鄧義華
單位球面上M?ebius形式平行且仿Blaschke張量的特征值為常數(shù)的超曲面
鄧義華
(衡陽師范學(xué)院數(shù)學(xué)與計算科學(xué)系,湖南,衡陽 421008)
對超曲面的分類是M?ebius幾何中感興趣的課題。本文研究了單位球面上M?ebius形式平行且仿Blaschke張量的特征值為常數(shù)的超曲面的分類問題。運用Blaschke張量的特征值,本文得到了一類超曲面的M?ebius形式平行與M?ebius形式為零之間的一些關(guān)系。在此基礎(chǔ)上將鐘定興、孫弘安2008年得到的M?ebius形式為零時單位球面上超曲面的分類定理推廣到了M?ebius形式平行的情形。
仿Blaschke張量;M?ebius形式平行;超曲面;M?ebius不變量
則結(jié)構(gòu)方程的可積條件為:
則有Ricci恒等式
由(1.3)與(1.5)式得
從而由(2.8)與(2.1)得
于是
由(2.1)、(2.3)和(2.13)式得
由(1.7)與(2.14)得
由(2.1)、(2.7)及(2.16)式得
又因為
由定理2.1與定理2.2及定理A即可得到下面的分類定理:
則定理A的結(jié)論(i)和(ii)中必有一個成立。
[1] Liu H L, Wang C P, Zhao G S. Moebius isotropic submanifolds in Sn[J].Tohoku Math.J.,2001, 53: 553-569.
[2] 張廷枋. Sn+1中Moebius 形式平行的超曲面[J].數(shù)學(xué)進(jìn)展,2003,32(2):230-238.
[3] Li X X, Zhang F Y. A classification of immersed hypersurfaces in Sn+1with constant Blaschke eigenvalues[J]. Acta Mathematica Sinica: English Series, 2007, 23(3): 533-548.
[4] Li H, Wang C P. Moebius geometry of hypersurfaces with constant mean curvature and constant scalar curvature[J]. Mamuscripta Math., 2003, 112: 1-13.
[5] 夏巧玲. 關(guān)于具有常平均曲率和數(shù)量曲率超曲面的Moebius幾何的一個注記[J]. 數(shù)學(xué)進(jìn)展, 2006,35(6):677-684.
[6] 鐘定興,孫弘安,張廷枋. S5上仿Blaschke張量的特征值為常數(shù)的超曲面[J]. 數(shù)學(xué)學(xué)報,2010,53(2):263-278.
[7] 鐘定興,孫弘安. 單位球面上仿Blaschke張量的特征值為常數(shù)的超曲面[J].數(shù)學(xué)學(xué)報,2008,51(3):579-592.
[8] Wang C P. Moebius geometry of submanifolds in Sn[J]. Mamuscripta Math., 1998, 96: 517-534.
THE HYPERSURFACES WITH PARALLEL MOEBIUS FORM AND CONSTANT PARA-BLASCHKE EIGENVALUES IN UNIT SPHERES
DENG Yi-hua
( Department of Mathematics and Computing Sciences, Hengyang Normal University, Hengyang, Hunan 421008 , China)
It is interesting to classify hypersurfaces in M?ebius geometry. We focus on the classification of hypersurfaces with parallel M?ebius form and constant Para-Blaschke eigenvalues in unit spheres. Some relations between a class of hypersurfaces with parallel M?ebius form and wanishing M?ebius form are obtained based on Para-Blaschke eigenvalues. Furthermore, a theorem obtained by Zhong and Sun in 2008 on the classification of immersed hypersurfaces with wanishing M?ebius form is generalized to the immersed hypersurfaces with parallel M?ebius form in unit spheres.
Para-Blaschke tensor; parallel M?ebius form; hypersurfaces; M?ebius invariants
O186.12
A
10.3969/j.issn.1674-8085.2013.01.001
1674-8085(2013)01-0001-04
2012-09-18;
2012-12-06
湖南省自然科學(xué)基金項目(09JJ6004); 湖南省教育廳優(yōu)秀青年項目(08B010)
鄧義華(1971-),男,湖南郴州人,教授,碩士,主要從事微分幾何研究(E-mail: dengchen4032@126.com).