国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

免疫炎性反應(yīng)在急性缺血性腎損傷中的作用機(jī)制

2014-01-23 09:43張冰瑩張慧鄒建洲丁小強(qiáng)方藝
中國(guó)臨床醫(yī)學(xué) 2014年1期
關(guān)鍵詞:腎小管性反應(yīng)中性

張冰瑩 張慧 鄒建洲 丁小強(qiáng) 方藝

(復(fù)旦大學(xué)附屬中山醫(yī)院腎內(nèi)科,上海 200032)

免疫炎性反應(yīng)是急性腎損傷(acute kidney injury,AKI)發(fā)生和進(jìn)展的重要機(jī)制之一。免疫炎性反應(yīng)過程可以加重腎小管上皮細(xì)胞損傷、微循環(huán)障礙及腎內(nèi)低氧,影響腎臟的及時(shí)修復(fù),使腎臟慢性纖維化,甚至導(dǎo)致尿毒癥的發(fā)生。與抗感染免疫及抗腫瘤免疫等不同,AKI的免疫炎性反應(yīng)過程有其自身固有特點(diǎn)。

1 固有免疫系統(tǒng)

固有免疫是機(jī)體在發(fā)育和進(jìn)化中形成的天然免疫防御系統(tǒng),無抗原特異性,反應(yīng)迅速,但免疫強(qiáng)度弱。腎缺血再灌注損傷(ischemia-referfusion injury,IRI)時(shí),損傷的腎小管上皮細(xì)胞釋放內(nèi)源性配體,即損傷相關(guān)模式分子(damage-associated mole-cular pattern,DAMP),由模式識(shí)別分子(pattern-recognition molecule,PRM)和模式識(shí)別受體(pattern recognition receptor,PRR)識(shí)別,隨后激活下游信號(hào)轉(zhuǎn)導(dǎo)通路,誘導(dǎo)包括炎性反應(yīng)因子、共刺激分子在內(nèi)的各種免疫相關(guān)基因的表達(dá);同時(shí)激活中性粒細(xì)胞、單核巨噬細(xì)胞及自然殺傷細(xì)胞等固有免疫細(xì)胞, 從而損傷缺血組織,并誘導(dǎo)適應(yīng)性免疫反應(yīng)[1]。因此,阻斷固有免疫反應(yīng)的過度激活可能是有效干預(yù)AKI的發(fā)生發(fā)展的策略之一。

1.1 中性粒細(xì)胞 中性粒細(xì)胞在感染和組織損傷后大量增殖,抵達(dá)炎性反應(yīng)部位,吞噬病原體、異物或凋亡細(xì)胞。急性缺血性腎損傷動(dòng)物模型的腎組織和臨床AKI患者的腎活檢標(biāo)本均可見大量中性粒細(xì)胞浸潤(rùn)。中性粒細(xì)胞的聚集是機(jī)體抵御感染和修復(fù)損傷的重要機(jī)制之一,但其浸潤(rùn)腎組織后也可造成腎臟微血管栓塞,并釋放氧自由基和蛋白酶,從而加重腎臟損傷。Rho激酶是參與中性粒細(xì)胞聚集、黏附的重要調(diào)控因子。Rho激酶抑制劑可通過增強(qiáng)內(nèi)皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)的活性而減輕內(nèi)皮依賴性的血管收縮;同時(shí)eNOS來源的NO可減弱粒細(xì)胞對(duì)血管壁的黏附;Rho激酶抑制劑還可減輕IRI所致的細(xì)胞炎性反應(yīng),且這種效果不依賴于上述兩種反應(yīng)[2]。近年來有關(guān)中性粒細(xì)胞參與AKI的研究主要集中于介導(dǎo)中性粒細(xì)胞遷移的細(xì)胞因子,如選擇素(selectin)、細(xì)胞間黏附因子-1(intercellular adhesion molecule-1,ICAM-1)、CD11/CD18、黑素細(xì)胞刺激素(α-melanocyte-stimulating hormone ,α-MSH)和白細(xì)胞介素-8(interleukin,IL-8)、IL-17等。E-selectin、P-selectin和L-selectin的配體結(jié)合部位的封閉、 ICAM-1的缺陷、CD11/CD18的封閉均可減輕腎IRI后損傷;IL-8通過上調(diào)腎小管的ICAM-1,激活p38 MAPK信號(hào)通路,介導(dǎo)中性粒細(xì)胞的募集過程[3-5]。

