徐云峰劉松堅
(1.廣州軍區(qū)機關(guān)門診部檢驗科,510080;2.廣州軍區(qū)療養(yǎng)院檢驗科,510515)
細(xì)胞凋亡是一種程序性死亡,其形態(tài)學(xué)特征是質(zhì)膜出泡、細(xì)胞皺縮、染色體濃縮、染色體DNA裂解[1]。有兩種途徑可導(dǎo)致細(xì)胞凋亡:①外源性凋亡途徑,又被稱為死亡受體通路,可由胞外腫瘤壞死因子受體(TNFR)或Fas受體(FasR)引發(fā)。②內(nèi)源性凋亡途徑,又被稱為線粒體/細(xì)胞色素C介導(dǎo)的通路,可通過Bcl-2家族成員調(diào)控。Bcl-2家族是細(xì)胞凋亡信號轉(zhuǎn)導(dǎo)途徑中關(guān)鍵的凋亡調(diào)節(jié)因子,現(xiàn)就近年來Bcl-2家族的結(jié)構(gòu)、家族成員之間的相互作用、信號通路的調(diào)控以及與腫瘤的關(guān)系等作一綜述。
根據(jù)在細(xì)胞凋亡過程中發(fā)揮的生物學(xué)效應(yīng)不同,Bcl-2家族可分為3類[2],第1類是抗凋亡蛋白,主要有Bcl-2、Bcl-xl、Bcl-w和Mcl-1等;第2類是促凋亡蛋白,主要包括Bax、Bak和Bok等;第3類是促凋亡蛋白中的特殊成員,主要有Bad、Bid、Bim、Bik、Puma和Noxa等。大部分Bcl-2家族蛋白主要由兩大結(jié)構(gòu)域構(gòu)成,即位于羧基末端的跨膜結(jié)構(gòu)域(TM)和不同數(shù)量的Bcl-2同源結(jié)構(gòu)域(BH)。抗凋亡蛋白和促凋亡蛋白的結(jié)構(gòu)中均含有BH1-4結(jié)構(gòu)域[3],促凋亡蛋白中的特殊成員僅含有BH3結(jié)構(gòu)域,又被稱為BH3-only成員[4]。
Bcl-2家族是細(xì)胞凋亡信號轉(zhuǎn)導(dǎo)途徑中關(guān)鍵的凋亡調(diào)節(jié)因子,它們共同參與一個非常復(fù)雜的相互作用機制以調(diào)控細(xì)胞凋亡。
Bcl-2家族在線粒體介導(dǎo)的細(xì)胞凋亡中發(fā)揮重要作用。Bcl-2家族的抗凋亡蛋白Bcl-2、Bcl-xl主要分布于線粒體膜內(nèi)外側(cè),其中Bcl-2還存在于核膜以及內(nèi)質(zhì)網(wǎng)膜上,通常在線粒體外膜發(fā)揮抗凋亡作用,以維持膜的完整性。Bcl-2家族的促凋亡蛋白Bax一般出現(xiàn)在胞漿中,當(dāng)細(xì)胞響應(yīng)損傷或刺激等凋亡信號后,Bax將重新定位于線粒體表面,通過破壞線粒體膜的完整性發(fā)揮作用[5]。
BH3-only蛋白是細(xì)胞應(yīng)對外界凋亡信號的最主要方式,當(dāng)BH3-only成員包括Bad、Bid、Bim、Bik和Puma等接收到凋亡信號后,BH3-only蛋白的表達(dá)增多,且發(fā)生翻譯后修飾,通過兩種機制發(fā)揮促凋亡作用[6-8]:一種是與Bcl-2家族中的抗凋亡蛋白形成對抗[9-11],一種是激活促凋亡蛋白Bax和Bak[12-15]。
不僅Bcl-2家族成員的表達(dá)可調(diào)控細(xì)胞凋亡,Bcl-2家族成員的翻譯后修飾也可調(diào)節(jié)細(xì)胞凋亡。Bcl-2家族成員受到許多翻譯后修飾,尤其是磷酸化和泛素化,但是修飾后的生物學(xué)功能受到爭議[16]。例如:抗凋亡蛋白在絲氨酸或蘇氨酸殘基處發(fā)生磷酸化后,可上調(diào)也可下調(diào)其活性和穩(wěn)定性,也可誘導(dǎo)細(xì)胞周期停滯以及改變細(xì)胞內(nèi)定位等[16-17]。近期研究發(fā)現(xiàn),紡錘體抑制劑可誘導(dǎo)Bcl-2在Ser70的磷酸化,促進Bcl-2與Bak、Bim的結(jié)合,從而提高細(xì)胞的化療耐受力[18]。
Mcl-1蛋白在轉(zhuǎn)錄、翻譯以及蛋白質(zhì)轉(zhuǎn)換水平均受到調(diào)控。非泛素依賴途徑可降解Mcl-1,而去泛素化酶可提高Mcl-1的穩(wěn)定性[19-20]。最新研究還發(fā)現(xiàn),Mcl-1的N端也可影響其穩(wěn)定性[19]。
BH3-only蛋白可通過不同途徑進行調(diào)控。當(dāng)細(xì)胞內(nèi)DNA發(fā)生損傷,P53可被ATM和ATR信號通路激活,進而作為轉(zhuǎn)錄因子參與調(diào)控Puma的轉(zhuǎn)錄;Puma蛋白在多個位點如Ser10處發(fā)生磷酸化可誘導(dǎo)其蛋白發(fā)生蛋白酶體降解,從而下調(diào)其表達(dá)[21];另外研究還發(fā)現(xiàn),胞漿中非磷酸化的Bad可與膜上的Bcl-2或Bcl-xl形成雜二聚體誘導(dǎo)細(xì)胞凋亡,當(dāng)被14-3-3蛋白磷酸化后,Bad則被封閉在胞漿中[22]。
腫瘤的發(fā)生通常與Bcl-2家族成員的表達(dá)異常有關(guān)。研究發(fā)現(xiàn),過表達(dá)抗凋亡蛋白Bcl-2與包括淋巴瘤、慢性淋巴細(xì)胞白血病等多種惡性腫瘤的發(fā)生發(fā)展有關(guān)[23-24];敲除促凋亡基因如Bim[25]、Puma[26-27]、Bad[28]和Bax[29]等可誘導(dǎo)多種腫瘤的發(fā)生。
