萬青,曹偉佳,張常青,劉嶸明,梁麗亞,陳可泉,馬江鋒,2,姜岷
1 南京工業(yè)大學(xué) 生物與制藥工程學(xué)院 材料化學(xué)工程與國家重點(diǎn)實(shí)驗(yàn)室,江蘇 南京 211816
2 中國石化揚(yáng)子石油化工有限公司南京研究院,江蘇 南京 210048
大腸桿菌Escherichia coli AFP111是NZN111(△pflAB△ldhA)的ptsG自發(fā)突變株,其恢復(fù)了在厭氧條件下代謝葡萄糖的能力[1-2]。在AFP111中,轉(zhuǎn)化1 mol木糖合成丁二酸的過程中凈產(chǎn)生1.67 mol的ATP,但是轉(zhuǎn)化1 mol的木糖合成丁二酸的過程中實(shí)際需要2.67 mol的ATP[3-4]。因此,ATP供給不足導(dǎo)致AFP111不能代謝木糖并合成丁二酸[5]。本課題組為了獲得可以在厭氧條件下代謝木糖的菌株,嘗試用誘變的方法來選育目的菌株。
常溫常壓等離子體誘變系統(tǒng) (ARTP)由清華大學(xué)研發(fā),通過 ARTP所產(chǎn)生的射線和活性粒子束對菌株的遺傳物質(zhì)造成損傷,從而引起菌株的突變[6-7]。ARTP具有射流溫度低、產(chǎn)生的等離子體均勻、無需真空裝置、操作簡易、成本低、與生物大分子和細(xì)胞作用明顯等優(yōu)點(diǎn)[8],已成為快速突變微生物基因組的有效方法。本研究通過利用ARTP常溫常壓等離子體誘變系統(tǒng)對出發(fā)菌株AFP111進(jìn)行誘變,通過以木糖為碳源的固體平板篩選,最終得到一株在厭氧條件下可以代謝木糖并積累丁二酸的突變株。
Escherichia coli strain AFP111 [F+ λrpoS396(Am)rph-1 △(pflAB::Cam)△(ldhA::Kan)△ptsG],由David P. Clark 教授 (Southern Illinois University)惠贈(zèng)。
1.2.1 ARTP誘變
利用常壓室溫等離子體育種機(jī) (ARTP)進(jìn)行誘變[9]。以氦氣為氣體,ARTP射頻等離子體的氣體流量為 10 L/min;作用距離 2 mm;作用功率120 W。將培養(yǎng)好的種子用0.85%的生理鹽水稀釋至OD600=1,取10 μL菌液均勻涂布于無菌金屬平板上,利用無菌風(fēng)將菌液吹干;ARTP處理適當(dāng)?shù)臅r(shí)間,將誘變后的菌體置于裝有1 mL無菌生理鹽水的離心管中;將菌液稀釋 1×104涂布于固體平板上,37 ℃厭氧培養(yǎng)。
1.2.2 搖瓶培養(yǎng)
用接種環(huán)從平板上挑取單菌落,接種到裝液量為5 mL LB的血清瓶中,加入2~3 g/L木糖,通入無菌過濾的CO2氣體2 min,37 ℃、200 r/min培養(yǎng)12 h作為一級(jí)種子。將一級(jí)種子按10%的接種量接種到裝液量為30 mL M9培養(yǎng)基的血清瓶中,加入20 g/L木糖,通入無菌過濾的CO2氣體2 min,37 ℃、200 r/min培養(yǎng)72 h。
1.2.3 分析方法和酶活分析
細(xì)胞生長用紫外可見分光光度計(jì)于波長600 nm處測定吸光度值。有機(jī)酸、木糖用高效液相色譜法 (HPLC)檢測[10]。磷酸烯醇式丙酮酸羧激酶(PCK)和磷酸烯醇式丙酮酸羧化酶 (PPC)酶活的測定方法見參考文獻(xiàn)[11]。
由圖1可以看出,等離子體對AFP111的殺傷力比較強(qiáng),ARTP處理6 s會(huì)殺死80%的菌體;處理10 s以后致死率達(dá)到90%以上;處理30 s致死率達(dá)到100%。據(jù)文獻(xiàn)報(bào)道,當(dāng)存活率為1%~10%時(shí),外界處理對細(xì)胞的誘變效應(yīng)較強(qiáng)[12-13],本實(shí)驗(yàn)選取15 s對細(xì)胞進(jìn)行處理。
以平板上菌落的大小作為初選條件,并輔以HPLC精確檢測突變菌株產(chǎn)酸性能,最后篩選到4株性能良好的菌株,將此 4株菌進(jìn)行厭氧搖瓶發(fā)酵驗(yàn)證,其發(fā)酵結(jié)果見表1。
由表 1可以看出,在厭氧條件下,出發(fā)菌株根本無法代謝木糖,而突變株可以在厭氧條件代謝木糖并積累丁二酸,其中突變株DC111生長及產(chǎn)酸的性能最好,發(fā)酵 72 h菌體 OD600達(dá)到了2.26,丁二酸產(chǎn)量為 6.46 g/L,丁二酸得率為0.78 mol/mol,并且其在厭氧條件下的生長和耗糖曲線,如圖2所示。
圖1 大腸桿菌AFP111的致死率曲線Fig. 1 Variaton of the lethal rate of AFP111 with the ARTP treatment time.