1.2 自然殺傷(natural killer,NK)細(xì)胞 NK細(xì)胞表面表達(dá)的主要組織相容性復(fù)合體(major histocompatibility complex,MHC)I類分子的抑制性受體,可阻止NK細(xì)胞對(duì)正常細(xì)胞的攻擊。NK細(xì)胞與易感靶細(xì)胞接觸時(shí)被活化,活化后的NK細(xì)胞可殺傷靶細(xì)胞,并促進(jìn)中性粒細(xì)胞聚集和干擾素γ(interferon-γ,IFN-γ)的生成,進(jìn)而參與AKI的炎性反應(yīng)過程。Zhang等[6]發(fā)現(xiàn),在體內(nèi)或體外環(huán)境下,損傷的腎小管上皮細(xì)胞所分泌的骨橋蛋白(osteopontin,OPN)可誘導(dǎo)NK細(xì)胞趨化至損傷部位,并通過激活NK細(xì)胞而誘導(dǎo)腎小管上皮細(xì)胞凋亡,因此,抑制腎小管上皮細(xì)胞OPN的表達(dá)以減少NK細(xì)胞的聚集和活化可能會(huì)成為今后AKI治療及干預(yù)的新方法[6]。

1.3 巨噬細(xì)胞 巨噬細(xì)胞通過吞噬作用殺滅、清除病原體和異物,分泌IL-1β、IL-6和腫瘤壞死因子(tumor necrosis factor,TNF)等誘導(dǎo)局部炎性反應(yīng),或釋放活性氧中間物和水解酶等直接清除靶細(xì)胞。AKI炎性損傷中,巨噬細(xì)胞在小管間質(zhì)大量浸潤(rùn)。研究[7]發(fā)現(xiàn),在AKI炎性反應(yīng)的不同階段,巨噬細(xì)胞的表型和作用不同:損傷早期,巨噬細(xì)胞的表型為iNOS+(M1),功能為清除受損細(xì)胞或誘導(dǎo)受損細(xì)胞凋亡;然后,巨噬細(xì)胞在IL-14誘導(dǎo)下發(fā)生表型轉(zhuǎn)換為M2,表達(dá)甘露糖受體,可促進(jìn)受損組織細(xì)胞的增殖修復(fù)。抑癌基因p53是巨噬細(xì)胞表型轉(zhuǎn)換必不可少的調(diào)控元件,p53基因敲除的AKI小鼠模型中,M2型巨噬細(xì)胞在腎臟的浸潤(rùn)明顯減少[8]。

1.4 樹突狀細(xì)胞 樹突狀細(xì)胞(dendritic cells,DC)是連接固有免疫和適應(yīng)性免疫的橋梁。在固有免疫應(yīng)答中,DC可通過活化NK細(xì)胞和NKT細(xì)胞,誘發(fā)進(jìn)一步的免疫炎性反應(yīng);在適應(yīng)性免疫中,DC作為抗原提呈細(xì)胞加工抗原、激活初始T細(xì)胞并參與調(diào)節(jié)B細(xì)胞功能。DC參與AKI的免疫全過程,AKI固有免疫階段,DC主要分泌TNF、IL-12及IL-23,其下游的細(xì)胞因子IFN-γ和IL-17與腎缺血后巨噬細(xì)胞活化和中性粒細(xì)胞聚集相關(guān);在適應(yīng)性免疫反應(yīng)階段,DC可誘導(dǎo)T細(xì)胞增殖,參與腎損傷過程[9-10]。磷酸鞘氨醇(S1P)的亞型S1P3為DC激活所必需,敲除S1P3的AKI小鼠中DC不成熟,腎臟局部浸潤(rùn)的NK細(xì)胞和粒細(xì)胞減少,腎損傷減輕[11]。Lassen等[12]報(bào)告,腎缺血可誘導(dǎo)DC產(chǎn)生干擾素調(diào)節(jié)因子4(IFN regulatory factor 4,IRF4),后者抑制TNF-α生成、減少中性粒細(xì)胞在缺血損傷部位聚集并干擾TOLL樣受體(TOLL-like receptor,TLR)的下游信號(hào)傳導(dǎo),對(duì)腎缺血后損傷有一定保護(hù)作用。

2 適應(yīng)性免疫系統(tǒng)

適應(yīng)性免疫是由固有免疫系統(tǒng)中的巨噬細(xì)胞等抗原提呈細(xì)胞提呈抗原表位,使得T、B細(xì)胞活化、增殖、分化為效應(yīng)性T、B淋巴細(xì)胞,清除抗原并修復(fù)損傷組織的過程。

