国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

行(列)反對(duì)稱矩陣的極分解及其擾動(dòng)界

2014-01-23 10:45
關(guān)鍵詞:工商大學(xué)對(duì)角線廣義

袁 暉 坪

(重慶工商大學(xué)電子商務(wù)及供應(yīng)鏈系統(tǒng)重慶市重點(diǎn)實(shí)驗(yàn)室,數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,重慶 400067)

行(列)反對(duì)稱矩陣的極分解及其擾動(dòng)界

袁 暉 坪

(重慶工商大學(xué)電子商務(wù)及供應(yīng)鏈系統(tǒng)重慶市重點(diǎn)實(shí)驗(yàn)室,數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,重慶 400067)

考慮行(列)反對(duì)稱矩陣的極分解、廣義逆和擾動(dòng)界,給出了行(列)反對(duì)稱矩陣的極分解和廣義逆的計(jì)算公式,并給出了行(列)反對(duì)稱矩陣極分解的系列擾動(dòng)界.結(jié)果表明,所給方法既減少了計(jì)算量與存儲(chǔ)量,又不會(huì)降低數(shù)值精度.

行(列)反對(duì)稱矩陣;極分解;廣義逆;擾動(dòng)界

0 引 言

矩陣的極分解在航空計(jì)算、最優(yōu)化、矩陣逼近、因子分析和數(shù)理統(tǒng)計(jì)等領(lǐng)域應(yīng)用廣泛[1-10].矩陣的廣義逆在數(shù)值分析、測(cè)量學(xué)、經(jīng)濟(jì)學(xué)、預(yù)測(cè)理論、病態(tài)(非)線性問題、回歸與Markov鏈等統(tǒng)計(jì)問題、隨機(jī)規(guī)劃問題、控制論和系統(tǒng)識(shí)別問題以及網(wǎng)絡(luò)問題等領(lǐng)域是不可缺少的重要工具[11].很多實(shí)際問題的數(shù)學(xué)模型都可轉(zhuǎn)化成線性問題,進(jìn)而利用矩陣解決.研究矩陣時(shí)一般都從主對(duì)角線方向考慮問題(如對(duì)角化、正定性等),而次對(duì)角線方向和行(列)對(duì)稱或反對(duì)稱的情形常被忽略.文獻(xiàn)[12-14]對(duì)行(列)對(duì)稱矩陣的QR分解和奇異值分解進(jìn)行了深入研究,獲得了深刻而應(yīng)用廣泛的結(jié)果.文獻(xiàn)[9]研究了行(列)反對(duì)稱矩陣的極分解與廣義逆,本文對(duì)該問題做進(jìn)一步研究,獲得了一些新結(jié)果,給出了行(列)反對(duì)稱矩陣的極分解及Moore-Penrose逆的公式,極大減少了它們的計(jì)算量與存儲(chǔ)量,同時(shí)給出了行(列)反對(duì)稱矩陣極分解的一系列擾動(dòng)界.本文用J n=J表示次對(duì)角線元素全為1、其余元素全為0的n階方陣,I n=I表n階單位矩陣,A H和A+分別表示矩陣A的共軛轉(zhuǎn)置陣與Moore-Penrose逆,Cm×n表示m×n復(fù)矩陣集,表示秩為r的m×n復(fù)矩陣集,‖·‖F(xiàn)表示Frobenius范數(shù),顯然J H=J,J2=I,J-1=J.

定義1設(shè)A=(aij)∈Cm×n,則稱

分別為矩陣A的行轉(zhuǎn)置矩陣與列轉(zhuǎn)置矩陣,并記為A R和A C.特別地,若A R=A(A C=A),則稱A為行(列)對(duì)稱矩陣.若A R=-A(A C=-A),則稱A為行(列)反對(duì)稱矩陣.

1 行(列)反對(duì)稱矩陣的極分解與廣義逆

引理1[15]設(shè)A∈Cm×n,則對(duì)任何酉矩陣U∈Cm×m,V∈Cn×n有UAV的Moore-Penrose逆:

2 行(列)反對(duì)稱矩陣極因子的擾動(dòng)界

列反對(duì)稱陣(B-BJ),(BO-BJ)的極分解也有類似定理7和定理8的擾動(dòng)界.

綜上,本文研究了行(列)反對(duì)稱矩陣的極分解、廣義逆與擾動(dòng)界,給出了行(列)反對(duì)稱矩陣與母矩陣兩者的極分解、廣義逆與擾動(dòng)界間的定量關(guān)系.結(jié)果表明,用母矩陣代替行(列)反對(duì)稱矩陣計(jì)算極分解、廣義逆與擾動(dòng)界,既能減少計(jì)算量和儲(chǔ)存量,又不會(huì)喪失數(shù)值精度.

[1] CHEN Xiaoshan,LI Wen,SUN Weiwei.Some New Perturbation Bounds for the Generalized Polar Decomposition[J].BIT Numer Math,2004,44(2):237-244.

[2] LI Wen,SUN Weiwei.New Perturbation Bounds for Unitary Polar Factors[J].SIAM J Matrix Anal Appl,2003,25(2):362-372.

[3] Chaitin-Chatelin F,Gratton S.One the Condition Numbers Associated with the Polar Factorization of a Matrix[J].Numer Linear Algebra Appl,2000,7(5):337-354.

[4] YANG Hu,LI Hanyu.Weighted Polar Decomposition[J].J Math Res Exposition,2009,29(5):787-798.

