季子敬,全先奎,王傳寬
(東北林業(yè)大學(xué)生態(tài)研究中心,哈爾濱 150040)
興安落葉松針葉解剖結(jié)構(gòu)變化及其光合能力對(duì)氣候變化的適應(yīng)性
季子敬,全先奎,王傳寬*
(東北林業(yè)大學(xué)生態(tài)研究中心,哈爾濱 150040)
葉片易受環(huán)境因子影響,其形態(tài)解剖結(jié)構(gòu)特征不但與葉片的生理功能密切相關(guān),而且反映樹(shù)木對(duì)環(huán)境變化的響應(yīng)和適應(yīng)。葉片結(jié)構(gòu)的改變勢(shì)必會(huì)改變樹(shù)木的生理功能。同一樹(shù)種長(zhǎng)期生長(zhǎng)在異質(zhì)環(huán)境條件下,經(jīng)過(guò)自然選擇和適應(yīng),會(huì)在形態(tài)和生理特性等方面產(chǎn)生變異,形成特定的地理種群。另外,母體所經(jīng)受的環(huán)境脅迫也會(huì)影響到其子代的生長(zhǎng)、發(fā)育和生理等特征。因此,了解植物葉片形態(tài)結(jié)構(gòu)對(duì)環(huán)境變化的響應(yīng)與適應(yīng)是探索植物對(duì)環(huán)境變化的響應(yīng)和適應(yīng)機(jī)制的基礎(chǔ)。興安落葉松(LarixgmeliniiRupr.)是我國(guó)北方森林的優(yōu)勢(shì)樹(shù)種,主要分布在我國(guó)東北地區(qū)。為了區(qū)分葉片對(duì)氣候變化的可塑性和適應(yīng)性,采用同質(zhì)園法比較測(cè)定了6個(gè)不同氣候條件下的興安落葉松種源的32年生樹(shù)木的針葉解剖結(jié)構(gòu)和光合生理相關(guān)因子,分析了針葉的解剖結(jié)構(gòu)特征、光合能力(Pmax-a)、水分利用效率(WUE)之間的關(guān)系及其對(duì)氣候變化的適應(yīng)性。結(jié)果表明:表皮細(xì)胞厚度、葉肉細(xì)胞厚度、傳輸組織厚度、維管束厚度、內(nèi)皮層厚度以及葉片總厚度均存在顯著的種源間差異(Plt;0.05)。葉肉細(xì)胞厚度與Pmax-a、氣孔導(dǎo)度和WUE之間均存在顯著的正相關(guān)關(guān)系(Plt;0.05)。葉肉細(xì)胞厚度、表皮細(xì)胞厚度、葉片總厚度以及葉肉細(xì)胞厚度和表皮細(xì)胞厚度在葉片總厚度中所占比例均與種源地的干燥度指數(shù)(即年蒸發(fā)量與年降水量之比)呈正線性關(guān)系。這些結(jié)果說(shuō)明:不同種源興安落葉松針葉解剖結(jié)構(gòu)因?qū)ΨN源原地氣候條件的長(zhǎng)期適應(yīng)而產(chǎn)生顯著的差異,從而引起其針葉光合作用、水分利用等生理功能發(fā)生相應(yīng)的變化,從而有利于該樹(shù)種在氣候變化的情景下得以生存和繁衍。
氣候變化;種源;葉片解剖;光合特性;水分利用效率
葉片在植物進(jìn)化過(guò)程中作為可塑性較大并容易受環(huán)境因子影響的器官[1],其結(jié)構(gòu)特征最能體現(xiàn)環(huán)境因子的影響或植物對(duì)環(huán)境的適應(yīng)。葉片結(jié)構(gòu)的改變勢(shì)必會(huì)改變樹(shù)木的生理功能[2]。例如,韓梅等[3]研究葉片解剖特征沿溫度梯度變化時(shí)發(fā)現(xiàn),不同功能型植物葉片各組織厚度對(duì)CO2濃度和溫度升高的響應(yīng)存在明顯的種類差異。光照強(qiáng)度的差異會(huì)導(dǎo)致植物葉片的解剖結(jié)構(gòu)發(fā)生變化,從而影響植物的生長(zhǎng)發(fā)育;另外,干旱頻發(fā)、水分短缺等也會(huì)嚴(yán)重影響植物的生長(zhǎng)發(fā)育,使葉片的表皮細(xì)胞變薄,氣孔數(shù)量和開(kāi)度發(fā)生變化,以便適應(yīng)干旱的環(huán)境條件[2]。因此,了解植物葉片形態(tài)結(jié)構(gòu)對(duì)環(huán)境變化的響應(yīng)與適應(yīng)是探索植物對(duì)環(huán)境變化的響應(yīng)適應(yīng)機(jī)制的基礎(chǔ)。
