陳津,郭子寬,王立生,崔春萍,胡澤斌,吳朝暉,吳祖澤
20 世紀(jì) 70年代,人們發(fā)現(xiàn)了一種來(lái)源于中胚層、成纖維樣貼壁生長(zhǎng)的細(xì)胞,后來(lái)確定為間充質(zhì)干細(xì)胞(mesenchymal stem cells,MSC)[1-2]。MSC 是一群具有高度自我更新能力和分化潛能的成體干細(xì)胞。因其具有免疫調(diào)控、分泌細(xì)胞因子、取材方便等優(yōu)點(diǎn)而倍受關(guān)注,成為細(xì)胞治療的理想種子細(xì)胞[3]。間充質(zhì)干細(xì)胞研究日益受到廣泛關(guān)注并顯示出越來(lái)越廣闊的應(yīng)用前景,在細(xì)胞治療、組織工程等領(lǐng)域具有極為重要的應(yīng)用價(jià)值,是繼造血干細(xì)胞之后臨床應(yīng)用研究最多,也是最成熟的一種成體干細(xì)胞。
1995年首次報(bào)道 MSC 應(yīng)用于臨床實(shí)驗(yàn),現(xiàn)在培養(yǎng)的 MSC 已被廣泛地用于臨床實(shí)驗(yàn)研究,如移植物抗宿主?。℅VHD)、充血性心力衰竭、急性心肌梗死、2 型糖尿病、脊髓損傷、軟骨和骨損傷、克羅恩病等,而且在腎臟、肌肉和肺的損傷修復(fù)中也有初步進(jìn)展[3]。雖然成體干細(xì)胞在許多疾病的臨床研究中表現(xiàn)出令人振奮的療效,但迄今為止,除了造血干細(xì)胞用于治療血液系統(tǒng)惡性腫瘤外,尚未有其他成熟的成體干細(xì)胞作為常規(guī)的治療方法進(jìn)入臨床實(shí)踐。其中涉及的問(wèn)題很多,包括干細(xì)胞療法進(jìn)入臨床實(shí)踐的政策法規(guī)保障、用來(lái)驗(yàn)證干細(xì)胞療法安全性與有效性的合適的動(dòng)物模型、臨床治療的評(píng)價(jià)方法與體系尚未完善、干細(xì)胞產(chǎn)品臨床應(yīng)用的技術(shù)標(biāo)準(zhǔn)及規(guī)范尚未健全以及相關(guān)的倫理學(xué)論證等。同時(shí),MSC 培養(yǎng)工藝從實(shí)驗(yàn)研究模式轉(zhuǎn)向大規(guī)模生產(chǎn)臨床級(jí)的 MSC 還需要根據(jù)臨床應(yīng)用的要求,對(duì)培養(yǎng)技術(shù)各方面進(jìn)行深層次的評(píng)估。本報(bào)告主要對(duì)大規(guī)模培養(yǎng)間充質(zhì)干細(xì)胞的技術(shù)做一評(píng)估。通過(guò)對(duì)間充質(zhì)干細(xì)胞體外培養(yǎng)技術(shù)的系統(tǒng)評(píng)價(jià),為制定間充質(zhì)干細(xì)胞臨床研究管理規(guī)定提供相關(guān)信息,為細(xì)胞治療準(zhǔn)入制度的建立提供方法學(xué)依據(jù)。主要明確間充質(zhì)干細(xì)胞的來(lái)源、分離方法、培養(yǎng)體系、保存、安全性、質(zhì)量標(biāo)準(zhǔn)及質(zhì)量監(jiān)控評(píng)估等問(wèn)題。
① PubMed 數(shù)據(jù)庫(kù)、EMBASE 和 MEDLIN數(shù)據(jù)庫(kù)以主題詞或關(guān)鍵詞檢索間充質(zhì)干細(xì)胞(mesenchymal stromal cells)和細(xì)胞培養(yǎng)技術(shù)(cell culture techniques),限制研究對(duì)象為人類(human),文獻(xiàn)檢索時(shí)間不限,再根據(jù)不同的技術(shù)方法的主題詞或關(guān)鍵詞分別二次檢索細(xì)胞來(lái)源(mesenchymal stem cell sources),無(wú)血清培養(yǎng)基(serum free medium),培養(yǎng)過(guò)程(culture processes, good manufacturing practices),細(xì)胞凍存技術(shù)(cryopreservation),基因組不穩(wěn)定性(genome instability),腫瘤形成(tumor formation),質(zhì)量控制(quality control),臨床研究(clinical trial,clinical grade 和 clinical use)等。根據(jù)檢索結(jié)果分類評(píng)估,根據(jù)問(wèn)題和摘要逐一進(jìn)行人工篩選。②廣泛收集有關(guān)網(wǎng)站(如 NIH 臨床試驗(yàn)登記網(wǎng)站 http://www.clinicaltrial.gov/、FDA 網(wǎng)站 http://www.fda.gov/ 和國(guó)際細(xì)胞治療協(xié)會(huì)網(wǎng)站 http://www.isscr.org/ 等)的相關(guān)內(nèi)容。③其他國(guó)家和地區(qū)有關(guān)的細(xì)胞治療管理法案和技術(shù)報(bào)告。
⑴以間充質(zhì)干細(xì)胞研究為對(duì)象;
⑵涉及細(xì)胞培養(yǎng)技術(shù)方面;
⑶涉及評(píng)估目標(biāo)內(nèi)容;
⑷以臨床研究為目的;
⑸細(xì)胞治療管理規(guī)定。
⑴研究對(duì)象為動(dòng)物;
⑵文獻(xiàn)不含培養(yǎng)技術(shù)相關(guān)內(nèi)容;
⑶其他干細(xì)胞研究?jī)?nèi)容;
⑷以基礎(chǔ)研究為主;
⑸不含評(píng)估目標(biāo)內(nèi)容。
形成初步評(píng)估報(bào)告后,由衛(wèi)生計(jì)生委科教司和中國(guó)醫(yī)藥生物技術(shù)協(xié)會(huì)組織相關(guān)專家進(jìn)行討論分析,形成評(píng)估報(bào)告和建議。
MSC 可以來(lái)源于骨髓、脂肪、臍帶、臍帶血、胎盤(pán)、蛻膜、羊膜、羊水、皮膚、肌肉、牙髓、血管、滑液、心臟、脾、腎周脂肪、胚胎組織或胚胎干細(xì)胞、腸上皮組織、經(jīng)動(dòng)員的外周血等眾多組織[2, 4-25]。
⑴骨髓間充質(zhì)干細(xì)胞:骨髓一直是 MSC 的主要來(lái)源,成纖維細(xì)胞集落形成單位(CFU-F)分析揭示,骨髓中 MSC 的量大約占單個(gè)核細(xì)胞數(shù)的萬(wàn)分之一到百萬(wàn)分之一。骨髓間充質(zhì)干細(xì)胞(BMSC)是目前研究較為深入的一類成體干細(xì)胞。BMSC 易于外源基因的轉(zhuǎn)染和表達(dá),是細(xì)胞治療、組織器官缺損修復(fù)及基因治療的理想種子細(xì)胞。目前在 NIH 登記的骨髓 MSC 臨床試驗(yàn)有 144 項(xiàng),PubMed 上已發(fā)表的人骨髓 MSC 臨床試驗(yàn)文章有 91 篇。
⑵臍帶血間充質(zhì)干細(xì)胞:臍帶血是間充質(zhì)干細(xì)胞的一個(gè)潛在的來(lái)源,Erices 等[26]在 2000年就報(bào)道了臍帶血來(lái)源的單個(gè)核細(xì)胞中包含具有 MSC特征性表面抗原的細(xì)胞,并具有多向分化能力。與骨髓相比,MSC 在臍血中的比例更低,大約每 105~ 108個(gè)單個(gè)核細(xì)胞含有 1 個(gè)。但是由于臍帶血庫(kù)等網(wǎng)絡(luò)的存在,臍帶血有更為充足的來(lái)源,而且臍血的免疫原性較弱,不易發(fā)生免疫排斥反應(yīng),臍血受胎盤(pán)屏障的保護(hù),其成分被病毒、細(xì)菌污染的概率低,有利于臨床的實(shí)際應(yīng)用等優(yōu)點(diǎn),使得臍帶血有可能成為生產(chǎn)臨床級(jí) MSC 的來(lái)源。事實(shí)上,早有以臍血成功治療 HLA配型不完全匹配的惡性血液病和免疫缺陷病的報(bào)道[27]。目前在 NIH 登記的臍帶血來(lái)源 MSC 臨床試驗(yàn)有 10 項(xiàng)。
⑶臍帶間充質(zhì)干細(xì)胞:Covas 等[28]和 Romanov等[29]分別從臍靜脈內(nèi)皮和內(nèi)皮下分離出一種成纖維樣細(xì)胞,可分化為脂肪細(xì)胞和成骨細(xì)胞。同年,Mitchell 等[30]從臍帶 Wharton’s jelly 中分離出間充質(zhì)干細(xì)胞。臍帶 MSC 表達(dá)基質(zhì)細(xì)胞衍生因子-1(SDF-1)和血管內(nèi)皮生長(zhǎng)因子(VEGF),提示其具有治療心腦梗死、脊髓損傷的可能。與骨髓 MSC相比,臍帶 MSC 的 CFU-F 數(shù)、增殖能力和神經(jīng)細(xì)胞誘導(dǎo)分化能力均高于骨髓 MSC,HLA-I 和CD106 分子表達(dá)低于骨髓 MSC,使它成為更理想的細(xì)胞治療的種子細(xì)胞。目前在 NIH 登記的臍帶來(lái)源 MSC 臨床試驗(yàn)有 53 項(xiàng)。