在 AFP111厭氧發(fā)酵途徑中, 磷酸烯醇式丙酮酸羧化酶 (PPC)和磷酸烯醇式丙酮酸羧化激酶 (PCK)皆可催化由磷酸烯醇式丙酮酸 (PEP)到草酰乙酸 (OAA)的反應(yīng)[14]。而由PCK催化的反應(yīng)伴有ATP的生成[15-16],對突變株和出發(fā)菌株的PPC和PCK比酶活測定,結(jié)果如表2所示。
由表2可以看出,突變株DC111中的PCK的比酶活提高了19.33倍,而PPC的比酶活降低了2.32倍。因此,在 DC111中,PEP轉(zhuǎn)化為 OAA的反應(yīng)PCK起到了主導(dǎo)作用,而在PCK催化過程中伴有1 molATP的生成[7],從而使DC111在厭氧條件下能夠有足夠的ATP供給來代謝木糖并積累丁二酸。
表1 AFP111和突變株純厭氧發(fā)酵性能比較Table 1 Comparation between AFP111 and the mutants
圖2 DC111的生長和耗糖曲線Fig. 2 Anaerobic growth and xylose consumption of DC111.
表2 DC111和AFP111的比酶活Table 2 Specific activities of PPC and PCK in crude extractsof the strain DC111 and AFP111
[1]Chatterjee R, Millard CS, Champion K, et al. Mutation of the ptsG gene results in increased production ofsuccinate in fermentation of glucose by Escherichia coli. Appl Environ Microbiol, 2001, 67: 148–154.
[2]Donnelly MI, Millard CS, Clark DP, et al. A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, and ethanol. Appl Biochem Biotechnol, 1988, 70(72): 187–198.
[3]Hasona A, Kim Y, Healy FG, et al. Pyruvate formate lyase and acetate kinase are essential for anaerobicgrowth of Escherichia coli on xylose. J Bacteriol, 2004, 186: 7593–7600.
[4]Andersson C, Hodge D, Berglund KA, et al. Effect of differentcarbon sources on the production of succinic acid using metabolicallyengineered Escherichia coli. Biotechnol Prog, 2007, 23: 381–388.
[5]Gonzalez R, Tao H, Shanmugam KT, et al. Global gene expression differences associated with changes inglycolytic flux and growth rate in Escherichia coli during thefermentation of glucose and xylose. Biotechnol Prog, 2002, 18: 6–20.
[6]Lu Y, Wang LY, Ma K, et al. Characteristics of hydrogen production of an Enterobacter aerogenes mutantgenerated by a new atmospheric and room temperature plasma(ARTP). Biochem Engin J, 2011, 55: 17–22.
[7]Li G, Li HP, Wang YL, et al. Genetic effects of radio-frequency, atmospheric-pressureglow discharges with helium. Appl Phys Lett, 2008, 92: 221504.
[8]Li HP, Li G, Sun WT, et al. Radio-frequency,atmospheirc-pressureglow discharges: producingmethods,characteristics and applications in bio-medicalfields.Complex Systems, 2008, 982: 584-591.
[9]Guo T, Tang Y, Xi YL, et al. Clostridium beijerinckii mutant obtained by atmosphericpressure glow discharge producing high proportionsof butanol and solvent yields.Biotechnol Lett, 2011, 33: 2379–2383.
[10]Liu RM, Liang LY, Chen KQ, et al. Fermentation of xylose to succinate by enhancement of ATPsupply in metabolically engineered Escherichia coli. Appl Microbiol Biotechnol,2012, 94: 959–968.
[11]Wu H, Min LZ, Zhou L, et al. Improved succinic acidproduction in the anaerobic culture of an Escherichia coli pflB ldhA double mutant as a result of enhanced anapleroticactivities in the preceding aerobic culture. Appl Environ Microbiol, 2007, 73: 7837–7843.
[12]Hua XF, Wang J, Wu ZJ, et al. A salt tolerant Enterobacter cloacae mutant for bioaugmentation of petroleum and salt-contaminated soil. Biochem Eng J, 2010, 49: 201–206.
[13]Laroussi M. Low temperature plasma-based sterilization:overview and state-of-the-art. Plasma Proc Polym, 2005, 2:391–400.
[14]Millard CS, Chao YP, Liao JC, et al. Enhanced productionof succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli. Appl Environ Microbiol, 1996, 62: 1808–1810.
[15]Kim P, Laivenieks M, Vieille C, et al. Effect of overexpression of Actinobacillus succinogenes phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli. Appl Environ Microbiol,2004, 70: 1238–1241.
[16]Laivenieks M, Vieille C, Zeikus JG, et al. Cloning,sequencing and overexpression of the Anaerobiospirillum succiniciproducens phosphoenolpyruvate carboxykinase(pckA)gene. Appl Environ Microbiol, 1997, 63:2273–2280.