同一樹(shù)種長(zhǎng)期生長(zhǎng)在異質(zhì)環(huán)境條件下,經(jīng)過(guò)自然選擇和適應(yīng),會(huì)在形態(tài)和生理特性等方面產(chǎn)生變異,形成特定的地理種群[4]。葉片解剖結(jié)構(gòu)特征受樹(shù)木生理狀況和環(huán)境因子的共同限制,并隨著環(huán)境條件的變化而呈現(xiàn)一定的變化規(guī)律。以往的研究表明,來(lái)源于不同自然環(huán)境的種群在葉片大小、形狀等方面存在一定差異[5]。在同質(zhì)園內(nèi),來(lái)自于高緯度/海拔種源樹(shù)木具有較高的比葉重(Leaf Mass per Area, LMA),這可能是一種基因調(diào)控下的對(duì)種源原地環(huán)境適應(yīng)的表現(xiàn)[6- 10];而LMA的種源差異往往是由葉片結(jié)構(gòu)的改變而引起的,至于有哪些結(jié)構(gòu)特征參數(shù)發(fā)生何種變化仍不清楚[6,8]。另外,母體所經(jīng)受的環(huán)境脅迫也會(huì)影響到其子代的生長(zhǎng)、發(fā)育和生理等特征[11],但這種母體效應(yīng)的影響程度和機(jī)理還有待深入研究。這些問(wèn)題的回答,對(duì)于認(rèn)識(shí)樹(shù)種葉片解剖結(jié)構(gòu)對(duì)氣候變化的響應(yīng)和適應(yīng)特征具有重要意義。
葉片的解剖結(jié)構(gòu)與植物的光合能力密切相關(guān)。通常,葉片厚度的增加會(huì)使其光合速率升高[12]。以往對(duì)于闊葉植物的研究表明:葉肉細(xì)胞增厚,柵欄組織加厚,細(xì)胞層次增多,可使葉片光合能力增強(qiáng)[13- 14]。但對(duì)于針葉樹(shù)葉片結(jié)構(gòu)與光合的關(guān)系報(bào)道甚少。馬立祥[15]等認(rèn)為不同地理種群的兩針?biāo)?即Pinusdensiflora、Pinussylvestrisvar.sylvestriformisandPinussylvestrisvar.mongolica)的光合能力存在差異,但對(duì)于處在不同地理?xiàng)l件下的同一種群針葉的解剖特性是否存在差異、以及這種差異是植物對(duì)環(huán)境變化的馴化還是遺傳調(diào)控下的適應(yīng)等問(wèn)題還不太清楚。
興安落葉松(LarixgmeliniiRupr.)是我國(guó)北方森林的優(yōu)勢(shì)樹(shù)種,主要分布在我國(guó)東北地區(qū),但日益加劇的氣候變化可能會(huì)改變其現(xiàn)有的分布區(qū)。例如,據(jù)張新時(shí)[16]預(yù)測(cè),如果氣溫增加2—4 ℃、年降水量增加20%的條件下,興安落葉松可能北移,取而代之的是溫帶草原和針闊混交林。然而,類似的模型預(yù)測(cè)尚未考慮樹(shù)木的形態(tài)、解剖結(jié)構(gòu)、生理功能等對(duì)氣候變化的潛在響應(yīng)和適應(yīng)機(jī)制。為此,本研究采用同質(zhì)園法比較測(cè)定了6個(gè)不同氣候條件下的興安落葉松種源的32年生樹(shù)木的葉片解剖結(jié)構(gòu)和光合生理相關(guān)因子,旨在比較分析不同種源針葉解剖結(jié)構(gòu)變化與其光合生理特征的關(guān)系,為預(yù)測(cè)氣候變化對(duì)北方森林生態(tài)系統(tǒng)的影響提供理論基礎(chǔ)。
1.1 實(shí)驗(yàn)地自然概況
本實(shí)驗(yàn)所用的同質(zhì)種植園位于東北林業(yè)大學(xué)帽兒山森林生態(tài)站(127 ° 30′—34 ′E, 45 ° 20 ′—25 ′N)。在興安落葉松國(guó)內(nèi)的分布范圍內(nèi),在以表征能量差異為主的緯度梯度上選取代表性種源6個(gè)(表1),于1980年秋采種,1981年育苗,1983年春造林,1997年和2001年間伐兩次,株行距現(xiàn)為4.5 m × 2.5 m。同質(zhì)園內(nèi)土壤、地形、氣候條件一致,平均海拔300 m,平均坡度10—15 °,土壤為暗棕壤,年平均降雨量629 mm,年均蒸發(fā)量864 mm,年平均溫度3.1 ℃,1月和7月份平均溫分別為-18.5 ℃和22 ℃,無(wú)霜期120—140 d(5—9月份)[17]。
表1 興安落葉松種源原地地理氣象條件及生長(zhǎng)現(xiàn)狀
表中的a、b、c表示HSD檢驗(yàn)顯著性差異組別(α=0.05); MAT:mean annual air temperature, MAP:mean annual precipitation, MAE:mean annual evaporation, DBH:diameter at breast height, and LMA:leaf mass area
1.2 光合能力及相關(guān)因子的測(cè)定
在同質(zhì)園內(nèi),每個(gè)種源選取3株標(biāo)準(zhǔn)木,搭建觸及冠層(14 m左右)的腳手架,以便活體測(cè)量針葉的光合作用及其相關(guān)因子。每株標(biāo)準(zhǔn)木選取冠層上部向陽(yáng)方的當(dāng)年生枝新生葉3簇,于2011年8月中旬,選擇無(wú)雨天氣于6:30—12:00時(shí)段,采用Li- 6400便攜式CO2/H2O紅外分析儀(Li-Cor, NB, USA)活體測(cè)定針葉氣體交換過(guò)程以及相應(yīng)的環(huán)境因子。測(cè)定時(shí)采用的葉室環(huán)境控制為:溫度25 ℃,流速500 μmol/s,CO2濃度400 μmol CO2/mol。測(cè)定前采用飽和光強(qiáng)對(duì)葉片進(jìn)行充分光誘導(dǎo)。在測(cè)定光響應(yīng)曲線時(shí),光量子通量密度梯度為: 2000、1500、1200、800、400、200、150、100、50、0 μmol 光子量·m-2·s-1;測(cè)定輸出參數(shù)包括凈光合速率(Pn)、蒸騰速率(Tr)、氣孔導(dǎo)度(gs)等。用于光合測(cè)定的針葉面積采用掃描圖像處理獲得[18];隨后將葉片在65 ℃下烘至恒重稱重(精度0.0001),獲取其比葉重(LMA,g/m2):