⑷脂肪間充質(zhì)干細(xì)胞:2001年,Zuk 等[31]首次從人脂肪組織中分離出一種多向分化干細(xì)胞,因其與骨髓間充質(zhì)干細(xì)胞形態(tài)相似而稱為脂肪間充質(zhì)干細(xì)胞(ASC)。此后幾個(gè)研究小組也先后采用相似的分離方法分別從脂肪組織中分離得到ASC。近年來(lái)許多研究表明,脂肪干細(xì)胞具有向脂肪、骨、軟骨、肌肉、內(nèi)皮、造血、肝、胰島和神經(jīng)等多種細(xì)胞方向分化的多分化潛能[6-7,25]。ASC和 BMSC 均表達(dá) CD13、CD29、CIM4、CD105,均不表達(dá) CD31、CD34、CINS、HLA-DR。脂肪干細(xì)胞作為一種來(lái)源廣泛的自體干細(xì)胞有著不可比擬的優(yōu)勢(shì)。目前在 NIH 登記的脂肪來(lái)源 MSC 臨床試驗(yàn)有 30 項(xiàng)。
⑸胎盤(pán)間充質(zhì)干細(xì)胞:Zhang 等[32]首次從胎盤(pán)灌流液中培養(yǎng)出 MSC,并從生物學(xué)特征和功能等方面進(jìn)行了系統(tǒng)研究。Fukuchi 等[33]從成熟胎盤(pán)小葉中得到間充質(zhì)干/祖細(xì)胞,可表達(dá)數(shù)種干細(xì)胞標(biāo)志性基因及組織特異性基因。后來(lái)學(xué)者陸續(xù)從人成熟胎盤(pán)的羊膜、絨毛膜、胎盤(pán)小葉、底蛻膜和壁蛻膜分離培養(yǎng)出間充質(zhì)干細(xì)胞,且 RT-PCR 分析胎盤(pán)來(lái)源的間充質(zhì)干細(xì)胞表達(dá)中胚層、外胚層和內(nèi)胚層的相關(guān)基因。體外培養(yǎng)的胎盤(pán)間充質(zhì)干/祖細(xì)胞具有多向分化潛能及造血支持和免疫抑制效應(yīng),其擴(kuò)增能力優(yōu)于成人骨髓 MSC。胎盤(pán)來(lái)源豐富、取材方便,MSC 易于分離,是 MSC 又一新來(lái)源。目前在NIH 登記的胎盤(pán)來(lái)源 MSC 臨床試驗(yàn)有 7 項(xiàng)。
⑹羊水間充質(zhì)干細(xì)胞:羊水與胎兒直接接觸,除胎兒表皮、體腔管道等處的脫落細(xì)胞外,羊水中還可能存在來(lái)源于胎盤(pán)或桑葚胚的內(nèi)細(xì)胞群的原始細(xì)胞[34]。1993年,Torricelli等[35]首次報(bào)道孕 12周之前羊水中有造血祖細(xì)胞,它可能來(lái)源于胚胎期卵黃囊。1996年,Streubel等[36]發(fā)現(xiàn)羊水中存在向成肌細(xì)胞轉(zhuǎn)化的羊水細(xì)胞,可能為具有多向分化潛能的非造血祖細(xì)胞。 最近,In't Anker 等[37]證實(shí)孕中期(17~22 周)羊水中能夠分離培養(yǎng)出胎兒MSC,但孕晚期(平均 38+ 周)羊水分離胎兒 MSC的成功率僅為 20%。目前的研究均采用超聲引導(dǎo)下羊水穿刺技術(shù)在臨床妊娠中期婦女做產(chǎn)前診斷時(shí)抽取少量羊水提取胎兒 MSC,這種操作技術(shù)雖已成熟,但取材過(guò)程中仍可能對(duì)胎兒和母體造成傷害,甚至引起流產(chǎn)、宮內(nèi)感染等并發(fā)癥。
⑺其他組織來(lái)源間充質(zhì)干細(xì)胞:研究者還分別從分血管大隱靜脈壁[28]、骨組織、骨骼肌、軟骨及胎兒肺臟、胰臟、肝臟、腎臟來(lái)源的貼壁細(xì)胞和胎兒的真皮、腸上皮組織中成功分離出間充質(zhì)干細(xì)胞。還有研究者使用胚胎干細(xì)胞分化成間充質(zhì)干細(xì)胞。但是這些組織并沒(méi)有穩(wěn)定的來(lái)源,或者從倫理上并不適合作為臨床大規(guī)模生產(chǎn) MSC 的組織來(lái)源。Kassis 等[24]還從 G-CSF 動(dòng)員的外周血中分離出 MSC。雖然有些報(bào)道稱在外周血中檢測(cè)到具有MSC 特征的細(xì)胞,但是通常 MSC 是不存在于正常供者的外周血中的[38-40]。
不同組織來(lái)源的 MSC 分離方法不同,歸納起來(lái)主要可以分為兩大類:①骨髓、臍帶血、羊水來(lái)源的 MSC 以單個(gè)細(xì)胞存在于細(xì)胞群中,采用全骨髓法或全血直接培養(yǎng)方法,以及密度梯度離心分離、免疫磁珠或流式細(xì)胞分選的方式進(jìn)行分離,利用 MSC 貼壁生長(zhǎng)的特性進(jìn)行純化。如利用STRO-1 進(jìn)行流式細(xì)胞分選可以獲得 950 倍富集的 CFU-Fs[41],其他細(xì)胞抗原如 a1-integrin subunit(CD49a)或 CD271(LNGFR)可以被用來(lái)富集骨髓單個(gè)核細(xì)胞[42-43],但是這些方法富集的 MSC還沒(méi)有達(dá)到完全純化。而且許多抗體作為實(shí)驗(yàn)研究篩選使用,還需要發(fā)展臨床級(jí)富集分選 MSC的抗體。②臍帶、胎盤(pán)、羊膜、脂肪來(lái)源的 MSC 存在于組織中,需要用膠原酶、胰酶、透明質(zhì)酸酶等消化分離成單個(gè)細(xì)胞后,再進(jìn)行分離純化,也可采用組織塊法,利用 MSC 具有遷移能力的特性獲得直接貼壁的 MSC。
不管是來(lái)源于骨髓還是其他組織的間充質(zhì)干細(xì)胞原始數(shù)量都是很有限的,要達(dá)到臨床應(yīng)用的細(xì)胞數(shù)量級(jí),就必須經(jīng)過(guò)體外的擴(kuò)增培養(yǎng)。因此間充質(zhì)干細(xì)胞體外擴(kuò)增培養(yǎng)技術(shù)是 MSC 臨床應(yīng)用技術(shù)的關(guān)鍵。主要包括以下幾個(gè)方面:
2.3.1 培養(yǎng)方式(培養(yǎng)體系)的選擇 MSC 具有貼壁生長(zhǎng)的特性,貼壁生長(zhǎng)細(xì)胞常采取兩種大規(guī)模的培養(yǎng)方法:①傳統(tǒng)的平面培養(yǎng)方式:即保持相同細(xì)胞密度的前提下只是簡(jiǎn)單地增加細(xì)胞的培養(yǎng)體積。通過(guò)采用培養(yǎng)瓶或培養(yǎng)皿進(jìn)行培養(yǎng),為了培養(yǎng)大量的細(xì)胞,需要很大的表面積,因此需要大量的培養(yǎng)瓶和培養(yǎng)空間。Nunc 和 Coring 等公司生產(chǎn)了大的、多層的培養(yǎng)系統(tǒng)(1~10 層或者更多),可以疊加在培養(yǎng)箱中。這些培養(yǎng)瓶近似于一個(gè)封閉的系統(tǒng),大大減少了培養(yǎng)瓶的使用數(shù)量,降低了被微生物污染的風(fēng)險(xiǎn)[44]。傳統(tǒng)的培養(yǎng)方式簡(jiǎn)便易行,但是也容易污染,所以必須在符合 GMP 的潔凈實(shí)驗(yàn)室內(nèi)進(jìn)行。②生物反應(yīng)器3D 培養(yǎng)方式[44-51]:在生物反應(yīng)器里培養(yǎng) MSC 的優(yōu)勢(shì)包括相同體積下培養(yǎng)的表面積比較大、封閉的系統(tǒng)以及種植和收獲的自動(dòng)化[52]。這些技術(shù)能夠?yàn)榉?GMP 條件下生產(chǎn)臨床級(jí) MSC 提供可選工具[3,53]。為了實(shí)現(xiàn)全封閉培養(yǎng),減少細(xì)胞污染的幾率,一些公司推出了細(xì)胞體外培養(yǎng)工作平臺(tái),如美國(guó) Biospherix 干細(xì)胞工作站(stem cell workstation),引進(jìn)低氧培養(yǎng)和低氧操作環(huán)境,適用于干細(xì)胞體外培養(yǎng)及臨床移植前的干細(xì)胞樣品的制備。工作站完全密閉不受外界干擾,杜絕由于實(shí)驗(yàn)員操作不當(dāng)引起的細(xì)胞污染。不足之處就是這樣的系統(tǒng)成本昂貴。
2.3.2 培養(yǎng)基的選擇 培養(yǎng)基是 MSC 培養(yǎng)效率和安全的關(guān)鍵。選擇使用的培養(yǎng)基需要能夠維持MSC 在經(jīng)過(guò)數(shù)次傳代培養(yǎng)后的表型、功能和基因穩(wěn)定,因此必須采用優(yōu)化的培養(yǎng)條件。目前主要用于培養(yǎng) MSC 的培養(yǎng)基有以下幾種:
