李亮+龍俊+++++王知非
[摘要] 目的 觀察Apelin-13對局灶性腦缺血-再灌注損傷大鼠缺血區(qū)皮層腦源性神經(jīng)營養(yǎng)因子(BDNF)和及其受體酪氨酸激酶B(TrkB)表達的影響。 方法 采用線栓法建立大鼠大腦中動脈缺血-再灌注損傷模型。SD雄性大鼠隨機分為假手術組、模型組和Apelin-13(0.1、1.0和10.0 μg/kg)處理組。缺血-再灌注損傷大鼠在缺血2 h后再灌注24 h,Apelin-13在再灌注前15 min進行側腦室注射。采用實時定量PCR和Western blot檢測BDNF和TrkB mRNA和蛋白的表達。結果 與假手術組比較,模型組大鼠腦梗死側皮層BDNF和TrkB mRNA和蛋白的表達顯著性增加,BDNF mRNA相對表達量分別為(100.00±0.00)%和(138.54±7.63)%;TrkB mRNA相對表達量分別為(100.00±0.00)%和(121.74±8.73)%。BDNF 蛋白相對表達量分別為(0.25±0.04)和(0.38±0.05);TrkB蛋白相對表達量分別為(0.23±0.03)和(0.36±0.04),差異均有統(tǒng)計學意義(t=9.45、10.79、10.37、8.76,均P < 0.05)。與模型組比較,1.0和10.0 μg/kg Apelin-13處理組大鼠腦梗死側皮層BDNF和TrkB的表達均顯著性增加,BDNF mRNA相對表達量分別為(138.54±7.63)%、(158.69±11.37)%和(189.31±13.74)%;TrkB mRNA相對表達量分別為(121.74±8.73)%、(149.25±9.46)%和(166.41±13.74)%。BDNF 蛋白相對表達量分別為(0.38±0.05)、(0.57±0.06)和(0.71±0.08);TrkB蛋白相對表達量分別為(0.36±0.04)、(0.51±0.07)和(0.68±0.07),呈濃度依賴性,差異均有統(tǒng)計學意義(F=8.84、11.12、9.72、10.48,均P < 0.05)。 結論 Apelin-13對大鼠局灶性腦缺血-再灌注損傷有保護作用,其機制可能與上調BDNF及受體TrkB的表達有關。
[關鍵詞] Apelin-13;腦缺血-再灌注損傷;腦源性神經(jīng)生長因子;酪氨酸激酶B
[中圖分類號] R743.33 [文獻標識碼] A [文章編號] 1673-7210(2014)02(a)-0021-05
Effect of Apelin-13 on the expression of brain-derived neurotrophic factor and tyrosine kinase B in the focal cerebral isehemia-reperfused injury rats
LI Liang1,2 LONG Jun1▲ WANG Zhifei1
1.Department of Neurosurgery, the Third Xiangya Hospital of Central South University, Hu′nan Province, Changsha 410013, China; 2.Department of Neurosurgery, the Central Hospital of Loudi City, Hu′nan Province, Loudi 417000, China
[Abstract] Objective To observe the effects of Apelin-13 on the expressions of brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) in the focal cerebral isehemia-reperfused rats. Methods The rats models of focal middle cerebral artery ischemia-reperfusion were established by filament in SD male rats. The rats were randomly divided into the sham, model and Apelin-13 (0.1, 1.0 and 10.0 μg/kg) treatment group. After 2 h ischemia, the focal middle cerebral artery was followed by 24 h reperfusion in rats with isehemia-reperfused injury. Apelin-13 was administrated by the intracerebroventricular injection 15 minutes before reperfusion. The mRNA and protein expressions of BDNF and TrkB in cerebral cortex were measured by real-time PCR and Western blot respectively. Results Compared with the sham group, the mRNA and protein expressions of BDNF and TrkB in cerebral cortex were significantly increased in the models of ischemia-reperfusion group, the relative mRNA expressions of BDNF were (100.00±0.00)% and (138.54±7.63)% respectively; the relative mRNA expressions of TrkB were (100.00±0.00)% and (121.74±8.73)% respectively. The relative protein expressions of BDNF were (0.25±0.04) and (0.38±0.05) respectively; the relative protein expressions of TrkB were (0.23±0.03) and (0.36±0.04) respectively, with significant differences (t=9.45, 10.79, 10.37, 8.76, all P < 0.05). Compared with the models of ischemia-reperfusion group, the mRNA and protein expressions of BDNF and TrkB in cerebral cortex were significantly increased in the 1.0 and 10.0 μg/kg Apelin-13 treatment group, the relative mRNA expressions of BDNF were (138.54±7.63)%, (158.69±11.37)% and (189.31±13.74)% respectively; the relative mRNA expressions of TrkB were (121.74±8.73)%, (149.25±9.46)% and (166.41±13.74)% respectively. The relative protein expressions of BDNF were (0.38±0.05), (0.57±0.06) and (0.71±0.08) respectively; the relative protein expressions of TrkB were (0.36±0.04), (0.51±0.07) and (0.68±0.07) respectively, with significant differences (F=8.84, F=11.12, F=9.72, F=10.48, all P < 0.05). Conclusion Apelin-13 protects the ischemia-reperfusion injury, the mechanism of which may be related with up-regulation of BDNF and TrkB.