LMA=葉片干重/葉面積
(1)
1.3 葉片解剖方法
在同質(zhì)園內(nèi)各種源每株標(biāo)準(zhǔn)木上選取與測(cè)定光合能力葉片位置相近、發(fā)育程度一致的健康針葉各10簇,用FAA固定液(酒精∶福爾馬林∶冰醋酸=90∶5∶5)固定。樣品經(jīng)系列酒精脫水后,二甲苯透明、浸蠟、包埋,然后用旋轉(zhuǎn)式薄片切片機(jī)(Rotary Microtome, Leitz, Germany)制片。在每個(gè)針葉中部取10個(gè)橫向切片,切片厚度為8—10 μm。切片脫蠟后,用番紅-固綠對(duì)染,即用1%的番紅水溶液染色12 h, 再用0.5%固綠染色,然后用阿拉伯樹(shù)膠封片,用ZEISS Imager A1型光學(xué)攝影顯微鏡觀察攝影;之后用Axio Vision Release 4.5 SP1測(cè)量葉片橫切面照片的葉片厚度(LD)、上表皮細(xì)胞厚度(LUPD)、下表皮細(xì)胞厚度(LBPD)、近軸面葉肉細(xì)胞厚度(LUCD)、遠(yuǎn)軸面葉肉細(xì)胞厚度(LBCD)、維管束厚度(LVD)、內(nèi)皮層厚度(LED)和傳輸組織厚度( LTD);每個(gè)測(cè)量指標(biāo)重復(fù)測(cè)量3次。表皮細(xì)胞厚度(LPD)和葉肉細(xì)胞厚度(LCD)分別由下式獲得:
LPD=LUPD + LBPD
(2)
LCD=LUCD + LBCD
(3)
1.4 數(shù)據(jù)分析
光合作用的光響應(yīng)曲線采用Prado等[19]的非線性擬合方程:
Pn=Pmax-a(1-e-k(PAR-P))
(4)
式中,Pmax-a為單位葉面積最大凈光合速率(μmol CO2·m-2·s-1),k是常數(shù),Pn是實(shí)際測(cè)定的凈光合速率,PAR是光合有效輻射,P是光補(bǔ)償點(diǎn)。
葉片尺度的水分利用效率(WUE, μmol CO2/mmol H2O )由下式[20]獲得:
WUE=Pn/Tr
(5)
式中,Tr為蒸騰速率。
干燥度指數(shù)(AI)由下式[21]獲得:
AI=MAE/MAP
(6)
式中,MAE為平均年蒸發(fā)量;MAP為平均年降水量。
數(shù)據(jù)分析和差異性檢驗(yàn)采用SPSS 19.0(SPSS Inc., Chicago 2001)統(tǒng)計(jì)軟件分析;所有圖采用Sigma Plot 9.0(Systat corporation, USA)繪制。
2.1 葉片解剖結(jié)構(gòu)的種源差異
興安落葉松葉片厚度(LD)及各解剖結(jié)構(gòu)特征厚度均存在顯著種源差異(圖1,Plt;0.05)。LD的大小順序?yàn)椋褐醒胝?(392.8±9.8) μm,平均值±標(biāo)準(zhǔn)誤)gt; 根河(383.0±7.5) μmgt; 鶴北(375.3±8.5) μmgt; 三站(373.7±3.7) μmgt; 塔河(362.5±5.3) μmgt; 烏伊嶺(354.3±6.8) μm;來(lái)自寒冷干燥地區(qū)的種源具有較高的LD。比較葉片各解剖結(jié)構(gòu)特征參數(shù)的大小時(shí)發(fā)現(xiàn),來(lái)自中央站種源的葉片均具有較高的厚度,而來(lái)自低緯度烏伊嶺種源葉片則均具有較小的厚度,其它種源因解剖結(jié)構(gòu)特征參數(shù)而具有不同的種源差異。
圖1 六個(gè)種源興安落葉松的葉片結(jié)構(gòu)特征參數(shù)Fig.1 Parameters of leaf anatomy of the six provenancesLD:葉片厚度Leaf thickness,LUPD:上表皮細(xì)胞厚度Leaf adaxial epidermis cells thickness,LBPD:下表皮細(xì)胞厚度Leaf abaxial epidermis cells thickness,LUCD:近軸面葉肉細(xì)胞厚度Leaf adaxial mesophyll cells thickness,LBCD:遠(yuǎn)軸面細(xì)胞厚度Leaf abaxial mesophyll cells thickness,LED:內(nèi)皮層厚度Leaf endoderm cells thickness,LTD:傳輸組織厚度Leaf transporting tissue thickness,LVD:維管束厚度Leaf vascular bundle tissue thickness
