1/m)。
由式(1)得到的單輪D級路面時域激勵信號見圖4所示。
圖4 單輪D級路面時域激勵信號
裝載機行駛時基本不產(chǎn)生橫向振動,因此本文僅考慮整機的垂直和縱向俯仰振動。假設(shè)兩側(cè)車輪輸入的路面激勵相同,不考慮輪距的影響,則加在裝載機前輪上的路面激勵相當于超前后輪路面激勵一段時間,超前的時間為車的行駛速度與軸距之比。為了解決時間超前給模擬與分析帶來的不便,可用ADAMS中的AKISPL和STEP函數(shù)來解決。在ADAMS的SPLINE樣條元素中存放由MATLAB生成的路面不平度數(shù)據(jù),用CUBSPL或AKISPL函數(shù)插值計算離散數(shù)據(jù)的中間點,從而模擬路面激勵。
用ConstantBDF算法仿真ZL50裝載機空載和滿載狀態(tài)的模型,仿真時間為50s,步長為0.01。減振系統(tǒng)開通后,可根據(jù)鏟斗滿載時的總質(zhì)量和幾何關(guān)系得到油缸處于平衡位置時的內(nèi)部壓力。必須保證蓄能器的初始充氣壓力以使行駛穩(wěn)定系統(tǒng)發(fā)揮作用,同時保證仿真是從平衡位置開始。
在其他結(jié)構(gòu)參數(shù)不變、蓄能器額定容積為10 L、節(jié)流閥最大水力直徑為10mm、管路直徑為25 mm的情況下,在一定范圍內(nèi)調(diào)整蓄能器的初始充氣壓力,考察加速度均方根值隨充氣壓力的變化情況。滿載時加速度均方根值隨充氣壓力變化情況見圖5所示??蛰d時,為使穩(wěn)定系統(tǒng)發(fā)揮作用,蓄能器初始充氣壓力應(yīng)小于2.3MPa,加速度均方根值隨充氣壓力變化的仿真結(jié)果見圖6所示。
從圖5可知,隨著蓄能器初始充氣壓力的增加,后橋與鏟斗的加速度均方根值都減小;但后橋的加速度均方根值隨充氣壓力的增加衰減比較平緩,而鏟斗的加速度均方根值隨充氣壓力的增加衰減較快,說明在充氣壓力相同的條件下,后橋的振動衰減效果沒有鏟斗好。
圖5 滿載時充氣壓力的影響曲線
圖6 空載時充氣壓力的影響曲線
從圖6可以看出,開通減振系統(tǒng)后,后橋加速度均方根值的降低不如鏟斗降低的明顯。蓄能器初始充氣壓力對加速度均方根值影響很小,隨著充氣壓力的增大,后橋的加速度均方根值緩慢增大,鏟斗的加速度均方根值緩慢減小。
在其他結(jié)構(gòu)參數(shù)不變、蓄能器初始充氣壓力3.5MPa、管路直徑為25mm、節(jié)流閥最大水力直徑為10mm的情況下,調(diào)整蓄能器額定容積在一定范圍內(nèi)變化,考察加速度均方根值隨充氣壓力變化的情況。滿載情況下的仿真結(jié)果見圖7所示。蓄能器初始充氣壓力取1MPa,其他結(jié)構(gòu)參數(shù)固定不變,空載情況下加速度均方根值隨充氣壓力變化的仿真結(jié)果見圖8所示。
圖7 滿載時額定容積的影響曲線
從圖7中可以看出,隨著蓄能器額定容積的增加,后橋和鏟斗的加速度均方根值都減小,但后橋的加速度均方根值隨額定容積的增加衰減的比較平緩,而鏟斗的加速度均方根值隨額定容積的增加衰減的較快,說明在額定容積相同的情況下,后橋的振動衰減效果沒有鏟斗好。當蓄能器額定容積為1.6 L時,后橋的加速度均方根值為0.71m/s2,鏟斗的為1.02m/s2,其加速度均方根值比沒有開通減振系統(tǒng)時還要大。這表明如果蓄能器額定容積太小,會加劇后橋和鏟斗振動。
圖8 空載時額定容積的影響曲線
從圖8可以看出,隨著蓄能器額定容積的增大,后橋的加速度均方根值增大,鏟斗的加速度均方根值減小。額定容積由1.6L變化到6.3L過程中,后橋的加速度均方根值迅速升高,鏟斗的加速度均方根值迅速下降。額定容積大于6.3L后,后橋和鏟斗的加速度均方根值變化趨緩。
在ADAMS/Hydraulics模塊中,油液流量的控制是通過改變節(jié)流閥的最大水力直徑來實現(xiàn)的。在下述條件下考察加速度均方根值隨節(jié)流閥的最大水力直徑變化情況:蓄能器額定容積10L,蓄能器初始充氣壓力3.5MPa,管路直徑25mm,油液密度900kg/m3,節(jié)流閥流量系數(shù)0.6,臨界雷諾數(shù)50。滿載情況下,節(jié)流閥對平順性的影響仿真結(jié)果見圖9所示。