⑴含胎牛血清(FBS)的培養(yǎng)基:胎牛血清含有豐富的細(xì)胞生長(zhǎng)因子、營(yíng)養(yǎng)等物質(zhì)。經(jīng)典的 MSC培養(yǎng)條件就是基礎(chǔ)培養(yǎng)基添加 FBS,但是 FBS 活性具有明顯的批次間差異,而且在培養(yǎng)過(guò)程中,MSC 胞漿蛋白中可能殘留 FBS,由此可能會(huì)導(dǎo)致患者過(guò)敏反應(yīng),以及可能引起如瘋牛?。˙SE)、克雅?。–reutzfeldt-Jakob disease)等疾病[54]。FDA 管理規(guī)范關(guān)于 GMP 生產(chǎn)細(xì)胞并沒(méi)有絕對(duì)禁止使用FBS,但需要有安全證明(TSA)確保沒(méi)有傳染病傳播的危險(xiǎn)。也有一些權(quán)威的管理機(jī)構(gòu),如德國(guó)的PEI,就禁止使用 FBS。此外,從使用 MSC 的安全性角度要求有更安全的產(chǎn)品替代 FBS[55],如人源的血清或成分確定的無(wú)血清培養(yǎng)基[56]。
⑵不含動(dòng)物血清的培養(yǎng)基:許多研究者采用人源產(chǎn)品,如輸血安全級(jí)的人 AB 血清或血小板裂解物來(lái)替代動(dòng)物血清。這些產(chǎn)品來(lái)自于輸血中心,可確保微生物的安全。經(jīng)許多研究小組證明,使用血小板裂解物可以有效地替代 FBS[54-56],很多臨床研究單位也倡議使用血小板裂解物來(lái)實(shí)現(xiàn)臨床級(jí)間充質(zhì)干細(xì)胞的擴(kuò)增培養(yǎng)[57]。
⑶成分確定的無(wú)血清培養(yǎng)基[4,11,58-76]:無(wú)血清培養(yǎng)基(serum free medium,SFM)就是不需要添加血清,通過(guò)像雞尾酒式的添加生長(zhǎng)因子(如FGF2、PDGF、TGF-β)就可以維持細(xì)胞在體外較長(zhǎng)時(shí)間生長(zhǎng)繁殖,能夠維持培養(yǎng)的 MSC 主要的表型和功能特征[66],但是它們可能包含個(gè)別蛋白或大量蛋白組分。MSC 是貼壁生長(zhǎng)細(xì)胞,無(wú)血清、無(wú)蛋白培養(yǎng)基缺乏血清中的各種黏附貼壁因子如纖連蛋白、層黏連蛋白等,因此需要添加這些組分以保證細(xì)胞貼壁。這就要求這些添加的蛋白需要在避免基因污染條件下生產(chǎn)。目前市場(chǎng)上的無(wú)血清培養(yǎng)基主要由幾家國(guó)外大公司生產(chǎn),其中一家已獲得FDA 批準(zhǔn)應(yīng)用與臨床研究(表 1)。然而事實(shí)上,目前的無(wú)血清培養(yǎng)基并不向商業(yè)公司說(shuō)的那么好。許多研究證明了用含血清的培養(yǎng)基培養(yǎng)的 MSC不發(fā)生變異,但是對(duì)無(wú)血清培養(yǎng)基培養(yǎng)的 MSC 還需要進(jìn)行相似的安全性研究,判斷無(wú)血清培養(yǎng)基對(duì)MSC 基因穩(wěn)定性的影響是否會(huì)導(dǎo)致腫瘤的形成。雖然理想的 MSC 培養(yǎng)基還沒(méi)有形成共識(shí),但無(wú)血清培養(yǎng)基是臨床級(jí)間充質(zhì)干細(xì)胞培養(yǎng)的最終方向。
細(xì)胞凍存技術(shù)是間充質(zhì)干細(xì)胞臨床應(yīng)用中很關(guān)鍵的技術(shù)。分離和生產(chǎn)的大量不同組織來(lái)源的MSC 需要可靠的長(zhǎng)期保存方法,以備將來(lái)臨床應(yīng)用[77-87]。
2.4.1 凍存保護(hù)劑 凍存保護(hù)劑是深低溫保存組織細(xì)胞不可缺少的部分。目前常用的低溫保護(hù)劑有二甲基亞砜(DMSO)、甘油、糖類、羥乙基淀粉等。低溫保護(hù)劑二甲基亞砜的濃度,以 10%(v/v)保存效果較佳;甘油則以 10%~15%(v/v)濃度為好。復(fù)蘇后低溫保護(hù)劑必須進(jìn)行洗滌,從細(xì)胞懸液中清除,以降低低溫保護(hù)劑的毒性影響。幾種低溫保護(hù)劑混合使用可減輕毒性,提高細(xì)胞存活率。如保護(hù)劑 CP-1 的主要成分為 DMSO 和羥乙基淀粉,這兩種不同性質(zhì)的冷凍保護(hù)劑聯(lián)合應(yīng)用,共同發(fā)揮作用,冷凍保護(hù)效果優(yōu)于單獨(dú)應(yīng)用其中任何一種。
表1 市場(chǎng)上主要的無(wú)血清培養(yǎng)基
2.4.2 細(xì)胞凍存方式 干細(xì)胞的冷凍最好采用程控降溫儀進(jìn)行。利用程控降溫儀嚴(yán)格控制降溫速度(1~3)℃/min,經(jīng)過(guò)相變(–11~–15 ℃)熱釋放之后加快降溫速度,降至 –80 ℃ 或 –90 ℃,再轉(zhuǎn)入液氮中(–196 ℃) 長(zhǎng)期保存。有些研究者用乙二醇、丙二醇和蔗糖作為基礎(chǔ)的細(xì)胞凍存保護(hù)劑來(lái)替代 DMSO,用聚乙烯醇作為輔料建立的直接放入液氮的玻璃化凍存方式實(shí)現(xiàn)了較好的細(xì)胞保存效果。
大量研究證明,保存的 MSC 并不改變 MSC的生物學(xué)特性,如分化、生長(zhǎng)和表面標(biāo)志物。在臨床使用中最主要的問(wèn)題是凍存保護(hù)劑的毒性,但DMSO 的毒性也可能被過(guò)度地評(píng)估,因?yàn)閮龃娴腗SC 在臨床使用前需要進(jìn)行稀釋,從而會(huì)減輕其毒性。
間充質(zhì)干細(xì)胞雖然在許多組織中都存在,但是其豐度都極低。因此,體外培養(yǎng)是完成細(xì)胞治療必需的步驟。然而,與新鮮分離的間充質(zhì)干細(xì)胞不同,細(xì)胞經(jīng)體外培養(yǎng)擴(kuò)增后,其生物學(xué)特性可能發(fā)生很大的變化。從培養(yǎng)體系的安全性來(lái)講,間充質(zhì)干細(xì)胞在體外培養(yǎng)過(guò)程中,與培養(yǎng)皿、分離液、血清、細(xì)胞因子等開(kāi)放接觸,易于受到熱原和內(nèi)毒素的污染,有造成受者醫(yī)源性感染等不良反應(yīng)的風(fēng)險(xiǎn)[88]。
2.5.1 基因穩(wěn)定性[89-110]人體組織中原始 MSC含量很少,但是經(jīng)過(guò)體外長(zhǎng)期培養(yǎng)后可以擴(kuò)增到很大的數(shù)量級(jí)??梢詾榕R床應(yīng)用提供大量的 MSC。通常,成人骨髓 MSC 可以穩(wěn)定培養(yǎng) 6~10 代,而胎盤(pán)臍帶 MSC 可以傳 30~40 代。經(jīng)過(guò)高分辨技術(shù)分析體外擴(kuò)增的人骨髓 MSC,并沒(méi)有發(fā)現(xiàn)DNA 復(fù)制數(shù)的畸變。但是在 MSC 長(zhǎng)期培養(yǎng)過(guò)程中,發(fā)現(xiàn)與衰老相關(guān)的 CpG 位點(diǎn)發(fā)生修飾改變。研究者對(duì)不同供者來(lái)源的 MSC 的核型分析的結(jié)果表明,一般 10 代以內(nèi)的 MSC 核型比較穩(wěn)定,未發(fā)現(xiàn)變異情況。超過(guò) 10 代的細(xì)胞,核型發(fā)生變異,成瘤性風(fēng)險(xiǎn)增大。人間充質(zhì)干細(xì)胞體外培養(yǎng)連續(xù)傳代超過(guò) 20 次后,雖然細(xì)胞不具備裸鼠致瘤性,但其原癌基因和抑癌基因表達(dá)特征與 Ewing肉瘤相似。即使早期和晚期代數(shù)的 MSC 在基因組學(xué)上沒(méi)有差異,也不能說(shuō)明經(jīng)過(guò)長(zhǎng)期培養(yǎng)后基因組沒(méi)有發(fā)生突變。突變的 MSC 可能不能存活或者因?yàn)檎?MSC 的優(yōu)勢(shì)生長(zhǎng),使得突變的 MSC 在長(zhǎng)期培養(yǎng)過(guò)程中檢測(cè)不出來(lái)。相反,如果突變的 MSC具有優(yōu)勢(shì)生長(zhǎng)或者耐受衰老,那么對(duì)于臨床應(yīng)用更具有風(fēng)險(xiǎn)。