葉片各解剖結(jié)構(gòu)特征厚度在葉片總厚度中所占的比例差異明顯(圖2),其中葉肉細(xì)胞厚度(LCD)所占比例最大,其平均值波動(dòng)在(38.4%—43.3%)之間;而表皮細(xì)胞厚度(LPD)所占比例為最小,其平均值波動(dòng)范圍為(5.1%—6.1%);維管束厚度(LVD)波動(dòng)在(16.15%—19.0%)之間;傳輸組織厚度(LTD)波動(dòng)范圍為(12.95%—18.2%);而內(nèi)皮層厚度(LED)則在(11.5%—15.3%)之間波動(dòng)。
圖2 葉片各解剖結(jié)構(gòu)特征參數(shù)占葉片總厚度的比例 Fig.2 The proportion of the parameters of leaf anatomy to the total leaf thickness
2.2 葉片解剖結(jié)構(gòu)與生理功能之間的關(guān)系
LD、LCD和LTD均與最大凈光合速率(Pmax-a)、氣孔導(dǎo)度(gs)及水分利用效率(WUE)之間存在顯著的正相關(guān)關(guān)系(圖3;Plt;0.05;LTD與gs除外)??傮w而言,中央站和根河種源葉片具有較高的Pmax-a、WUE和gs,而烏伊嶺和塔河種源的各測(cè)定生理特征參數(shù)值較低。且種源間LCD與各測(cè)定生理特征間相關(guān)性要高于LD和LTD。種源間Pmax-a、gs及WUE波動(dòng)范圍分別為(9.60±0.86)—(16.61±0.91) μmol CO2·m-2·s-1,(0.20±0.002)—(0.30±0.009) mmol CO2·m-2·s-1和(2.06±0.08)—(3.83±0.05) μmol CO2·mmol-1H2O。
圖3 葉片解剖結(jié)構(gòu)特征參數(shù)和最大凈光合速率(Pmax-a)、水分利用效率(WUE)、氣孔導(dǎo)度(gs)之間的關(guān)系(n=6)Fig.3 Relationships between parameters of leaf anatomy and Pmax-a、WUE and gs(n=6)
2.3 葉片解剖結(jié)構(gòu)與種源地干燥度指數(shù)之間的關(guān)系
LD、LCD和LPD均與種源原地干燥度指數(shù)(AI)之間呈線性相關(guān),其中AI和LCD之間的相關(guān)性最緊密(表1,圖4)。隨著種源原地的干燥程度增加,LD、LCD和LPD均明顯增大,且LCD和LPD在LD中所占比例也隨AI的增加而顯著增大(圖4)。
圖4 葉片解剖結(jié)構(gòu)特征參數(shù)與種源原地干燥度指數(shù)之間的關(guān)系(n=6)Fig.4 Relationships between parameters of leaf anatomy and the aridity index at the original sites (n=6)
6個(gè)種源興安落葉松針葉的解剖結(jié)構(gòu)特征參數(shù)差異顯著(圖1),因而導(dǎo)致了針葉總厚度(LD)和LMA的種源間差異(圖1,表1)。在各解剖結(jié)構(gòu)特征參數(shù)中,葉肉細(xì)胞最為突出,其厚度約占LD的40%左右,且與LD呈現(xiàn)相似的種源間差異。因?yàn)?種源興安落葉松已經(jīng)在環(huán)境條件一致的同質(zhì)園內(nèi)生長(zhǎng)了32a,所以可以認(rèn)為這種解剖結(jié)構(gòu)上的變化是樹(shù)木對(duì)種源原地氣候條件長(zhǎng)期適應(yīng)的結(jié)果。進(jìn)一步通過(guò)與原地氣候因子進(jìn)行回歸分析發(fā)現(xiàn),LD、LCD、LPD以及LCD和LPD占LD的比例均與種源原地的干燥度指數(shù)(AI)呈線性關(guān)系(圖4)。雖然其它解剖特征參數(shù)與AI相關(guān)沒(méi)有達(dá)到顯著性水平,但總體趨勢(shì)不變,即來(lái)自寒冷干燥的種源具有較厚的葉片以及較大的各解剖結(jié)構(gòu)特征參數(shù)。楊傳平等[4]對(duì)該6個(gè)種源興安落葉松的前期研究也發(fā)現(xiàn),其材積、樹(shù)高、胸徑等等形態(tài)指標(biāo)也存在顯著的種源間差異。