在90%的人的濾泡性B細(xì)胞淋巴瘤中,t(14;18)染色體發(fā)生易位,引起B(yǎng)cl-2基因過表達(dá)從而抑制淋巴細(xì)胞的凋亡[30];在多種腫瘤細(xì)胞中,Mcl-1和Bcl-xl同樣過表達(dá)[31];另外,在多種惡性腫瘤中,Bim和Puma的啟動子發(fā)生高度甲基化,其蛋白表達(dá)降低,從而抑制腫瘤細(xì)胞的凋亡[26,32]。
近期研究還發(fā)現(xiàn),Bcl-2家族成員的表達(dá)與腫瘤細(xì)胞對化療藥物的耐受性密切相關(guān)。例如,Bcl-2基因的過表達(dá)可使肺小細(xì)胞癌和白血病/淋巴瘤細(xì)胞對化療藥阿糖胞苷產(chǎn)生耐藥性[33];Puma、Noxa和Bim的過表達(dá)可降低淋巴瘤細(xì)胞對DNA損傷-誘導(dǎo)藥物的耐藥性[34];Bim的過表達(dá)可誘導(dǎo)糖皮質(zhì)激素[35]、紫杉醇[36]殺死腫瘤細(xì)胞。因此,提高BH3-only蛋白的表達(dá)可能有助于腫瘤的治療。
近年來,有關(guān)Bcl-2家族調(diào)控腫瘤細(xì)胞凋亡的機制研究越來越多,但是有關(guān)在凋亡過程中Bcl-2家族成員之間相互作用機制、膜結(jié)構(gòu)如何調(diào)節(jié)各成員之間的相互作用等還有待進一步研究。
大量有關(guān)細(xì)胞凋亡的分子機制研究表明Bcl-2家族可用于腫瘤的靶向治療。因此,我們可以設(shè)計一些高效且特異性好的抗腫瘤藥物,通過抑制抗凋亡蛋白的表達(dá)或激活促凋亡蛋白的表達(dá)以治療惡性腫瘤。
[1]Doonan F,Cotter TG.Morphological assessment of apoptosis[J].Methods,2008,44(3):200-204.
[2]Hsu SY,Hsueh AJ.Tissue-specific Bcl-2 protein partners in apoptosis:An ovarian paradigm[J].Phys iol Rev,2000,80(2):593-614.
[3]Kvansakul M,Yang H,F(xiàn)airlie WD,et al.Vaccinia virus anti-apoptotic F1L is a novel BCL-2-like domain-swapped dimer that binds a highly selective subset of BH3-containing death ligands[J].Cell Death Differ,2008,15(10):1564-1571.
[4]Tsujimoto Y.Cell death regulation by the Bcl-2 protein family in the mitoehondria[J].J Cell Physiol,2003,195(2):158-167.
[5]Wolter KG,Hsu YT,Smith CL,et al.Movement of Bax from the cytosol to mitochondria during apoptosis[J].J Cell Biol,1997,139(5):1281-1292.
[6]Kuwana T,Bouchier-Hayes L,Chipuk JE,et al.BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly[J].Mol Cell,2005,17(4):525-535.
[7]Merino D,Giam M,Hughes PD,et al.The role of BH3-only protein Bim extends beyond inhibiting Bcl-2-like prosurvival proteins[J].J Cell Biol,2009,186(3):355-362.
[8]Llambi F,Moldoveanu T,Tait SW,et al.A Unified model of mammalian BCL-2 protein family interactions at the mitochondria[J].Mol.Cell,2011,44(4):517-531.
[9]Chen L,Willis SN,Wei A,et al.Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function[J].Mol Cell,2005,17(3):393-403.
[10]Willis SN,F(xiàn)letcher JI,Kaufmann T,et al.Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs,not Bax or Bak[J].Science,2007,315(5813):856-859.