2.1 B淋巴細(xì)胞 B細(xì)胞是適應(yīng)性免疫應(yīng)答中的重要效應(yīng)細(xì)胞。B細(xì)胞產(chǎn)生抗體、IL-4和IL-6并作為T細(xì)胞的抗原提呈細(xì)胞介導(dǎo)炎性過程;同時(shí),部分B細(xì)胞還可抑制炎性反應(yīng),如通過分泌IL-10在腸炎和自身免疫性腦炎中抑制炎性反應(yīng)并減輕組織損傷[13]。在缺血腎損傷后期,浸潤(rùn)的B細(xì)胞及漿細(xì)胞參與組織損傷、修復(fù)。 Jang等[14]發(fā)現(xiàn),浸潤(rùn)于腎組織的漿細(xì)胞表面高表達(dá)CD126(IL-16受體),特異性中和CD126可明顯減輕AKI后期的組織損傷,提示漿細(xì)胞除了產(chǎn)生抗體外,其細(xì)胞表面高表達(dá)的CD126與配體IL-6結(jié)合后也可進(jìn)一步參與炎性反應(yīng)。

2.2 T淋巴細(xì)胞及其亞群 T細(xì)胞在適應(yīng)性免疫應(yīng)答中介導(dǎo)細(xì)胞免疫,調(diào)節(jié)機(jī)體的免疫功能。不同亞群的T細(xì)胞具有不同的表面標(biāo)志和功能。根據(jù)T細(xì)胞受體(TCR)類型,將T細(xì)胞分為γδT細(xì)胞和αβT細(xì)胞,后者又可分為CD4+T和CD8+T細(xì)胞;根據(jù)CD4+T細(xì)胞所分泌細(xì)胞因子的不同將其分為Th1、Th2和Th17細(xì)胞,另有CD4+CD25+調(diào)節(jié)性T細(xì)胞。

調(diào)節(jié)性T細(xì)胞(Treg)是一類具有免疫抑制作用的T 細(xì)胞亞群,依其來源、標(biāo)志物和所分泌的細(xì)胞因子可分為天然調(diào)節(jié)性T細(xì)胞(natural regulatory T cells ,nTreg)和誘導(dǎo)調(diào)節(jié)性T細(xì)胞(induced regulatory T cells, iTreg)。Treg對(duì)特異性抗原和抗原提呈細(xì)胞的刺激無反應(yīng),且經(jīng)TCR細(xì)胞介導(dǎo)的信號(hào)刺激后能抑制CD4+淋巴細(xì)胞和CD8+淋巴細(xì)胞的活化、增殖;同時(shí),Treg能夠產(chǎn)生IL-10、TGF-β,并向胞外釋放腺苷,從而控制免疫應(yīng)答的強(qiáng)度,減輕因過度免疫應(yīng)答對(duì)機(jī)體造成的損傷[15]。

Treg在正常腎臟以及IRI腎臟中均存在[16]。腎缺血預(yù)適應(yīng)中產(chǎn)生的一定數(shù)量的Treg可有效抑制后續(xù)的更嚴(yán)重的缺血所致的免疫反應(yīng)[17]。在AKI早期,Treg通過調(diào)節(jié)固有免疫反應(yīng)而減輕腎損傷[18];AKI晚期,Treg可通過抑制Teff(CD4+Foxp3-)細(xì)胞產(chǎn)生干擾素(IFN)-γ而促進(jìn)腎組織修復(fù)[19]。但Treg在體外的活性不穩(wěn)定,從而限制了其在基礎(chǔ)研究及臨床中的應(yīng)用。目前僅有Lai等[20]報(bào)告,N,N-二甲基鞘胺醇(DMS)可作為腎臟Treg的募集劑。Kim等[21]發(fā)現(xiàn),F(xiàn)IY720(1-磷酸-鞘氨醇類似物)在體內(nèi)促進(jìn)非Treg的效應(yīng)T細(xì)胞轉(zhuǎn)變?yōu)閕Treg,從而使Treg數(shù)量增加,減輕IRI引發(fā)的腎損傷。研究[22]顯示,間充質(zhì)干細(xì)胞(mesenchymal stem cell,MSC)經(jīng)小鼠尾靜脈注射后,定植于脾臟,并與脾臟細(xì)胞相互作用,從而增加IRI小鼠脾臟及腎臟局部的Treg比例,實(shí)現(xiàn)腎臟保護(hù)功能。此外,通過熱應(yīng)激預(yù)處理上調(diào)HSP70后,可引起Treg擴(kuò)增并抑制效應(yīng)T細(xì)胞的增殖,從而保護(hù)AKI腎組織[23]。