葉片的形態(tài)、解剖結(jié)構(gòu)和生長(zhǎng)發(fā)育是受遺傳和環(huán)境條件(如:地理位置、生境條件和氣候特性等)共同調(diào)控的[22- 23],其形態(tài)和結(jié)構(gòu)特征的改變能夠反映樹(shù)木對(duì)環(huán)境變化的響應(yīng)和適應(yīng)。Glloway[11]對(duì)風(fēng)鈴草(Campanulaamericana)的研究顯示,母體對(duì)后代如何適應(yīng)當(dāng)?shù)丨h(huán)境條件有暗示作用,即生長(zhǎng)在與母體相同環(huán)境下的后代植株比其他環(huán)境下的后代表現(xiàn)更為出色。劉全宏[24]對(duì)太白冷杉(Larixchinensis)的研究報(bào)道,隨著年降水量的增加,葉片厚度、傳輸組織、維管束厚度和內(nèi)皮層厚度呈減小或變薄的趨勢(shì)。在干燥條件下,葉片往往通過(guò)增加葉片厚度尤其是表皮厚度防止水分的過(guò)度蒸發(fā),進(jìn)而保證植物的正常代謝。Huner[25]等的研究表明,寒冷地區(qū)葉片具有較厚的表皮細(xì)胞,這正是植物御寒的一種表現(xiàn)。
結(jié)構(gòu)是功能的基礎(chǔ),葉片結(jié)構(gòu)特征的變化將會(huì)影響樹(shù)木的光合、呼吸、蒸騰等生理功能。研究結(jié)果顯示,Pmax-a和WUE均與LD、LCD和LTD呈顯著的正線性關(guān)系(圖3),與Oguchi等[26]的研究結(jié)果一致。也有研究報(bào)道,來(lái)自寒冷高緯度的種源具有較強(qiáng)的光合能力,且與葉片的LMA顯著相關(guān)[6- 8,27]。葉片及其葉肉組織增厚,葉綠體含量也相應(yīng)地升高(數(shù)據(jù)未顯示),為光合作用提供了更多的場(chǎng)所,進(jìn)而提高了光合能力;同時(shí),也提高了植物的水分利用效率[28](圖3),從而增強(qiáng)了樹(shù)木抵御干旱等環(huán)境脅迫的能力。
總之,興安落葉松長(zhǎng)期適應(yīng)當(dāng)?shù)氐沫h(huán)境條件,使得其針葉的形態(tài)特征、解剖結(jié)構(gòu)特征和生理功能上產(chǎn)生具有遺傳能力的變異,是其在嚴(yán)酷的北方森林生境內(nèi)得以生存繁衍的生態(tài)對(duì)策之一。
本研究利用同質(zhì)園實(shí)驗(yàn)有效地區(qū)分了興安落葉松針葉解剖結(jié)構(gòu)和光合生理對(duì)氣候變化響應(yīng)的可塑性和適應(yīng)性。針葉的解剖結(jié)構(gòu)特征參數(shù)存在顯著的種源間差異,而且葉肉細(xì)胞厚度與針葉的光合能力和水分利用效率之間均存在顯著的正相關(guān)關(guān)系。葉肉細(xì)胞厚度、表皮細(xì)胞厚度、葉片總厚度以及葉肉細(xì)胞厚度和表皮細(xì)胞厚度在葉片總厚度中所占比例均與種源原地的干燥度指數(shù)呈正線性關(guān)系。這表明興安落葉松長(zhǎng)期適應(yīng)當(dāng)?shù)氐沫h(huán)境條件,在針葉的形態(tài)特征、解剖結(jié)構(gòu)特征和生理功能上產(chǎn)生具有遺傳能力的變異,從而有利于該樹(shù)種在氣候變化的情景下得以生存和繁衍。
致謝: 感謝黑龍江帽兒山森林生態(tài)系統(tǒng)國(guó)家野外科學(xué)觀測(cè)研究站和林木遺傳育種國(guó)家重點(diǎn)實(shí)驗(yàn)室(東北林業(yè)大學(xué))提供的野外基礎(chǔ)支持。
[1] Wang X L, Wang J. Plant Morphology and Environment. Lanzhou: Lanzhou Publication, 1989, 105- 138.
[2] Li F L, Bao W K. Responses of the morphological and anatomical structure of the plant leaf to environmental change. Chinese Bulletin of Botany, 2005, 22(Supplement): 118- 127.
[3] Han M, Ji C J, Zuo W Y, He J S. Interactive effects of elevated CO2and temperature on the leaf anatomical characteristics of eleven species. Acta Ecologica Sinica, 2006, 26(2): 326- 333.
[4] Yang C P, Jiang J, Tang S S, Li J Y, Wang H R. The provenance test of 21-year oldLarixgmeliniiat Maoershan area. Journal of Northeast Forestry University, 2002, 30(6): 1- 5.
[5] Saxe H, Cannell M G R, Johnsen ?, Ryan M G, Vourlitis G. Tree and forest functioning in response to global warming. New Phytologist, 2001, 149(3): 369- 400.