2.5.2 腫瘤形成[57,88,111-115]干細(xì)胞具有一些腫瘤細(xì)胞的特征,如能夠長(zhǎng)期的自我復(fù)制,壽命周期長(zhǎng),凋亡耐受等。此外,兩者的生長(zhǎng)調(diào)控機(jī)制很相似,因此干細(xì)胞可能惡性轉(zhuǎn)化,這是使用干細(xì)胞藥物產(chǎn)品安全性的主要擔(dān)憂之一。一些研究報(bào)道通過(guò)轉(zhuǎn)染端粒酶的MSC 可以在體外發(fā)生惡性轉(zhuǎn)化[116],然而,現(xiàn)在還沒(méi)有實(shí)質(zhì)證據(jù)證明常規(guī)體外擴(kuò)增的MSC 具有致瘤性。NOD 小鼠體內(nèi)毒性實(shí)驗(yàn)證明,MSC 在體內(nèi)沒(méi)有形成腫瘤。短尾猴的體內(nèi)毒性實(shí)驗(yàn)進(jìn)一步證明輸注 MSC 后,短尾猴體內(nèi)各項(xiàng)指標(biāo)并沒(méi)有發(fā)現(xiàn)改變。細(xì)胞毒性結(jié)果顯示,MSC 并不影響試驗(yàn)猴的身體各項(xiàng)指標(biāo)。Centeno 等[57,111]從2006年到 2010年,總共進(jìn)行了 339 例患者的實(shí)驗(yàn),MRI 檢測(cè)并沒(méi)有發(fā)現(xiàn)新生瘤的形成,隨訪至今是安全的。此外,許多 MSC 的臨床研究報(bào)告也未報(bào)告安全問(wèn)題。雖然 MSC 在培養(yǎng)過(guò)程中是否會(huì)誘導(dǎo)細(xì)胞的轉(zhuǎn)化還不確定,但還是存在 MSC 在長(zhǎng)期培養(yǎng)過(guò)程中發(fā)生突變的可能。因此必須在臨床研究中應(yīng)用 SNP 等分析手段來(lái)評(píng)價(jià)基因組的完整性。從 MSC 的增殖及分化、病毒學(xué)檢測(cè)、核型分析、STR、HLA 等多個(gè)方面系統(tǒng)考察體外擴(kuò)增過(guò)程中MSC 生物學(xué)特性和遺傳學(xué)特性。
臨床使用 MSC 的安全性直接與整個(gè)過(guò)程的質(zhì)量控制相聯(lián)系。生產(chǎn)安全的細(xì)胞產(chǎn)品要求對(duì)整個(gè)過(guò)程進(jìn)行監(jiān)管,確保培養(yǎng)細(xì)胞的基因型和功能性,確保培養(yǎng)的細(xì)胞未分化和無(wú)微生物的污染。在MSC 擴(kuò)增培養(yǎng)過(guò)程中面臨著許多風(fēng)險(xiǎn),如細(xì)菌污染、細(xì)胞變異、衰老等。
2.6.1 間充質(zhì)干細(xì)胞的標(biāo)準(zhǔn) 間充質(zhì)干細(xì)胞能表達(dá)多種表面抗原但不特異,這些表面抗原也可在基質(zhì)細(xì)胞、內(nèi)皮細(xì)胞和表皮細(xì)胞出現(xiàn),但不表達(dá)造血干細(xì)胞標(biāo)志物?,F(xiàn)已發(fā)現(xiàn)的表面抗原表達(dá)陽(yáng)性的有CD29、CD44、CD59、CD71、SH2、CD73、CD105、CD106、CD166、CD271 等,而 HSC 表面標(biāo)志CD3、CD14、CD34、CD38、CD45、CD56、CD117、人白細(xì)胞抗原(HLA-DR)表達(dá)均為陰性。不同研究者選用不同的組合來(lái)鑒定,各研究結(jié)果之間很難相互比較[117]。為了解決這個(gè)問(wèn)題,國(guó)際細(xì)胞治療協(xié)會(huì)提出了一個(gè)鑒定 MSC 的最低標(biāo)準(zhǔn)[118]:首先,MSC 必須是貼壁生長(zhǎng)的;其次,MSC 必須表達(dá)CD105、CD73 和 CD90,同時(shí)不表達(dá) CD45、CD34、CD14/CD11b、CD79α/CD19 以及 HLA-DR;第三,在體外 MSC 必須能夠分化成骨、脂肪和軟骨。
2.6.2 間充質(zhì)干細(xì)胞的質(zhì)量監(jiān)控[3,53,57,119-130]MSC質(zhì)量監(jiān)控包括生產(chǎn)環(huán)境的細(xì)菌和真菌的檢測(cè),藥品化生產(chǎn) MSC 的環(huán)境要求每 2 周至少進(jìn)行一次無(wú)菌的檢測(cè)[131]。收獲細(xì)胞質(zhì)量控制必須確保含有足夠量的干/祖細(xì)胞,能夠達(dá)到臨床應(yīng)用的數(shù)量要求,還應(yīng)排除傳播傳染性疾病的可能。質(zhì)量控制應(yīng)包括細(xì)胞培養(yǎng)的全過(guò)程。包括分離細(xì)胞前的供體血清學(xué)檢測(cè),主要是免疫缺陷病毒、乙肝病毒、丙肝病毒等。對(duì)于原始干細(xì)胞數(shù)量的檢測(cè),現(xiàn)在唯一的定量檢測(cè)是 CFU-F,但是檢測(cè)時(shí)間太長(zhǎng),不可能在取樣時(shí)得到結(jié)果,只能作為后續(xù)的評(píng)判標(biāo)準(zhǔn)。因此,只有檢測(cè)有核細(xì)胞數(shù)和活性來(lái)驗(yàn)證起始干細(xì)胞。培養(yǎng)過(guò)程中,要不斷監(jiān)測(cè)細(xì)胞。當(dāng) MSC 被分離出來(lái)后,確保分離的細(xì)胞質(zhì)量良好。這些質(zhì)控包括細(xì)胞計(jì)數(shù)、細(xì)胞活性鑒定、表型分析、CFU-F 形成分析,細(xì)菌污染檢測(cè)等。在治療前必須對(duì)細(xì)胞進(jìn)行質(zhì)量判定,根據(jù)質(zhì)控結(jié)果判定這些細(xì)胞是否能夠被用于臨床。這些質(zhì)控方法必須快速、精確,適用于臨床治療要求。這樣的質(zhì)控包括細(xì)胞計(jì)數(shù)、評(píng)價(jià)細(xì)胞活性和流式測(cè)定細(xì)胞表型、細(xì)菌學(xué)檢測(cè)、細(xì)胞功能、基因穩(wěn)定性等。通常的 MSC 分化能力鑒定中,誘導(dǎo)分化需要 2~3 周才能知道結(jié)果,有研究者提出采用 PCR 方式檢測(cè)一些可用于鑒別的基因,以檢測(cè) MSC 是否保持未分化狀態(tài)以及它們的分化潛能[132]。近來(lái),MSC 在培養(yǎng)過(guò)程中的變異風(fēng)險(xiǎn)引起了大家的注意,如何判定臨床使用經(jīng)體外擴(kuò)增培養(yǎng)的 MSC 基因是否突變、細(xì)胞是否發(fā)生轉(zhuǎn)化、細(xì)胞是否已經(jīng)老化等問(wèn)題成為研究者關(guān)注的熱點(diǎn)。細(xì)胞發(fā)生轉(zhuǎn)化過(guò)程主要表現(xiàn)在端粒酶表達(dá)、核型突變和注射到免疫缺陷小鼠內(nèi)生長(zhǎng)腫瘤。這些風(fēng)險(xiǎn)使得必須進(jìn)行特殊的質(zhì)控,最快速的方法就是通過(guò) QPCR檢測(cè)端粒酶。
通過(guò)對(duì)現(xiàn)有綜述、書(shū)籍和專利等文獻(xiàn)資料進(jìn)行綜合對(duì)比分析,對(duì)大規(guī)模臨床級(jí)間充質(zhì)干細(xì)胞培養(yǎng)的各方面技術(shù)進(jìn)行了綜合評(píng)估。MSC 的來(lái)源廣泛,骨髓來(lái)源研究最早最多,尤其在免疫調(diào)控和分泌因子方面具有其特有的優(yōu)勢(shì)。胎盤(pán)、臍帶、羊膜作為分娩后的廢棄物獲取干細(xì)胞簡(jiǎn)單,對(duì)于新生兒及產(chǎn)婦沒(méi)有任何痛苦和不良影響,且易于接受,不會(huì)涉及社會(huì)、倫理及法律方面的更多爭(zhēng)議。其他組織來(lái)源如羊水、肌肉、血管、骨組織、骨骼肌、軟骨等從材料來(lái)源或倫理上并不適用于臨床大規(guī)模生產(chǎn)。因此骨髓、臍帶、臍帶血、胎盤(pán)、脂肪等更適用于作為臨床大規(guī)模培養(yǎng) MSC 的來(lái)源。
間充質(zhì)干細(xì)胞的分離方法可以采用最少處理的全骨髓法、組織塊法的方式來(lái)進(jìn)行分離,經(jīng)典的密度梯度分離或流式分選的方式是目前較常用的方法。密度梯度分離液最好使用 GMP 級(jí)別的[44]。MSC 大規(guī)模培養(yǎng)方式最好選用全封閉條件下的生物反應(yīng)器培養(yǎng),但是該方法設(shè)備價(jià)格比較昂貴,技術(shù)要求較高,不好觀察細(xì)胞生長(zhǎng)情況。因此,目前多數(shù)還是在 GMP 實(shí)驗(yàn)室內(nèi)采用傳統(tǒng)的平面培養(yǎng)方式[53]。在培養(yǎng)基的選擇上,動(dòng)物源的成分需要用人源的或化學(xué)成分確定的成分來(lái)代替,以減少可能引起患者致病的風(fēng)險(xiǎn)。如果使用動(dòng)物源的物質(zhì)必須根據(jù)現(xiàn)有藥品指南的規(guī)定,在用于人體前進(jìn)行殘留量檢測(cè)。無(wú)血清培養(yǎng)基是臨床級(jí)間充質(zhì)干細(xì)胞培養(yǎng)的最終方向。