3 重要的信號(hào)通路

3.1 TLR信號(hào)通路 DAMP與PRR結(jié)合后可激活固有免疫系統(tǒng)。TLR為目前研究最為深入的PRR。根據(jù)其接頭蛋白的不同,將TLR的信號(hào)轉(zhuǎn)導(dǎo)通路分為髓樣分化蛋白88(myeloid differentiation factor 88, MyD88)依賴性途徑和MyD88非依賴性途徑。兩者均可激活核轉(zhuǎn)錄因子-κB(NF-κB),通過依賴IκB激酶(IKK)復(fù)合物絲氨酸磷酸化途徑及依賴IκB酪氨酸磷酸化途徑,誘導(dǎo)下游多種炎性反應(yīng)因子(如TNF-α)、黏附分子、凋亡蛋白的表達(dá)。Khan等[24]采用小鼠AKI模型證實(shí),在TLR信號(hào)通路中與固有免疫相關(guān)的83個(gè)基因中,有59個(gè)的表達(dá)量超過正常值的2倍;應(yīng)用腺苷酸環(huán)化酶激活肽-38(pituitary adenylate cyclase-activating polypeptide-38,PACAP)后可逆轉(zhuǎn)這56個(gè)基因的表達(dá),腎臟功能也得到改善。Wu等[25]證實(shí),TLR-2和MyD88缺陷對(duì)IRI腎組織有保護(hù)作用;高遷移率族蛋白1(high mobility group box-1 protein,HMGB1)、雙糖鏈蛋白多糖(biglycan)及HSP70在缺血再損傷后表達(dá)也有顯著增強(qiáng),若中和胞外HMGB1,則腎組織損傷減輕[26]。Shigeoka等[27]進(jìn)一步證實(shí),TLR-2敲除小鼠的腎損傷程度輕于MyD88敲除的小鼠,提示可能存在TLR-2依賴而MyD88非依賴的AKI通路。TLR-4敲除的小鼠模型中,IL-1β、IL-6和角質(zhì)形成細(xì)胞趨化因子(keratinocyte chemoattractant,KC)等細(xì)胞因子的產(chǎn)生減少,腎組織中中性粒細(xì)胞的浸潤(rùn)也減輕[28]。在小鼠AKI模型中,單一免疫球蛋白白細(xì)胞介素1受體相關(guān)蛋白(single Ig IL-1-related receptor,SIGIRR)對(duì)IL-1R和TLR介導(dǎo)的免疫應(yīng)答起負(fù)向調(diào)控作用[29]。

3.2 NLR信號(hào)通路 NOD樣受體(Nod 1ike receptor,NLR)為PRR的另一成員,其N端結(jié)合下游分子及效應(yīng)蛋白后,通過激活NF-κB和絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)等途徑介導(dǎo)免疫應(yīng)答。腎IRI時(shí),腎小管上皮細(xì)胞NOD-1和NOD-2的表達(dá)增加,這與IL-6、TNF-α和KC等的產(chǎn)生有關(guān)[30]。

3.3 HIF/P53信號(hào)通路 MAPK及其亞族如細(xì)胞外信號(hào)調(diào)節(jié)激酶(extracellular-signal regulated protein kinase,ERK)、c-Jun氨基末端激酶(c-Jun amino-terminal kinase,JNK)、應(yīng)激激活蛋白激酶(stress-activated protein kinase,SAPK)和p38等被激活后,作用于各自的底物,影響多種轉(zhuǎn)錄因子的活性,從而調(diào)節(jié)TNF-α等細(xì)胞因子的表達(dá),而這些細(xì)胞因子又能影響MAPK通路中的上述分子的活性。缺氧誘導(dǎo)因子(hypoxia inducible factor,HIF)的表達(dá)增加是機(jī)體對(duì)缺氧的一種適應(yīng)性反應(yīng)。研究[31]表明,缺氧可使ERK發(fā)生磷酸化,進(jìn)而調(diào)節(jié)HIF-1的轉(zhuǎn)錄活性,因此,HIF可能是通過ERK來促進(jìn)IRI時(shí)腎小管上皮的修復(fù)的。體內(nèi)實(shí)驗(yàn)[32]證實(shí),對(duì)于腎臟IRI,抑制p53通路能促進(jìn)HIF-1的表達(dá),推測(cè)HIF-1也可以通過拮抗p53通路而促進(jìn)腎小管上皮的修復(fù)。Cao等[33]認(rèn)為,HIF-1還可通過誘導(dǎo)血管內(nèi)皮生長(zhǎng)因子(VEGF)的表達(dá)來促進(jìn)損傷后內(nèi)皮細(xì)胞和上皮細(xì)胞的再生,促進(jìn)腎組織修復(fù)。