[6] Cordell S, Goldstein G, Mueller-Dombois D, Webb D, Vitousek P M. Physiological and morphological variation inMetrosiderospolymorpha, a dominant Hawaiian tree species, along an altitudinal gradient: the role of phenotypic plasticity. Oecologia, 1998, 113(2): 188- 196.
[7] Bresson C C, Vitasse Y, Kremer A, Delzon S. To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech? Tree Physiology, 2011, 31(11): 1164- 1174.
[8] Oleksyn J, Modrzynski J, Tjoelker M G, Reich P B, Karolewski P. Growth and physiology ofPiceaabiespopulations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation. Functional Ecology, 1998, 12(4): 573- 590.
[9] Oleksyn J, Tjoelker M G, Reich P B. Adaptation to changing environment in Scots pine populations across a latitudinal gradient. Silva Fennica, 1998, 32(2): 129- 140.
[10] Robson T M, Sánchez-Gómez D, Cano F J, Aranda I. Variation in functional leaf traits among beech provenances during a Spanish summer reflects the differences in their origin. Tree Genetics amp; Genomes, 2012, 8(5): 1111- 1121.
[11] Galloway L F. Parental environmental effects on life history in the herbaceous plantCampanulaamericana. Ecology, 2001, 82(10): 2781- 2789.
[12] Oguchi R, Hikosaka K, Hirose T. Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant, Cell and Environment, 2005, 28(7): 916- 927.
[13] Hanba Y T H. Kogami H, Terashima I. The effect of growth irradiance on leaf anatomy and photosynthesis inAcerspecies differing in light demand. Plant, Cell and Environment, 2002, 25(8): 1021- 1030.
[14] Wang X L. The development of plant ecological anatomy. Chinese Bulletin of Botany, 1993, 10, 1- 10.
[15] Ma L X, Wang X W, Mao Z J, Liu L X, Sun T. Variations in photosynthetic capacity and growth characters for 2-needled pine from diverse geographic populations. Bulletin of Botanical Research, 2010, 30(6): 680- 684.
[16] Zhang X S. A vegetation-climate classification system for global change studies in China. Quaternary Sciences, 1993, (2): 157- 169.
[17] Sang Y R, Wang C K, Huo H. Inter-specific and seasonal variations in photosynthetic capacity and water use efficiency of five temperate tree species in northeastern China. Scandinavian Journal of Forest Research, 2011, 26(1): 21- 29.