凍存的 MSC 并不改變 MSC 的生物學(xué)特性,如分化能力,生長(zhǎng)和表面標(biāo)志物等。選擇適宜的冷凍保護(hù)劑種類和濃度,應(yīng)確定間充質(zhì)干細(xì)胞在不同凍存保護(hù)液下適宜的降溫速率。同時(shí)亦需考慮干細(xì)胞解凍復(fù)蘇后保護(hù)劑的清除及保護(hù)劑對(duì)臨床輸注的影響。DMSO 作為 FDA 批準(zhǔn)可以用于臨床的冷凍保護(hù)劑,是當(dāng)前最常用的。其對(duì)人體的毒副作用日益受到重視。因此,MSC 凍存保護(hù)劑中的DMSO 應(yīng)在臨床使用前被洗滌和稀釋。玻璃化凍存還有待于進(jìn)一步得到研究者的公認(rèn)。開(kāi)發(fā)毒副作用輕微的新型冷凍保護(hù)劑也頗為重要。
安全性仍然是細(xì)胞治療的主要擔(dān)憂之一。培養(yǎng)的細(xì)胞在 8~10 代以內(nèi)安全穩(wěn)定,無(wú)變異,未發(fā)現(xiàn)致瘤性,可以安全用于臨床研究使用。為了確保細(xì)胞的安全性和有效性,必須建立嚴(yán)格的質(zhì)量控制,包括供體來(lái)源,培養(yǎng)過(guò)程的微生物檢測(cè),細(xì)胞表型、功能分析,細(xì)胞活性、數(shù)量以及基因穩(wěn)定性檢測(cè)等。
隨著 MSC 臨床應(yīng)用的增加,建立臨床級(jí)間充質(zhì)干細(xì)胞培養(yǎng)的規(guī)范直接關(guān)系到這個(gè)領(lǐng)域能否健康發(fā)展。目前,國(guó)際組織及一些發(fā)達(dá)國(guó)家,如美國(guó)、歐盟、日本、澳大利亞等已經(jīng)制定了體細(xì)胞治療的許多管理規(guī)范和標(biāo)準(zhǔn),如國(guó)際細(xì)胞治療協(xié)會(huì)的《干細(xì)胞臨床轉(zhuǎn)化指南》、美國(guó) FDA 的《人類細(xì)胞、組織,及細(xì)胞和組織相關(guān)產(chǎn)品生產(chǎn)的優(yōu)良操作規(guī)范(cGTP)》、歐盟的《人類組織和細(xì)胞捐獻(xiàn)、采集、檢測(cè)、處理、保存、儲(chǔ)存和分發(fā)的質(zhì)量和安全標(biāo)準(zhǔn)》以及國(guó)際細(xì)胞治療認(rèn)證委員會(huì)的《細(xì)胞治療產(chǎn)品收集、處理和管理國(guó)際標(biāo)準(zhǔn)》等[133-143]。我國(guó)干細(xì)胞治療還缺乏相關(guān)的管理規(guī)范,亟需權(quán)威部門(mén)制定一套標(biāo)準(zhǔn)指南,引導(dǎo)我國(guó)干細(xì)胞臨床研究的健康發(fā)展。
[1] Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV.Osteogenesis in transplants of bone marrow cells.J Embryol Exp Morphol, 1966,16(3):381-390.
[2] Friedenstein AJ, Gorskaja JF, Kulagina NN.Fibroblast precursors in normal and irradiated mouse hematopoietic organs.Exp Hematol,1976, 4(5):267-274.
[3] Sensebé L, Bourin P, Tarte K.Good manufacturing practices production of mesenchymal stem/stromal cells.Hum Gene Ther, 2011,22(1):19-26.
[4] Battula VL, Bareiss PM, Treml S, et al.Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation.Differentiation, 2007, 75(4):279-291.
[5] Insausti CL, Blanquer MB, Olmo LM, et al.Isolation and characterization of mesenchymal stem cells from the fat layer on the density gradient separated bone marrow.Stem Cells Dev, 2012,21(2):260-272.
[6] Banas A.Purification of adipose tissue mesenchymal stem cells and differentiation toward hepatic-like cells.Methods Mol Biol, 2012,826:61-72.
[7] Bayes-Genis A, Soler-Botija C, Farré J, et al.Human progenitor cells derived from cardiac adipose tissue ameliorate myocardial infarction in rodents.J Mol Cell Cardiol, 2010, 49(5):771-780.
[8] Can A, Balci D.Isolation, culture, and characterization of human umbilical cord stroma-derived mesenchymal stem cells.Methods Mol Biol, 2011, 698:51-62.
[9] Conconi MT, Burra P, Di Liddo R, et al.CD105(+) cells from Wharton's jelly show in vitro and in vivo myogenic differentiative potential.Int J Mol Med, 2006, 18(6):1089-1096.
[10] Pereira WC, Khushnooma I, Madkaikar M, et al.Reproducible methodology for the isolation of mesenchymal stem cells from human umbilical cord and its potential for cardiomyocyte generation.J Tissue Eng Regen Med, 2008, 2(7):394-399.
[11] Huang YC, Yang ZM, Chen XH, et al.Isolation of mesenchymal stem cells from human placental decidua basalis and resistance to hypoxia and serum deprivation.Stem Cell Rev, 2009, 5(3):247-255.
[12] Klein JD, Fauza DO.Amniotic and placental mesenchymal stem cell isolation and culture.Methods Mol Biol, 2011, 698:75-88.
[13] Roubelakis MG, Pappa KI, Bitsika V, et al.Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells.Stem Cells Dev, 2007, 16(6):931-952.
[14] Sessarego N, Parodi A, Podestà M, et al.Multipotent mesenchymal stromal cells from amniotic fluid: solid perspectives for clinical application.Haematologica, 2008, 93(3):339-346.
[15] Hsiao ST, Asgari A, Lokmic Z, et al.Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue.Stem Cells Dev, 2012, 21(12):2189-2203.