3.4 Wnt/β-catenin信號(hào)通路 Wnt蛋白具有多種受體。細(xì)胞在不同的環(huán)境條件下表達(dá)不同的受體,從而活化不同的下游通路,如Wnt/β-catenin經(jīng)典信號(hào)通路、非經(jīng)典信號(hào)通路(PCP和Wnt-Ca2+通路)。Zhou等[34]的研究表明,AKI時(shí)β-catenin可起保護(hù)腎組織的作用,在β-catenin基因敲除的腎缺血損傷小鼠模型中,腎小管上皮細(xì)胞凋亡增加,腎組織損傷嚴(yán)重,但具體的機(jī)制尚未闡明。

3.5 其他 腺苷(adenosine,A)及程序性死亡因子1(programmed death 1,PD-1)參與Treg細(xì)胞內(nèi)的信號(hào)通路傳導(dǎo)。PD-1及其配體PD-L1和PD-L2是調(diào)控T細(xì)胞增殖、分化的重要分子。A與A(2A)R結(jié)合后使得Treg表面PD-1高表達(dá)。PD-1可抑制mTOR/Akt信號(hào)途徑,維持Foxp3的穩(wěn)定表達(dá)[35-36]。研究[37]表明,PD-1激活細(xì)胞內(nèi)SHP1/2后可抑制STAT1的磷酸化,從而促進(jìn)Foxp3的表達(dá)。

4 細(xì)胞因子

細(xì)胞因子是免疫原、絲裂原或其他刺激劑誘導(dǎo)多種細(xì)胞產(chǎn)生的低分子量可溶性蛋白質(zhì),具有調(diào)節(jié)細(xì)胞生長(zhǎng)、修復(fù)損傷組織等多種功能。AKI中,粒細(xì)胞和腎小管細(xì)胞釋放多種細(xì)胞因子參與腎組織的炎性反應(yīng)過程。這些細(xì)胞因子中的一部分可在血液或尿液中檢測(cè)到,可作為AKI嚴(yán)重程度的標(biāo)志物。

IL的成員眾多,前已述及,可抑制AKI炎性反應(yīng)的包括IL-10,其可介導(dǎo)M2型巨噬細(xì)胞的保護(hù)效應(yīng)。MSC對(duì)AKI的保護(hù)機(jī)制亦與IL-10有關(guān)[38]。中性粒細(xì)胞產(chǎn)生的IL-8、Th17釋放的IL-17、B細(xì)胞生成的IL-4均可促進(jìn)炎性損傷。繼發(fā)于AKI的全身其他臟器(如肝臟和腸)的損傷與小腸Paneth 細(xì)胞脫顆粒產(chǎn)生大量IL-17A有關(guān)[39]。人重組IL-11通過促進(jìn)HIF-1α和鞘氨醇激酶-1(sphingosine kinase-1,SK1)的表達(dá)而起到保護(hù)IRI腎的作用[40]。

趨化因子可結(jié)合G蛋白受體,使細(xì)胞沿著趨化因子濃度增加的梯度遷徙。AKI后的固有免疫過程中,IL-8和MIP-2趨化中性粒細(xì)胞,MCP-1、嗜酸性粒細(xì)胞趨化因子(RANTES),fractalkine主要吸引單核細(xì)胞和淋巴細(xì)胞[41]。IL-8/CXCL8通過P38MAPK信號(hào)通路上調(diào)腎小管的ICAM-1及受體CXCL8實(shí)現(xiàn)趨化中性粒細(xì)胞的過程[42]。巨噬細(xì)胞相關(guān)的趨化因子包括MCP-1/CCL2、 RANTES/CCL5、MIP-1α/CCL3、及MIP-1β/CCL4[43]。樹突細(xì)胞在IRI中既可產(chǎn)生促炎因子TNF-α、IL-6及CCL,又可產(chǎn)生趨化巨噬細(xì)胞的因子MCP-1及RANTES。

TGF-β1是已知的抑制炎性反應(yīng)的細(xì)胞因子之一,同時(shí)也介導(dǎo)腎組織纖維化的病理過程[44]。IRI后,生長(zhǎng)因子上調(diào)TGF-β1的表達(dá),后者通過Smad依賴性途徑及Smad非依賴性途徑轉(zhuǎn)導(dǎo)信號(hào)[45]。TGF-β1激活Smad3途徑后,促進(jìn)Bcl-2的表達(dá),并抑制TNF-α介導(dǎo)的細(xì)胞損傷[46]。Smad7可以負(fù)向調(diào)控Smad3途徑的信號(hào),實(shí)驗(yàn)證實(shí),Smad7過表達(dá)可以抑制TGF/Smad3信號(hào)通路,從而抑制腎組織的炎性反應(yīng)和纖維化過程[47]。