[18] Xiao Q, Ye W J, Zhu Z, Chen Y, Zheng H L. A simple non-destructive method to measure leaf area using digital camera and Photoshop software. Chinese Journal of Ecology, 2005, 24(6): 711- 714.
[19] Prado C H B A, De Moraes J A P V. Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field conditions. Photosynthetica, 1997, 33(1): 103- 112.
[20] Wang J L, Yu G R, Fang Q X, Jiang D F, Qi H, Wang Q F. Responses of water use efficiency of nine plant species to light and CO2and it′s modeling. Acta Ecologica Sinica, 2008, 28(2): 525- 533.
[21] Meng M, Ni J, Zhang Z G. Aridity index and its applications in geo-ecological study. Acta Phytoecologica Sinica, 2004, 28(6): 853- 861.
[22] Xu D C, Lü F D, Li B, Jiang Y. Comparison of chlorophyll fluorescence characteristics and leaf characters of pecan in different site conditions. Nonwood Forest Research, 2005, 23(4): 17- 20.
[23] Peng S B, Kriegdr D R, Girma F S. Leaf photosynthetic rate is correlated with biomass and grain production in grain sorghum lines. Photosynthesis Research, 1991, 28(1): 1- 7.
[24] Liu Q H, Wang X A, Tian X H, Xiao Y P. Morphological and anatomical characteristics of leaf ofLarixchinensisand their relationship to environmental factors in Taibaishan Mountain. Acta Botanica Boreali-Occidentalia Sinica, 2001, 21(5): 885- 893.
[25] Huner N P A, Palta J P, Li P H, Carter J V. Anatomical changes in leaves of Puma Rye in response to growth at cold-hardening temperatures. Botanical Gazette, 1981, 142(1): 55- 62.
[26] Oguchi R, Hikosaka K, Hirose T. Does the photosynthetic light-acclimation need change in leaf anatomy? Plant, Cell and Environment, 2003, 26(4): 505- 512.
[27] Scheepens J, Frei E S, St?cklin J. Genotypic and environmental variation in specific leaf area in a widespread Alpine plant after transplantation to different altitudes. Oecologia, 2010, 164(1): 141- 150.
[28] Masle J, Farquhar G D. Effects of soil strength on the relation of water-use efficiency and growth to carbon isotope discrimination in wheat seedlings. Plant Physiology, 1988, 86(1): 32- 38.
參考文獻(xiàn):
[1] 王勛陵, 王靜. 植物形態(tài)結(jié)構(gòu)與環(huán)境. 蘭州: 蘭州大學(xué)出版社, 1989: 105- 138.
[2] 李芳蘭, 包維楷. 植物葉片形態(tài)解剖結(jié)構(gòu)對(duì)環(huán)境變化的響應(yīng)與適應(yīng). 植物學(xué)通報(bào), 2005, 22(增刊): 118- 127.
[3] 韓梅, 吉成均, 左聞韻, 賀金生. CO2濃度和溫度升高對(duì)11種植物葉片解剖特征的影響. 生態(tài)學(xué)報(bào), 2006, 26(2): 326- 333.
[4] 楊傳平, 姜靜, 唐盛松, 李景云, 王會(huì)仁. 帽兒山地區(qū)21年生興安落葉松種源試驗(yàn). 東北林業(yè)大學(xué)學(xué)報(bào), 2002, 30(6): 1- 5.
[14] 王勛陵. 植物生態(tài)解剖學(xué)研究進(jìn)展. 植物學(xué)通報(bào), 1993, 10: 1- 10.
[15] 馬立祥, 王秀偉, 毛子軍, 劉林馨, 孫濤. 不同地理種群兩針?biāo)晒夂虾蜕L(zhǎng)特性的差異. 植物研究, 2010, 30(6): 680- 684.
[16] 張新時(shí). 研究全球變化的植被——?dú)夂蚍诸愊到y(tǒng). 第四紀(jì)研究, 1993, (2): 157- 169.
[18] 肖強(qiáng), 葉文景, 朱珠, 陳瑤, 鄭海雷. 利用數(shù)碼相機(jī)和Photoshop軟件非破壞性測(cè)定葉面積的簡(jiǎn)便方法. 生態(tài)學(xué)雜志, 2005, 24(6): 711- 714.
[20] 王建林, 于貴瑞, 房全孝, 姜德鋒, 齊華, 王秋鳳. 不同植物葉片水分利用效率對(duì)光和CO2的響應(yīng)與模擬. 生態(tài)學(xué)報(bào), 2008, 28(2): 525- 533.
[21] 孟猛, 倪健, 張治國(guó). 地理生態(tài)學(xué)的干燥度指數(shù)及其應(yīng)用評(píng)述. 植物生態(tài)學(xué)報(bào), 2004, 28(6): 853- 861.