[11]Simon N.Willis,Lin Chen,Grant Dewson,et al.Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL,but not Bcl-2,until displaced by BH3-only proteins[J].Genes Dev,2005,19(11):1294-1305.
[12]Certo M,Del Gaizo Moore V,Nishino M,et al.Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members[J].Cancer Cell,2006,9(5):351-365.
[13]Kim H,Rafiuddin-Shah M,Tu HC,et al.Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies[J].Nature Cell Biol,2006,8(12):1348-1358.
[14]Letai A,Bassik MC,Walensky LD,et al.Distinct BH3 domains either sensitize or activate mitochondrial apoptosis,serving as prototype cancer therapeutics[J].Cancer Cell,2002(2):183-192.
[15]Gavathiotis E,Suzuki M,Davis ML,et al.BAX activation is initiated at a novel interaction site[J].Nature,2008,455(7216):1076-1081.
[16]Kutuk O,Letai A.Regulation of Bcl-2 family proteins by posttranslational modifications[J].Curr Mol Med,2008,8(2):102-118.
[17]Wei Y,Pattingre S,Sinha S,et al.JNK1-mediated phosphorylation of Bcl2 regulates starvation-induced autophagy[J].Mol Cell,2008,30(6):678-688.
[18]Dai H,Ding H,Meng XW,et al.Contribution of Bcl-2 phosphorylation to Bak binding and drug resistance[J].Cancer Res,2013,73(23):6998-7008.
[19]Perciavalle RM,Opferman JT.Delving deeper:MCL-1's contributions to normal and cancer biology[J].Trends Cell Biol,2013,23(1):22-29.
[20]Thomas LW,Lam C,Edwards SW.Mcl-1;the molecular regulation of protein function[J].FEBS Lett,2010,584(14):2981-2989.
[21]Elkholi R,F(xiàn)loros KV,Chipuk JE.The role of BH3-Onlyproteins in tumor cell development,signaling,and treatment[J].Genes Cancer,2011,2(5):523-537.
[22]Zha J,Harada H,Yang E,et al.Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L)[J].Cell,1996,87(4):619-628.
[23]McDonnell TJ,Korsmeyer SJ.Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14;18)[J].Nature,1991,349(6306):254-256.
[24]Kaderi MA,Norberg M,Murray F,et al.The BCL-2promoter(-938C>A)polymorphism does not predict clinical outcome in chronic lymphocytic leukemia[J].Leukemia,2008,22(2):339-343.
[25]Egle A,Harris AW,Bouillet P,et al.Bim is a suppressor of Myc-induced mouse B cell leukemia[J].Proc Natl Acad Sci USA,2004,101(16):6164-6169.
[26]Garrison SP,Jeffers JR,Yang C,et al.Selection against PUMA gene expression in Myc-driven B-cell lymphomagenesis[J].Mol Cell Biol,2008,28(17):5391-5402.
[27]Michalak EM,Jansen ES,Happo L,et al.Puma and to a lesser extent Noxa are suppressors of Myc-induced lymphomagenesis[J].Cell Death Differ,2009,16(5):684-696.
[28]Frenzel A,Labi V,Chmelewskij W,et al.Suppression of B-cell lymphomagenesis by the BH3-only proteins Bmf and Bad[J].Blood,2010,115(5):995-1005.
[29]Eischen CM,Roussel MF,Korsmeyer SJ,et al.Bax loss impairs Myc-induced apoptosis and circumvents the selection of p53 mutations during Myc-mediated lymphomagenesis[J].Mol Cell Biol,2001,21(22):7653-7662.
[30]Tsujimoto Y,F(xiàn)inger LR,Yunis J,et al.Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18)chromosome translocation[J].Science,1984,226(4678):1097-1099.
[31]Beroukhim R,Mermel CH,Porter D,et al.The landscape of somatic copy-number alteration across human cancers[J].Nature,2010,463(7283):899-905.
[32]Zantl N,Weirich G,Zall H,et al.Frequent loss of expression of the pro-apoptotic protein Bim in renal cell carcinoma:evidence for contribution to apoptosis resistance[J].Oncogene,2007,26(49):7038-7048.
[33]Tahir SK,Wass J,Joseph MK,et al.Identification of Expression Signatures Predictive of Sensitivity to the Bcl-2 Family Member Inhibitor ABT-263 in Small Cell Lung Carcinoma and Leukemia/Lymphoma Cell Lines[J].Mol Cancer Ther,2010,9(3):545-557.
[34]Happo L,Cragg MS,Phipson B,et al.Maximal killing of lymphoma cells by DNA-damage inducing therapy requires not only the p53 targets Puma and Noxa but also Bim[J].Blood,2010,116(24):5256-5267.
[35]Bachmann PS,Piazza RG,Janes ME,et al.Epigenetic silencing of BIM in glucocorticoid poor-responsive pediatric acute lymphoblastic leukemia,and its reversal by histone deacetylase inhibition[J].Blood,2010,116(16):3013-3022.
[36]Tan TT,Degenhardt K,Nelson DA,et al.Key roles of BIM-driven apoptosis in epithelial tumors and rational chemotherapy[J].Cancer Cell,2005,7(3):227-238.