與大多數(shù)細(xì)胞因子不同,巨噬細(xì)胞趨化因子(macrophage migration inhibitory factor,MIF)組成性表達(dá)于免疫細(xì)胞、內(nèi)分泌細(xì)胞及某些組織的上皮細(xì)胞,它通過抑制p53依賴的巨噬細(xì)胞凋亡和負(fù)向調(diào)節(jié)糖皮質(zhì)激素的免疫抑制作用而促進(jìn)機(jī)體的炎性反應(yīng)。臨床研究[48]表明,患者尿液中MIF與AKI的預(yù)后呈一定相關(guān)性,這意味著MIF有可能作為AKI新的生物標(biāo)記物。

5 總 結(jié)

免疫炎性反應(yīng)失控是AKI進(jìn)展和慢性化轉(zhuǎn)歸的重要原因。目前,醫(yī)學(xué)界對(duì)于AKI的免疫炎性反應(yīng)機(jī)制已經(jīng)有了一定的認(rèn)識(shí),并在分子層面探索出一些有效的干預(yù)手段,但可有效應(yīng)用于臨床的干預(yù)措施仍十分有限。因此,有必要進(jìn)一步研究AKI免疫炎性反應(yīng)中A、TGF-β1、IRF4、M2型巨噬細(xì)胞和Treg細(xì)胞的保護(hù)機(jī)制,優(yōu)化并擴(kuò)大這些保護(hù)效應(yīng),以期為AKI的有效防治提供新的靶點(diǎn)和策略。

[1]Pardo M,Budick-Harmelin N,Tirosh B,et al.Antioxidant defense in hepatic ischemia-reperfusion injury is regulated by damage-associated molecular pattern signal molecules[J].Free Radic Biol Med,2008,45(8):1073-1083.

[2]Versteilen AM,Blaavw N,Di Maggio F,et al.Rho-kinase inhibition reduces early microvascular leukocyte accumulation in the rat kidney following ischemia-reperfusion injury: roles of nitric oxicle and blood flow[J].Nephron EXP Nephrol,2011,118(4):e79-86.

[3]Nemoto T,Burne MJ,Daniels F,et al.Small molecule selectin ligand inhibition improves outcome in ischemic acute renal failure[J].Kidney Int,2001,60(6): 2205-2214.

[4]Kelly KJ,Williams WJ,Colvin RB,et al.Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury[J].J Clin Invest,1996,97(4):1056-1063.

[5]Li H,Nord EP.IL-8 amplifies CD40/CD154-mediated ICAM-1 production via the CXCR-1 receptor and p38-MAPK pathway in human renal proximal tubule cells[J].Am J Physiol Renal Physiol,2009,296(2):F438-F445.

[6]Zhang ZX,Shek K,Wang S,et al.Osteopontin expressed in tubular epithelial cells regulates NK cell-mediated kidney ischemia reperfusion injury[J].J Immunol,2010,185(2):967-973.

[7]Furuichi K,Gao JL,Horuk R,et al.Chemokine receptor CCR1 regulates inflammatory cell infiltration after renal ischemia-reperfusion injury[J].J Immunol,2008,181(12):8670-8676.

[8]Sutton TA,Hato T,Mai E,et al.p53 is renoprotective after ischemic kidney injury by reducing inflammation[J].J Am Soc Nephrol,2013,24(1):113-124.

[9]Dong X,Swaminathan S,Bachman LA,et al.Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury[J].Kidney Int,2007,71(7):619-628.

[10]Dong X,Swaminathan S,Bachman LA,et al.Antigen pre-sentation by dendritic cells in renal lymph nodes is linked to systemic and local injury to the kidney[J].Kidney Int,2005,68(3):1096-1108.

[11]Bajwa A,Huang L,Ye H,et al.Dendritic cell sphingosine 1-phosphate receptor-3 regulates Th1-Th2 polarity in kidney ischemia-reperfusion injury[J].J Immunol,2012,189(5):2584-2596.

[12]Lassen S,Lech M,Rommele C,et al.Ischemia reperfusion induces IFN regulatory factor 4 in renal dendritic cells,which suppresses postischemic inflammation and prevents acute renal failure[J].J Immunol,2010,185(3):1976-1983.

[13]Bouaziz J D,Yanaba K,Tedder TF.Regulatory B cells as inhibitors of immune responses and inflammation[J].Immunol Rev,2008,224:201-214.