[22] 徐德聰, 呂芳德, 栗彬, 蔣瑤. 不同立地美國(guó)山核桃葉綠素?zé)晒馓匦约叭~性狀比較. 經(jīng)濟(jì)林研究, 2005, 23(4): 17- 20.
[24] 劉全宏, 王孝安, 田先華, 肖婭萍. 太白紅杉(Larixchinensis)葉的形態(tài)解剖學(xué)特征與環(huán)境因子的關(guān)系. 西北植物學(xué)報(bào), 2001, 21(5): 885- 893.
VariationsinleafanatomyofLarixgmeliniireflectadaptationofitsphotosyntheticcapacitytoclimatechanges
JI Zijing, QUAN Xiankui, WANG Chuankuan*
CenterforEcologicalResearch,NortheastForestryUniversity,Harbin150040,China
Leaf anatomy, being susceptible to environmental factors, is closely related to physiological functions of the leaf, and also reflects responses and adaptation of the tree to environmental changes. Changes in leaf anatomical structure are bound to change the physiological functions of trees. The same species growing in heterogeneous environment for a long time through natural selection and adaptation will result in variations in morphological and physiological characteristics, forming distinctive geographic populations. In addition, Matrix subjected to environmental stress will affect its offspring growth, developmental and physiological characteristics. Therefore, to understand how the morphological structure of leaves respond and adapt to environmental changes is essential for exploring the response and adaptation mechanism of plants to environmental changes. Dahurian larch (LarixgmeliniiRupr.) is a dominant tree species in boreal forest in China, mainly distributed in northeast China, but going further climate changes may change its existing distribution. There are few studies to distinguish short-term responses of leaf anatomy and physiology from their potential long-term adaptation to climate changes in field. In this study, we conducted a common garden experiment that included six provenances of Dahurian larch with different climate and site conditions with three replicate trees each provenance. The trees were 32 years old, seeded in 1980, and transplanted in 1983 at identical site and climate conditions. We measured leaf anatomical parameters using paraffin section method (i.e., total leaf thickness, leaf adaxial epidermis cells thickness, leaf abaxial epidermis cells thickness, leaf adaxial mesophyll cells thickness, leaf abaxial mesophyll cells thickness, leaf vascular bundle tissue thickness, leaf endoderm cells thickness, leaf transporting tissue thickness, leaf epidermis cells thickness, leaf mesophyll cells thickness, and photosynthetic physiology (i.e., photosynthetic capacity [Pmax-a], stomatal conductance [gs], water use efficiency [WUE]) in order to address the question of whether leaf anatomical structure adapts to climate changes and consequently results in physiological adaptation. The results showed that the thickness of epidermis cells, mesophyll cells, transmission tissue cells, vascular cells and endothelial cells, and the total thickness of the needles differed significantly among the provenances (Plt;0.05). There was a significant difference in the proportion of thickness of each anatomical part. The thickness of mesophyll cell accounted for the largest proportion, with an average proportion ranging from 38.4% to 43.3%. The thickness of mesophyll cells was positively correlated (Plt;0.05) withPmax-a,gs, andWUE. The thickness of mesophyll cells and epidermal cells, the total thickness of the needles, and the proportions of thickness of mesophyll cells or epidermal cells in the total thickness of the needle were all positively correlated with the aridity index (the ratio of mean annual evaporation to mean annual precipitation) at the origins of the provenances. These results suggest that needles of the Dahurian larch trees from different provenances alter their anatomical structures significantly due to adaptation to local climate conditions, and accordingly change their physiological functions such as photosynthesis and water use efficiency.
climate change; provenance; leaf anatomy; photosynthetic characteristics; water use efficiency
國(guó)家“十二五”科技支撐項(xiàng)目(2011BAD37B01);教育部長(zhǎng)江學(xué)者和創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃(IRT1054);國(guó)家林業(yè)局重點(diǎn)項(xiàng)目(2006—77);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(DL10BA19)
2013- 01- 15;
2013- 07- 22
*通訊作者Corresponding author.E-mail: wangck-cf@nefu.edu.cn
10.5846/stxb201301150103
季子敬,全先奎,王傳寬.興安落葉松針葉解剖結(jié)構(gòu)變化及其光合能力對(duì)氣候變化的適應(yīng)性.生態(tài)學(xué)報(bào),2013,33(21):6967- 6974.
Ji Z J, Quan X K, Wang C K.Variations in leaf anatomy ofLarixgmeliniireflect adaptation of its photosynthetic capacity to climate changes.Acta Ecologica Sinica,2013,33(21):6967- 6974.