[Key words] Apelin-13; Brain ischemia-reperfusion injury; Brain-derived neurotrophic factor; Tyrosine kinase B
腦血管疾病是神經(jīng)系統(tǒng)的常見病之一,是導致死亡的重要原因之一。缺血性腦血管病占到腦血管疾病70%左右。腦缺血梗死后,再灌注會進一步加重腦損傷[1]。Apelin是近年來發(fā)現(xiàn)的一種具有神經(jīng)保護作用的內源性多肽,在神經(jīng)系統(tǒng)中有大量表達[2-3]。研究顯示Apelin能對抗興奮性毒性和氧化應激等對神經(jīng)細胞的損傷以及抑制神經(jīng)細胞的凋亡,也能保抑制心肌的缺血-再灌注損傷[4-6]。因此本研究擬觀察Apelin-13對局灶性腦缺血-再灌注損傷大鼠缺血區(qū)皮層腦源性神經(jīng)營養(yǎng)因子(brain derived neurotrophic factor,BDNF)和及其受體酪氨酸激酶B(tyrosine kinase B,TrkB)表達的影響,以探討Apelin-13對腦缺血-再灌注損傷的保護機制。
1 材料與方法
1.1 材料
Apelin-13為美國Sigma公司產品??俁NA提取試劑盒、MMLV第一鏈cDNA合成試劑盒、DNA Marker和Hot Star Taq Master Mix試劑盒(Invitrogen公司)。引物由上海生物工程公司合成。BCA蛋白定量試劑(Pierce公司)。BDNF、TrkB和β-actin抗體以及辣根過氧化物酶標記二抗為美國Santa Cruz產品。
1.2 實驗動物與分組
健康SPF級雄性SD大鼠50只,體質量250~300 g,由中南大學實驗動物學部提供,以標準飼料喂養(yǎng)。將大鼠隨機分為5組:假手術組(10只)、缺血再灌注組(10只)、不同劑量Apelin-13組(0.1、1.0、10.0 μg/kg,每組10只)。將Apelin-13溶解于生理鹽水,配成不同濃度的溶液,在再灌注前15 min進行側腦室微量注射,確保注射的Apelin-13溶解量為30 μL/kg。假手術組和缺血再灌注組給予相同劑量的生理鹽水。
1.3 側腦室微量注射
腹腔注射10%水合氯醛(300 mg/kg)麻醉大鼠后固定在腦立體定位儀上,根據(jù)L.J.Pellegrine鼠腦定向圖譜在相當于側腦室的顱骨部位,具體位置為大鼠矢狀縫和冠狀縫愈合處(前信)向后3~4 mm,中縫向右1~2 mm,深度為3 mm,鉆孔埋入插管套管,使用牙托粉固定。將注射器插入固定套管尖端伸出套管外1 mm,每次注藥3 min注完,并留針l min。
1.4 動物模型制備
在大鼠側腦室埋管手術結束后,立即將大鼠仰臥固定于手術臺上,采用線栓法制備大鼠大腦中動脈局灶性腦缺血模型。做頸部正中切口,分離出右側頸總和頸內、外動脈,在動脈分叉處結扎頸外動脈,頸總動脈剪一小口,插入頭端呈圓鈍形的尼龍魚線(直徑0.28 mm),插入長度約18 mm,在大腦中動脈起始端堵塞動脈。將頸總動脈和尼龍魚線一起結扎,縫合皮膚。在阻斷血流2 h后,通過拔出尼龍魚線實現(xiàn)再灌注24 h。假手術組只分離血管,不結扎動脈,不插入尼龍魚線。大鼠蘇醒后左側肢體癱瘓,站立不穩(wěn),左上肢屈曲、行走時向左側轉圈的大鼠為造模成功,用于后續(xù)實驗。
1.5 實時定量PCR檢測