圖9 滿載時最大水力直徑的影響曲線
從圖9可知,后橋和鏟斗的加速度均方根值隨著最大水力直徑的增加先減小后增大。后橋和鏟斗的加速度均方根值最小處對應(yīng)的最大水力直徑分別為6mm和8mm。后橋的加速度變化規(guī)律與鏟斗的加速度變化規(guī)律大致一樣,但如果最大水力直徑太大,后橋的振動加速度比沒有開通減振系統(tǒng)時還要大,這表明最大水力直徑太大,會加劇后橋的振動程度。
同樣,在取蓄能器初始充氣壓力為1MPa,其他所有參數(shù)與滿載情況相同的空載情況下,節(jié)流閥對平順性的影響仿真結(jié)果見圖10所示。
圖10 空載時最大水力直徑的影響曲線
從圖10可以看出,后橋和鏟斗的加速度均方根值隨著最大水力直徑的增加都經(jīng)歷了先減小后增大的變化過程。后橋加速度均方根值最小處對應(yīng)的最大水力直徑為5mm,當最大水力直徑大于15mm時,后橋的振動加速度比減振系統(tǒng)沒有開通時還要大。在最大水力直徑小于15mm時,隨著最大水力直徑的增加,鏟斗的加速度均方根值逐漸減?。划斪畲笏χ睆酱笥?5mm時,鏟斗的加速度均方根值隨著最大水力直徑的增加開始逐漸增大,但變化平緩。
1)蓄能器初始充氣壓力不可過小或過大,否則起不到減振效果。滿載時,隨充氣壓力的增加,鏟斗的加速度衰減高于后橋,有利于防止物料的拋灑。充氣壓力對空載時的減振效果影響較小。
2)滿載時蓄能器額定容積對鏟斗加速度的影響比對后橋的影響大,額定容積越大,減振性能越好??蛰d時,蓄能器額定容積增大,鏟斗減振效果增強,而后橋減振效果變差。在裝載機安裝空間的限制范圍內(nèi),應(yīng)盡可能選用大容量蓄能器。
3)只有控制好節(jié)流閥的最大水力直徑,才能有效控制車身和鏟斗的振動,否則會加劇其振動程度。
4)裝載機行駛穩(wěn)定系統(tǒng)蓄能器初始充氣壓力、額定容積與節(jié)流閥水力直徑間的優(yōu)化配合能夠使裝載機獲得良好的減振效果,不同使用工況下的減振可通過節(jié)流閥進行調(diào)節(jié)。
[1]ICC.輪式裝載機的進步[J].建筑機械,2008(4):52-55.
[2]劉杰,林慕義,孫大剛.耦合減振系統(tǒng)對裝載機行駛平順性的影響[J].工程機械,2007,38(4):21-24.
[3]李鶴鵬.以科技創(chuàng)新推動工程機械行業(yè)向低碳經(jīng)濟轉(zhuǎn)型[J].工程機械,2009,40(11):73-76.
[4]劉杰.工程車輛耦合減振控制系統(tǒng)研究[D].太原:太原科技大學(xué),2007.
[5]Els Theron P S,Uys N J,Thoresson P E.The ride comfort vs handling compromise for off-road vehicles[J].Journal of Terramechanics,2007,44(4):303-317.
[6]Velmurugan P,Kumaraswamidhas L A.Investigation on influence of stiffness and hydro-pneumatic suspension for dynamic analysis of a heavy truck using ADAMS simulation[J].International Journal of Human Factors Modelling and Simulation,2011(3):204-221.
[7]劉杰,林慕義,孫大剛.輪式裝載機行駛穩(wěn)定系統(tǒng)減振性能分析[J].農(nóng)業(yè)機械學(xué)報,2007,38(10):182-185.
[8]徐格寧,∞獗.基于Pro/E和 ADAMS的輪式裝載機行駛穩(wěn)定系統(tǒng)分析[J].中國工程機械學(xué)報,2011,9(1):92-97.
[9]趙武云.ADAMS基礎(chǔ)與應(yīng)用實例教程[M].北京:清華大學(xué)出版社,2012.