[14]Jang HR,Gandolfo MT,Ko GJ,et al.B cells limit repair after ischemic acute kidney injury[J].J Am Soc Nephrol,2010,21(4):654-665.

[15]Kinsey GR,Huang L,Vergis AL,et al.Regulatory T cells contribute to the protective effect of ischemic preconditioning in the kidney[J].Kidney Int,2010,77(9):771-780.

[16]Ascon DB,Ascon M,Satpute S,et al.Normal mouse kidneys contain activated and CD3+CD4- CD8- double-negative T lymphocytes with a distinct TCR repertoire [J].J Leukoc Biol,2008,84(6):1400-1409.

[17]Kinsey GR,Huang L,Vergis AL,et al.Regulatory T cells contribute to the protective effect of ischemic preconditioning in the kidney[J].Kidney Int,2010,77(9): 771-780.

[18]Kinsey GR,Sharma R,Huang L,et al.Regulatory T cells suppress innate immunity in kidney ischemia-reperfusion injury[J].J Am Soc Nephrol,2009,20(8): 1744-1753.

[19]Gandolfo MT,Jang HR,Bagnasco SM,et al.Foxp3+ regulatory T cells participate in repair of ischemic acute kidney injury[J].Kidney Int,2009,76(7): 717-729.

[20]Lai LW,Yong KC,Lien YH.Pharmacologic recruitment of regulatory T cells as a therapy for ischemic acute kidney injury[J].Kidney Int,2012,81(10):983-992.

[21]Kim MG,Lee SY,Ko YS,et al.CD4+ CD25+ regulatory T cells partially mediate the beneficial effects of FTY720,a sphingosine-1-phosphate analogue,during ischaemia/reperfusion-induced acute kidney injury[J].Nephrol Dial Transplant,2011,26(1):111-124.

[22]Hu J,Zhang L,Wang N,et al.Mesenchymal stem cells attenuate ischemic acute kidney injury by inducing regulatory T cells through splenocyte interactions[J].Kidney Int,2013,84(3):521-531.

[23]Kim MG,Jung cho E,Won Lee J,et al.The heat-shock protein-70-induced renoprotective effect is partially mediated by CD4CD25Foxp3 regulatory T cells in ischemia/reperfusion-induced acute kidney injury[J].Kidney Int,2014,85(1)62-71.

[24]Khan AM,Li M,Abdulnour-Nakhoul S,et al.Delayed administration of pituitary adenylate cyclase-activating polypeptide 38 ameliorates renal ischemia/reperfusion injury in mice by modulating Toll-like receptors[J].Peptides,2012,38(2):395-403.

[25]Wu H,Chen G,Wyburn KR,et al.TLR4 activation mediates kidney ischemia/reperfusion injury[J].J Clin Invest,2007,117(10):2847-2859.

[26]Li J,Gong Q,Zhong S,et al.Neutralization of the extracellular HMGB1 released by ischaemic damaged renal cells protects against renal ischaemia-reperfusion injury[J].Nephrol Dial Transplant,2011,26(2):469-478.

[27]Shigeoka AA,Holscher TD,King AJ,et al.TLR2 is constitutively expressed within the kidney and participates in ischemic renal injury through both MyD88-dependent and -independent pathways[J].J Immunol,2007,178(10): 6252-6258.

[28]Pulskens WP,Teske GJ,Butter LM,et al.Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury[J].PLoS One,2008,3(10):e3596.

[29]Lech M,Avila-Ferrufino A,Allam R,et al.Resident dendritic cells prevent postischemic acute renal failure by help of single Ig IL-1 receptor-related protein[J].J Immunol,2009,183(6):4109-4118.

[30]Shigeoka AA,Kambo A,Mathison JC,et al.Nod1 and nod2 are expressed in human and murine renal tubular epithelial cells and participate in renal ischemia reperfusion injury[J].J Immunol,2010,184(5):2297-2304.

[31]Berchner-Pfannschmidt U,Frede S,Wotzlaw C,et al.Imaging of the hypoxia-inducible factor pathway: insights into oxygen sensing[J].Eur Respir J,2008,32(1):210-217.

[32]Sutton TA,Wilkinson J,Mang HE,et al.p53 regulates renal expression of HIF-1{alpha} and pVHL under physiological conditions and after ischemia-reperfusion injury[J].Am J Physiol Renal Physiol,2008,295(6):F1666-F1677.

[33]Cao D,Hou M,Guan YS,et al.Expression of HIF-1alpha and VEGF in colorectal cancer: association with clinical outcomes and prognostic implications[J].BMC Cancer,2009,9:432.