[5] YANG Hu,LI Hanyu.Weighted Polar Decomposition and WGL Partial Ordering of Rectangular Complex Matrices[J].SIAM J Matrix Anal Appl,2008,30(2):898-924.

[6] LI Rencang.Relative Perturbation Bounds for Positive Polar Factors of Graded Matrices[J].SIAM J Matrix Anal Appl,2006,27(2):424-433.

[7] 黎穩(wěn),孫偉偉.組合擾動(dòng)界:Ⅱ.極分解[J].中國科學(xué)A輯:數(shù)學(xué),2007,37(6):701-708.(LI Wen,SUN Weiwei.Combinatorial Perturbation Bound:Ⅱ.Polar Factorization[J].Science in China Series A:Math,2007,37(6):701-708.)

[8] 王衛(wèi)國,劉新國.關(guān)于極分解和廣義極分解的一些新結(jié)果 [J].計(jì)算數(shù)學(xué),2008,30(2):147-156.(WANG Weiguo,LIU Xinguo.Several New Results on the Polar Decomposition and Generalized Polar Decomposition[J].Mathematica Numerica Sinica,2008,30(2):147-156.)

[9] 袁暉坪.行(列)反對(duì)稱矩陣的極分解及其廣義逆 [J].吉林大學(xué)學(xué)報(bào):理學(xué)版,2013,51(1):15-20.(YUAN Huiping.Polar Factorization and Generalized Inverse for Row(Column)Skew Symmetric Matrix[J].Journal of Jilin University:Science Edition,2013,51(1):15-20.)

[10] 袁暉坪.擬行(列)對(duì)稱矩陣的極分解及其擾動(dòng)界[J].吉林大學(xué)學(xué)報(bào):理學(xué)版,2013,51(3):414-418.(YUAN Huiping.Polar Factorization and Perturbation Bound for Quasi-row(column)Symmetric Matrix[J].Journal of Jilin University:Science Edition,2013,51(3):414-418.)

[11] 劉永輝,田永革.矩陣廣義逆的一個(gè)混合反序律 [J].數(shù)學(xué)學(xué)報(bào):中文版,2009,52(1):197-204.(LIU Yonghui,TIAN Yongge.A Mixed-Type Reverse Order Law for Generalized Inverse of a Triple Matrix Product[J].Acta Mathematica Sinica:Chinese Series,2009,52(1):197-204.)

[12] 鄒紅星,王殿軍,戴瓊海,等.延拓矩陣的奇異值分解 [J].科學(xué)通報(bào),2000,45(14):1560-1562.(ZOU Hongxing,WANG Dianjun,DAI Qionghai,et al.SVD for Extended Matrix[J].Chinese Science Bulletin,2000,45(14):1560-1562.)

[13] 鄒紅星,王殿軍,戴瓊海,等.行(或列)對(duì)稱矩陣的QR分解[J].中國科學(xué):A輯,2002,32(9):842-849.(ZOU Hongxing,WANG Dianjun,DAI Qionghai,et al.QR Factorization for Row or Column Symmetric Matrix[J].Science in China:Series A,2002,32(9):842-849.)

[14] 袁暉坪.關(guān)于酉對(duì)稱矩陣的QR分解及其算法[J].系統(tǒng)科學(xué)與數(shù)學(xué),2012,32(2):172-180.(YUAN Huiping.On QR Factorization and Algorithm for Unitary Symmetric Matrices[J].Journal of Systems Science and Mathematical Sciences,2012,32(2):172-180.)

[15] 張賢達(dá).矩陣分析與應(yīng)用[M].北京:清華大學(xué)出版社,2004:85-89.(ZHANG Xianda.Matrix Analysis and Applications[M].Beijing:Tsinghua University Press,2004:85-89.)

Polar Factorization and Perturbation Bound for Row(Column)Skew Symmetric Matrix

YUAN Huiping
(ChongqingKeyLaboratoryofElectronicCommerce&SupplyChainSystem,CollegeofMathematics andStatistics,ChongqingTechnologyandBusinessUniversity,Chongqing400067,China)

The author studied the polar factorization and generalized inverse and perturbation bound of row(column)skew symmetric matrix.In addition,the formula of the polar factorization and generalized inverse of row(column)skew symmetric matrix were given,which makes calculation easier.And some perturbation bounds of the polar factorization of row(column)skew symmetric matrix were also presented.

row(column)skew symmetric matrix;polar factorization;generalized inverse;perturbation bound

O151.21

A

1671-5489(2014)03-0475-07

10.13413/j.cnki.jdxblxb.2014.03.13

2013-09-05.

袁暉坪(1958—),男,漢族,教授,從事矩陣論的研究,E-mail:yhp@ctbu.edu.cn.

國家自然科學(xué)基金(批準(zhǔn)號(hào):11271388)和電子商務(wù)及供應(yīng)鏈系統(tǒng)重慶市重點(diǎn)實(shí)驗(yàn)室專項(xiàng)基金(批準(zhǔn)號(hào):2012ECSC0216).

趙立芹)

猜你喜歡
工商大學(xué)對(duì)角線廣義
重慶工商大學(xué)學(xué)科簡介
Rn中的廣義逆Bonnesen型不等式
重慶工商大學(xué)
重慶工商大學(xué)
從廣義心腎不交論治慢性心力衰竭
有限群的廣義交換度
邊、角、對(duì)角線與平行四邊形的關(guān)系
看四邊形對(duì)角線的“氣質(zhì)”
數(shù)學(xué)題
《浙江工商大學(xué)學(xué)報(bào)》2015年總目錄