[16] Hung CN, Mar K, Chang HC, et al.A comparison between adipose tissue and dental pulp as sources of MSCs for tooth regeneration.Biomaterials, 2011, 32(29):6995-7005.
[17] Bonfield TL, Colton E, Anderson JM.Protein adsorption of biomedical polymers influences activated monocytes to produce fibroblast stimulating factors.J Biomed Mater Res, 1992, 26(4):457-465.
[18] Futami I, Ishijima M, Kaneko H, et al.Isolation and characterization of multipotential mesenchymal cells from the mouse synovium.PLoS One, 2012, 7(9):e45517.
[19] Hematti P.Human embryonic stem cell-derived mesenchymal progenitors: an overview.Methods Mol Biol, 2011, 690:163-174.
[20] Lai RC, Arslan F, Tan SS, et al.Derivation and characterization of human fetal MSCs: an alternative cell source for large-scale production of cardioprotective microparticles.J Mol Cell Cardiol,2010, 48(6):1215-1224.
[21] Hoogduijn MJ, Crop MJ, Peeters AM, et al.Human heart, spleen, and perirenal fat-derived mesenchymal stem cells have immunomodulatory capacities.Stem Cells Dev, 2007, 16(4):597-604.
[22] Lanzoni G, Alviano F, Marchionni C, et al.Isolation of stem cell populations with trophic and immunoregulatory functions from human intestinal tissues: potential for cell therapy in inflammatory bowel disease.Cytotherapy, 2009, 11(8):1020-1031.
[23] Shaker A, Rubin DC.Intestinal stem cells and epithelial-mesenchymal interactions in the crypt and stem cell niche.Transl Res, 2010,156(3):180-187.
[24] Kassis I, Zangi L, Rivkin R, et al.Isolation of mesenchymal stem cells from G-CSF-mobilized human peripheral blood using fibrin microbeads.Bone Marrow Transplant, 2006, 37(10):967-976.
[25] Mosna F, Sensebé L, Krampera M.Human bone marrow and adipose tissue mesenchymal stem cells: a user's guide.Stem Cells Dev, 2010,19(10):1449-1470.
[26] Erices A, Conget P, Minguell JJ.Mesenchymal progenitor cells in human umbilical cord blood.Br J Haematol, 2000, 109(1):235-242.
[27] Elia L, Arcese W, Torello M, et al. HLA-C and HLA-DQB1 compatibility in unrelated cord blood transplants.Haematologica,1999, 84(6):530-534.
[28] Covas DT, Siufi JL, Silva AR, et al.Isolation and culture of umbilical vein mesenchymal stem cells.Braz J Med Biol Res, 2003, 36(9):1179-1183.
[29] Romanov YA, Svintsitskaya VA, Smirnov VN.Searching for alternative sources of postnatal human mesenchymal stem cells:candidate MSC-like cells from umbilical cord.Stem Cells, 2003,21(1):105-110.
[30] Mitchell KE, Weiss ML, Mitchell BM, et al.Matrix cells from Wharton's jelly form neurons and glia.Stem Cells, 2003, 21(1):50-60.
[31] Zuk PA, Zhu M, Mizuno H, et al.Multilineage cells from human adipose tissue: implications for cell-based therapies.Tissue Eng, 2001,7(2):211-228.
[32] Zhang Y, Li CD, Jiang XX, et al.Comparison of mesenchymal stem cells from human placenta and bone marrow.Chin Med J (Engl), 2004,117(6):882-887.
[33] Fukuchi Y, Nakajima H, Sugiyama D, et al.Human placenta-derived cells have mesenchymal stem/progenitor cell potential.Stem Cells,2004, 22(5):649-658.
[34] Fauza D.Amniotic fluid and placental stem cells.Best Pract Res Clin Obstet Gynaecol, 2004, 18(6):877-891.
[35] Torricelli F, Brizzi L, Bernabei PA, et al.Identification of hematopoietic progenitor cells in human amniotic fluid before the 12th week of gestation.Ital J Anat Embryol, 1993, 98(2):119-126.
[36] Streubel B, Martucci-Ivessa G, Fleck T, et al.In vitro transformation of amniotic cells to muscle cells--background and outlook.Wien Med Wochenschr, 1996, 146(9-10):216-217.
[37] In 't Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al.Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta.Stem Cells, 2004, 22(7):1338-1345.
[38] Fernández M, Simon V, Herrera G, et al.Detection of stromal cells in peripheral blood progenitor cell collections from breast cancer patients.Bone Marrow Transplant, 1997, 20(4):265-271.
[39] Wexler SA, Donaldson C, Denning-Kendall P, et al.Adult bone marrow is a rich source of human mesenchymal 'stem' cells but umbilical cord and mobilized adult blood are not.Br J Haematol, 2003,121(2):368-374.
[40] Lazarus HM, Haynesworth SE, Gerson SL, et al.Human bone marrow-derived mesenchymal (stromal) progenitor cells (MPCs)cannot be recovered from peripheral blood progenitor cell collections.J Hematother, 1997, 6(5):447-455.
[41] Gronthos S, Zannettino AC, Hay SJ, et al.Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow.J Cell Sci, 2003, 116(Pt 9):1827-1835.
[42] Deschaseaux F, Charbord P.Human marrow stromal precursors are alpha 1 integrin subunit-positive.J Cell Physiol, 2000, 184(3):319-325.
[43] Deschaseaux F, Gindraux F, Saadi R, et al.Direct selection of human bone marrow mesenchymal stem cells using an anti-CD49a antibody reveals their CD45med, low phenotype.Br J Haematol, 2003, 122(3):506-517.
[44] Grisendi G, Annerén C, Cafarelli L, et al.GMP-manufactured density gradient media for optimized mesenchymal stromal/stem cell isolation and expansion.Cytotherapy, 2010, 12(4):466-477.
[45] Rojewski MT, Fekete N, Baila S, et al.GMP-compliant isolation and expansion of bone marrow-derived MSCs in the closed, automated device Quantum cell expansion system.Cell Transplant, 2012.
[46] dos Santos F, Andrade PZ, Eibes G, et al.Ex vivo expansion of human mesenchymal stem cells on microcarriers.Methods Mol Biol, 2011,698:189-198.
[47] Frith JE, Thomson B, Genever PG.Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential.Tissue Eng Part C Methods, 2010, 16(4):735-749.
[48] Gómez-Sj?berg R, Leyrat AA, Pirone DM, et al.Versatile, fully automated, microfluidic cell culture system.Anal Chem, 2007,79(22):8557-8563.
[49] Petrenko YA, Petrenko AY, Damshkaln LG, et al.Growth and adipogenic differentiation of mesenchymal stromal bone marrow cells during culturing in 3D macroporous agarose cryogel sponges.Bull Exp Biol Med, 2008, 146(1):129-132.
[50] Santos Fd, Andrade PZ, Abecasis MM, et al.Toward a clinical-grade expansion of mesenchymal stem cells from human sources: a microcarrier-based culture system under xeno-free conditions.Tissue Eng Part C Methods, 2011, 17(12):1201-1210.
[51] Schneider PR, Buhrmann C, Mobasheri A, et al. Three-dimensional high-density co-culture with primary tenocytes induces tenogenic differentiation in mesenchymal stem cells.J Orthop Res, 2011,29(9):1351-1360.
[52] Martin Y, Eldardiri M, Lawrence-Watt DJ, et al.Microcarriers and their potential in tissue regeneration.Tissue Eng Part B Rev, 2011,17(1):71-80.
[53] Sensebé L.Clinical grade production of mesenchymal stem cells.Biomed Mater Eng, 2008, 18(1 Suppl):S3-S10.
[54] Kocaoemer A, Kern S, Klüter H, et al.Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue.Stem Cells, 2007, 25(5):1270-1278.
[55] Spees JL, Gregory CA, Singh H, et al.Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy.Mol Ther, 2004, 9(5):747-756.
[56] Müller I, Kordowich S, Holzwarth C, et al.Animal serum-free culture conditions for isolation and expansion of multipotent mesenchymal stromal cells from human BM.Cytotherapy, 2006, 8(5):437-444.
[57] Centeno CJ, Schultz JR, Cheever M, et al.Safety and complications reporting on the re-implantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique.Curr Stem Cell Res Ther, 2010, 5(1):81-93.
[58] Blande IS, Bassaneze V, Lavini-Ramos C, et al.Adipose tissue mesenchymal stem cell expansion in animal serum-free medium supplemented with autologous human platelet lysate.Transfusion,2009, 49(12):2680-2685.
[59] Carrancio S, López-Holgado N, Sánchez-Guijo FM, et al.Optimization of mesenchymal stem cell expansion procedures by cell separation and culture conditions modification.Exp Hematol, 2008,36(8):1014-1021.
[60] Haack-Sorensen M, Friis T, Bindslev L, et al.Comparison of different culture conditions for human mesenchymal stromal cells for clinical stem cell therapy.Scand J Clin Lab Invest, 2008, 68(3):192-203.