[34]Zhou D,Li Y,Lin L,et al.Tubule-specific ablation of endogenous beta-catenin aggravates acute kidney injury in mice[J].Kidney Int,2012,82(5):537-547.

[35]Francisco LM,Salinas VH,Brown KE,et al.PD-L1 regulates the development,maintenance,and function of induced regulatory T cells[J].J Exp Med,2009,206(13):3015-3029.

[36]Haxhinasto S,Mathis D,Benoist C.The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells[J].J Exp Med,2008,205(3):565-574.

[37]Amarnath S,Mangus CW,Wang JC,et al.The PDL1-PD1 axis converts human TH1 cells into regulatory T cells[J].Sci Transl Med,2011,3(111):111-120.

[38]Tsuda H,Yamahara K,Otani K,et al.Transplantation of allogenic fetal membrane-derived mesenchymal stem cells protect against ischemia-reperfusion-induced acute kidney injury[J].Cell Transplant,2013,Epub a head of print.

[39]Park SW,Kim M,Kim JY,et al.Paneth cell-mediated multiorgan dysfunction after acute kidney injury[J].J Immunol,2012,189(11):5421-5433.

[40]Lee HT,Park SW,Kim M,et al.Interleukin-11 protects against renal ischemia and reperfusion injury[J].Am J Physiol Renal Physiol,2012,303(8):F1216-F1224.

[41]Cugini D,Azzollini N,Gagliardini E,et al.Inhibition of the chemokine receptor CXCR2 prevents kidney graft function deterioration due to ischemia/reperfusion[J].Kidney Int,2005,67(5):1753-1761.

[42]Li H,Nord EP.IL-8 amplifies CD40/CD154-mediated ICAM-1 production via the CXCR-1 receptor and p38-MAPK pathway in human renal proximal tubule cells[J].Am J Physiol Renal Physiol,2009,296(2):F438-F445.

[43]Gan PY,Steinmetz OM,Tan DS,et al.Th17 cells promote autoimmune anti-myeloperoxidase glomerulonephritis[J].J Am Soc Nephrol,2010,21(6):925-931.

[44]Wang W,Koka V,Lan HY.Transforming growth factor-beta and Smad signalling in kidney diseases[J].Nephrology (Carlton),2005,10(1):48-56.

[45]Derynck R,Zhang YE.Smad-dependent and Smad-indepen-dent pathways in TGF-beta family signalling[J].Nature,2003,425(6958):577-584.

[46]Guan Q,Nguan CY,Du C.Expression of transforming growth factor-beta1 limits renal ischemia-reperfusion injury[J].Transplantation,2010,89(11):1320-1327.

[47]Chen HY,Huang XR,Wang W,et al.The protective role of Smad7 in diabetic kidney disease: mechanism and therapeutic potential[J].Diabetes,2011,60(2): 590-601.

[48]Hong MY,Tseng CC,Chuang CC,et al.Urinary macrophage migration inhibitory factor serves as a potential biomarker for acute kidney injury in patients with acute pyelonephritis[J].Mediators Inflamm,2012,2012:381358.

猜你喜歡
腎小管性反應(yīng)中性
急性發(fā)熱性嗜中性皮病1例
腸道菌群失調(diào)通過促進(jìn)炎性反應(yīng)影響頸動(dòng)脈粥樣硬化的形成
腎小管疾病能治好嗎?
視黃醇結(jié)合蛋白在腎病綜合征患兒血清及尿液中的表達(dá)及臨床意義
畫質(zhì)還原更趨中性 Vsee UH600 4K高清播放機(jī)
中性墨水的消泡和消泡劑
高橋愛中性風(fēng)格小配飾讓自然相連
維生素E對(duì)抗環(huán)磷酰胺對(duì)腎小管上皮細(xì)胞的毒性作用
促?;鞍讓?duì)3T3-L1脂肪細(xì)胞炎性反應(yīng)的影響
細(xì)胞因子在慢性腎缺血與腎小管-間質(zhì)纖維化過程中的作用
兴文县| 巴里| 河间市| 清新县| 尚志市| 南华县| 万年县| 达孜县| 沛县| 昌宁县| 牟定县| 福贡县| 玉门市| 内丘县| 栖霞市| 建德市| 崇左市| 兴文县| 仁怀市| 南岸区| 余干县| 石狮市| 高邑县| 新竹县| 津市市| 闽清县| 印江| 甘洛县| 池州市| 彭阳县| 慈溪市| 噶尔县| 竹溪县| 丁青县| 曲沃县| 梅州市| 千阳县| 顺义区| 凤山市| 略阳县| 梁山县|