[61] Hatlapatka T, Moretti P, Lavrentieva A, et al.Optimization of culture conditions for the expansion of umbilical cord-derived mesenchymal stem or stromal cell-like cells using xeno-free culture conditions.Tissue Eng Part C Methods, 2011, 17(4):485-493.
[62] Hirata TM, Ishkitiev N, Yaegaki K, et al.Expression of multiple stem cell markers in dental pulp cells cultured in serum-free media.J Endod,2010, 36(7):1139-1144.
[63] Jung S, Panchalingam KM, Rosenberg L, et al.Ex vivo expansion of human mesenchymal stem cells in defined serum-free media.Stem Cells Int, 2012, 2012:123030.
[64] Jung S, Panchalingam KM, Wuerth RD, et al.Large-scale production of human mesenchymal stem cells for clinical applications.Biotechnol Appl Biochem, 2012, 59(2):106-120.
[65] Jung S, Sen A, Rosenberg L, et al.Human mesenchymal stem cell culture: rapid and efficient isolation and expansion in a defined serum-free medium.J Tissue Eng Regen Med, 2012, 6(5):391-403.
[66] Lange C, Cakiroglu F, Spiess AN, et al.Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine.J Cell Physiol,2007, 213(1):18-26.
[67] Meuleman N, Tondreau T, Delforge A, et al.Human marrow mesenchymal stem cell culture: serum-free medium allows better expansion than classical alpha-MEM medium.Eur J Haematol, 2006,76(4):309-316.
[68] Mimura S, Kimura N, Hirata M, et al.Growth factor-defined culture medium for human mesenchymal stem cells.Int J Dev Biol, 2011,55(2):181-187.
[69] Schallmoser K, Strunk D.Preparation of pooled human platelet lysate(pHPL) as an efficient supplement for animal serum-free human stem cell cultures.J Vis Exp, 2009, (32).pii: 1523.
[70] Shetty P, Bharucha K, Tanavde V.Human umbilical cord blood serum can replace fetal bovine serum in the culture of mesenchymal stem cells.Cell Biol Int, 2007, 31(3):293-298.
[71] Solmesky L, Lefler S, Jacob-Hirsch J, et al.Serum free cultured bone marrow mesenchymal stem cells as a platform to characterize the effects of specific molecules.PLoS One, 2010, 5(9).pii: e12689.
[72] Sotiropoulou PA, Perez SA, Salagianni M, et al.Cell culture medium composition and translational adult bone marrow-derived stem cell research.Stem Cells, 2006, 24(5):1409-1410.
[73] Stute N, Holtz K, Bubenheim M, et al.Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use.Exp Hematol, 2004, 32(12):1212-1225.
[74] Tateishi K, Ando W, Higuchi C, et al.Comparison of human serum with fetal bovine serum for expansion and differentiation of human synovial MSC: potential feasibility for clinical applications.Cell Transplant, 2008, 17(5):549-557.
[75] Tekkatte C, Gunasingh GP, Cherian KM, et al."Humanized" stem cell culture techniques: the animal serum controversy.Stem Cells Int, 2011,2011:504723.
[76] Yilmaz M, Ovali E, Akdogan E, et al.Autologous serum is more effective than fetal bovine serum on proliferation of bone marrow derived human mesenchymal stem cells.Saudi Med J, 2008,29(2):306-309.
[77] Angelo PC, Ferreira AC, Fonseca VD, et al.Cryopreservation does not alter karyotype, multipotency, or NANOG/SOX2 gene expression of amniotic fluid mesenchymal stem cells.Genet Mol Res, 2012,11(2):1002-1012.
[78] Di G, Wang J, Liu M, et al.Development and evaluation of a trehalose-contained solution formula to preserve hUC-MSCs at 4 ℃.J Cell Physiol, 2012, 227(3):879-884.
[79] Ding G, Wang W, Liu Y, et al.Effect of cryopreservation on biological and immunological properties of stem cells from apical papilla.J Cell Physiol, 2010, 223(2):415-422.
[80] Gong W, Han Z, Zhao H, et al.Banking human umbilical cord-derived mesenchymal stromal cells for clinical use.Cell Transplant, 2012,21(1):207-216.
[81] Grein TA, Freimark D, Weber C, et al.Alternatives to dimethylsulfoxide for serum-free cryopreservation of human mesenchymal stem cells.Int J Artif Organs, 2010, 33(6):370-380.
[82] Hunt CJ.Cryopreservation of human stem cells for clinical application:a review.Transfus Med Hemother, 2011, 38(2):107-123.
[83] Lee MW, Yang MS, Park JS, et al.Isolation of mesenchymal stem cells from cryopreserved human umbilical cord blood.Int J Hematol,2005, 81(2):126-130.
[84] Mamidi MK, Nathan KG, Singh G, et al.Comparative cellular and molecular analyses of pooled bone marrow multipotent mesenchymal stromal cells during continuous passaging and after successive cryopreservation.J Cell Biochem, 2012, 113(10):3153-3164.
[85] Xiang Y, Zheng Q, Jia BB, et al.Ex vivo expansion and pluripotential differentiation of cryopreserved human bone marrow mesenchymal stem cells.J Zhejiang Univ Sci B, 2007, 8(2):136-146.
[86] Xiong ZH, Xu Q, Lu DY, et al.Differentiation of cryopreserved human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells.J Clin Rehabilitative Tissue Eng Res, 2007,11(7):1252-1255.(in Chinese)熊中華, 許倩, 陸德云, 等.凍存人臍血間充質(zhì)干細(xì)胞向類肝細(xì)胞的誘導(dǎo)分化.中國(guó)組織工程研究與臨床康復(fù), 2007, 11(7):1252-1255.
[87] Zhang SZ, Qian H, Wang Z, et al.Preliminary study on the freezedrying of human bone marrow-derived mesenchymal stem cells.J Zhejiang Univ Sci B, 2010, 11(11):889-894.
[88] Wang Y, Han ZB, Song YP, et al.Safety of mesenchymal stem cells for clinical application.Stem Cells Int, 2012, 2012:652034.
[89] Achille V, Mantelli M, Arrigo G, et al.Cell-cycle phases and genetic profile of bone marrow-derived mesenchymal stromal cells expanded in vitro from healthy donors.J Cell Biochem, 2011, 112(7):1817-1821.
[90] Baxter MA, Wynn RF, Jowitt SN, et al.Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion.Stem Cells, 2004, 22(5):675-682.
[91] Ben-David U, Mayshar Y, Benvenisty N.Large-scale analysis reveals acquisition of lineage-specific chromosomal aberrations in human adult stem cells.Cell Stem Cell, 2011, 9(2):97-102.
[92] Ben-David U, Mayshar Y, Benvenisty N.Significant acquisition of chromosomal aberrations in human adult mesenchymal stem cells:Response to Sensebé et al.Cell Stem Cell, 2012, 10(1):10-11.
[93] Christensen R, Alsner J, Brandt Sorensen F, et al.Transformation of human mesenchymal stem cells in radiation carcinogenesis: long-term effect of ionizing radiation.Regen Med, 2008, 3(6):849-861.
[94] Cremona CA, Lloyd AC.Loss of anchorage in checkpoint-deficient cells increases genomic instability and promotes oncogenic transformation.J Cell Sci, 2009, 122(Pt 18):3272-3281.
[95] Crespo-Diaz R, Behfar A, Butler GW, et al.Platelet lysate consisting of a natural repair proteome supports human mesenchymal stem cell proliferation and chromosomal stability.Cell Transplant, 2011,20(6):797-811.
[96] Dahl JA, Duggal S, Coulston N, et al.Genetic and epigenetic instability of human bone marrow mesenchymal stem cells expanded in autologous serum or fetal bovine serum.Int J Dev Biol, 2008,52(8):1033-1042.
[97] Estrada JC, Albo C, Benguría A, et al.Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis.Cell Death Differ, 2012, 19(5):743-755.
[98] Ferreira RJ, Irioda AC, Cunha RC, et al.Controversies about the chromosomal stability of cultivated mesenchymal stem cells: their clinical use is it safe? Curr Stem Cell Res Ther, 2012, 7(5):356-363.
[99] Hiyama E, Hiyama K.Telomere and telomerase in stem cells.Br J Cancer, 2007, 96(7):1020-1024.
[100] Kara?z E, Ok?u A, Gacar G, et al.A comprehensive characterization study of human bone marrow mscs with an emphasis on molecular and ultrastructural properties.J Cell Physiol, 2011, 226(5):1367-1382.
[101] Miura M, Miura Y, Padilla-Nash HM, et al.Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation.Stem Cells, 2006, 24(4):1095-1103.
[102] Prockop DJ, Keating A.Relearning the lessons of genomic stability of human cells during expansion in culture: implications for clinical research.Stem Cells, 2012, 30(6):1051-1052.
[103] Rodríguez-Jiménez FJ, Moreno-Manzano V, Lucas-Dominguez R, et al.Hypoxia causes downregulation of mismatch repair system and genomic instability in stem cells.Stem Cells, 2008, 26(8):2052-2062.
[104] Roschke AV, Glebov OK, Lababidi S, et al.Chromosomal instability is associated with higher expression of genes implicated in epithelial-mesenchymal transition, cancer invasiveness, and metastasis and with lower expression of genes involved in cell cycle checkpoints,DNA repair, and chromatin maintenance.Neoplasia, 2008, 10(11):1222-1230.
[105] Ross AL, Leder DE, Weiss J, et al.Genomic instability in cultured stem cells: associated risks and underlying mechanisms.Regen Med,2011, 6(5):653-662.
[106] Saito S, Morita K, Kohara A, et al.Use of BAC array CGH for evaluation of chromosomal stability of clinically used human mesenchymal stem cells and of cancer cell lines.Hum Cell, 2011,24(1):2-8.
[107] Takeuchi M, Takeuchi K, Kohara A, et al.Chromosomal instability in human mesenchymal stem cells immortalized with human papilloma virus E6, E7, and hTERT genes.In Vitro Cell Dev Biol Anim, 2007,43(3-4):129-138.
[108] Tonti GA, Mannello F.From bone marrow to therapeutic applications:different behaviour and genetic/epigenetic stability during mesenchymal stem cell expansion in autologous and foetal bovine sera? Int J Dev Biol, 2008, 52(8):1023-1032.
[109] van Wely KH, Martínez-A C.Linking stem cells to chromosomal instability.Oncoimmunology, 2012, 1(2):195-200.
[110] Wagner W, Ho AD, Zenke M.Different facets of aging in human mesenchymal stem cells.Tissue Eng Part B Rev, 2010, 16(4):445-453.
[111] Centeno CJ, Schultz JR, Cheever M, et al.Safety and complications reporting update on the re-implantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique.Curr Stem Cell Res Ther, 2011, 6(4):368-378.
[112] Giammo A, Tomasi S, Boido M, et al.Preclinical study for the assessment of safety of human mesenchimal stem cells transplantation in the external urethral sphincter: Long term results.Neurourology Urodynamics, 2011, 30(Suppl 1):37-38.
[113] Herberts CA, Kwa MS, Hermsen HP.Risk factors in the development of stem cell therapy.J Transl Med, 2011, 9:29.
[114] Prockop DJ, Brenner M, Fibbe WE, et al.Defining the risks of mesenchymal stromal cell therapy.Cytotherapy, 2010, 12(5):576-578.
[115] Weber CE, Talbot LJ, Wai PY, et al.Transformation of mesenchymal stem cells into cancer associated fibroblasts within the tumor microenvironment.J Surg Res, 2012, 172(2):243.
[116] Yamaoka E, Hiyama E, Sotomaru Y, et al.Neoplastic transformation by TERT in FGF-2-expanded human mesenchymal stem cells.Int J Oncol, 2011, 39(1):5-11.
[117] Wagner W, Ho AD.Mesenchymal stem cell preparations--comparing apples and oranges.Stem Cell Rev, 2007, 3(4):239-248.
[118] Dominici M, Le Blanc K, Mueller I, et al.Minimal criteria for defining multipotent mesenchymal stromal cells.The International Society for Cellular Therapy position statement.Cytotherapy, 2006,8(4):315-317.
[119] Angstmann M, Brinkmann I, Bieback K, et al.Monitoring human mesenchymal stromal cell differentiation by electrochemical impedance sensing.Cytotherapy, 2011, 13(9):1074-1089.
[120] Boucher S, Lakshmipathy U, Vemuri M.A simplified culture and polymerase chain reaction identification assay for quality control performance testing of stem cell media products.Cytotherapy, 2009,11(6):761-767, 767.e1-e2.
[121] Brooke G, Rossetti T, Ilic N, et al.Points to consider in designing mesenchymal stem cell-based clinical trials.Transfus Med Hemother,2008, 35(4):279-285.
[122] Burunova VV, Suzdaltseva YG, Voronov AV, et al.Development and introduction of production standards for cell products of mesenchymal origin.Bull Exp Biol Med, 2008, 145(4):526-530.
[123] Kawauchi S, Terasaki H, Katano M, et al.Quality control and monitoring for the isolation process of mesenchymal stem cells and their differentiation into osteoblasts.Genet Test Mol Biomarkers, 2010,14(2):269-282.
[124] Mehr M, Bertolo A, Aebli N, et al.The loss of differentiation potential of human mesenchymal stem cells can be predicted by use of a set of senescence markers.Eur Cells Mater, 2010, 20(Suppl 2):50.
[125] Rebulla P, Giordano R.Regulation of cell based medicine.The European experience.The case of Mesenchymal stem cell production for clinical applications.Vox Sanguinis, 2010, 99(Suppl 1):69-70.
[126] Sensebé L, Bourin P.Producing MSC according GMP: process and controls.Biomed Mater Eng, 2008, 18(4-5):173-177.
[127] Sensebé L, Bourin P.Mesenchymal stem cells for therapeutic purposes.Transplantation, 2009, 87(9 Suppl):S49-S53.
[128] Thomas RJ, Chandra A, Hourd PC, et al.Cell culture automation and quality engineering: a necessary partnership to develop optimized manufacturing processes for cell-based therapies.J Assoc Lab Automation, 2008, 13(3):152-158.
[129] Thomas RJ, Hourd PC, Williams DJ.Application of process quality engineering techniques to improve the understanding of the in vitro processing of stem cells for therapeutic use.J Biotechnol, 2008,136(3-4):148-155.
[130] Veyrat-Masson R, Boiret-Dupré N, Rapatel C, et al.Mesenchymal content of fresh bone marrow: a proposed quality control method for cell therapy.Br J Haematol, 2007, 139(2):312-320.
[131] Martín PG, González MB, Martínez AR, et al.Isolation and characterization of the environmental bacterial and fungi contamination in a pharmaceutical unit of mesenchymal stem cell for clinical use.Biologicals, 2012, 40(5):330-337.
[132] Delorme B, Ringe J, Pontikoglou C, et al.Specific lineage-priming of bone marrow mesenchymal stem cells provides the molecular framework for their plasticity.Stem Cells, 2009, 27(5):1142-1151.
[133] Petrini C.European regulations on cord blood banking: an overview.Transfusion, 2012, 52(3):668-679.
[134] U.S.Food and Drug Administration.Guidance for FDA reviewers and sponsors: content and review of chemistry, manufacturing, and control(cmc) information for human somatic cell therapy investigational new drug applications (INDs).(2008-04) [2013-01-10].http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInforma tion/Guidances/Xenotransplantation/ucm074131.htm.
[135] U.S.Food and Drug Administration.Guidance for industry: current good tissue practice (CGTP) and additional requirements for manufacturers of human cells, tissues, and cellular and tissue-based products (HCT/Ps).(2011-12) [2013-01-10].http://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryI nformation/Guidances/Tissue/UCM285223.pdf.
[136] U.S.Food and Drug Administration.Guidance for industry: regulation of human cells, tissues, and cellular and tissue-based products(HCT/Ps) - small entity compliance guide.(2007-08) [2013-01-10].http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRe gulatoryInformation/Guidances/Tissue/ucm073366.htm.
[137] U.S.Food and Drug Administration.Guidance for industry: source animal, product, preclinical, and clinical issues concerning the use of xenotransplantation products in humans.(2003-04) [2013-01-10].http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRe gulatoryInformation/Guidances/Xenotransplantation/ucm074354.htm.
[138] U.S.Food and Drug Administration.Guidance for reviewers:instructions and template for chemistry, manufacturing, and control(CMC) reviewers of human somatic cell therapy investigational new drug applications (INDs).(2003-08) [2013-01-10].http://www.fda.gov/OHRMS/DOCKETS/98fr/03d0349gdl.pdf.
[139] Ryuji Tanosaki, Kazuo Muroi, Tokiko Nagamura-Inoue, et al.Guideline for processing cellular therapy products routinely used for hematopoietic stem cell transplantation in Japan.Jpn J Transfus Cell Ther, 2011, 57(3):184-187.
[140] Foundation for the Accreditation of Cellular Therapy (FACT), Joint Accreditation Committee - Isct and Ebmt (JACIE).International standards for cellular therapy pooduct collection, processing, and administration accreditation manumal.(2011-03) [2013-01-10].http://www.factwebsite.org/uploadedFiles/FACT_News/Final Draft 5th Edition Accreditation Manual.04.18.11.pdf.
[141] Committee for Advanced Therapies (CAT), CAT Scientific Secretariat,Schneider CK, et al.Challenges with advanced therapy medicinal products and how to meet them.Nat Rev Drug Discov, 2010, 9(3):195-201.
[142] International Society for Stem Cell Research.Guidelines for the clinical translation of stem cells.(2008-12-03) [2013-01-10].http://www.isscr.org/docs/guidelines/isscrglclinicaltrans.pdf.
[143] The Therapeutic Goods Administration of the Australian Government Department of Health and Ageing.Australian regulatory guidelines for biologicals (ARGB).(2011-08-29) [2013-01-10].http://www.tga.gov.au/industry/biologicals-argb.htm.