再灌注24 h后,斷頭處死大鼠后迅速取出大腦,選取梗死區(qū)皮層腦組織,進行組織勻漿,Trizol提取腦組織的總RNA。提取的總RNA為模板進行逆轉錄反應,合成cDNA第一鏈。取cDNA樣品梯度稀釋,進行實時定量PCR反應,反應總體系為30 μL,包含1 μL Taq DNA聚合酶(5 U/μL),4 μL cDNA,1 μL雙鏈DNA特異性結合的熒光染料(SYBR Green 0NE)(50×),上下游引物各1 μL,8 μL dNTP Mix(2×),其余用蒸餾水補足。BDNF引物:上游:5′-TCC CTG GCT GAC ACT TTT GAG-3′,下游:5′- ATT GTG TAG ATC GGC ATT GCG-3′。TrkB引物:上游:5′-GCA CAC GCA CTC TCA CTG ACT GGC ACT-3′,下游:5′-GAG CGG GTC ACC CGC GAC GAT GCA GCT-3′。β-actin引物:上游:5′-CGA TCA TCT TCC AGG AGC G-3′,下游:5′-CTT GCA GTG TGC TAT ACT CG-3′。采用2-△△CT法處理數(shù)據(jù),以假手術組作為對照組,以對照組為100%對目的基因的mRNA表達進行分析。
1.6 Western blotting檢測
提取梗死區(qū)皮層腦組織總蛋白,BAC法蛋白定量。100 μL樣本加入到2×SDS凝膠加樣緩沖液中煮沸。凝膠電泳1 h分離蛋白質,分離的蛋白轉膜至聚偏氟乙稀膜上。10%脫脂牛奶封閉2 h,加入兔抗鼠BDNF、TrkB和β-actin一抗,4℃下過夜。加入羊抗兔二抗,孵育6 h。顯影后進行半定量分析。
1.7 統(tǒng)計學方法
采用統(tǒng)計軟件SPSS 17.0對實驗數(shù)據(jù)進行分析,計量資料數(shù)據(jù)以均數(shù)±標準差(x±s)表示,用單因素方差分析進行統(tǒng)計分析,組間的兩兩比較采用LSD-t檢驗。計數(shù)資料以率表示,采用χ2檢驗。以P < 0.05為差異有統(tǒng)計學意義。
2 結果
2.1 Apelin-13對局灶性腦缺血再灌注損傷大鼠腦梗死側皮層BDNF和TrkB mRNA表達的影響
與假手術組比較,局灶性腦缺血再灌注損傷模型組大鼠腦梗死側皮層BDNF和TrkB mRNA表達顯著性增加,BDNF mRNA相對表達量分別為(100.00±0.00)%和(138.54±7.63)%;TrkB mRNA相對表達量分別為(100.00±0.00)%和(121.74±8.73)%,差異均有統(tǒng)計學意義(t = 9.45、10.79,均P < 0.05)。與模型組比較,1.0和10.0 μg/kg Apelin-13處理組大鼠腦梗死側皮層BDNF和TrkB mRNA表達均顯著性增加,BDNF mRNA相對表達量分別為(138.54±7.63)%、(158.69±11.37)%和(189.31±13.74)%;TrkB mRNA相對表達量分別為(121.74±8.73)%、(149.25±9.46)%和(166.41±13.74)%,呈濃度依賴性,差異均有統(tǒng)計學意義(F=8.84、11.12,均P < 0.05)。見圖1、2。
與假手術組比較,*P < 0.05;與模型組比較,#P < 0.05;與0.1 μg/kg組比較,▼P < 0.05;與1.0 μg/kg組比較,◆P < 0.05;BDNF:腦源性神經(jīng)營養(yǎng)因子
圖1 Apelin-13對局灶性腦缺血再灌注損傷大鼠腦梗死側皮層BDNF mRNA表達的影響
與假手術組比較,*P < 0.05;與模型組比較,#P < 0.05;與0.1 μg/kg組比較,▼P < 0.05;與1.0 μg/kg組比較,◆P < 0.05;TrkB:酪氨酸激酶B 圖2 Apelin-13對局灶性腦缺血再灌注損傷大鼠腦梗死側皮層
腦源性神經(jīng)營養(yǎng)因子的受體TrkB mRNA表達的影響
2.2 Apelin-13對局灶性腦缺血再灌注損傷大鼠腦梗死側皮層BDNF和TrkB蛋白表達的影響
與假手術組比較,局灶性腦缺血再灌注損傷模型組大鼠腦梗死側皮層BDNF和TrkB蛋白表達顯著性增加,BDNF蛋白相對表達量分別為(0.25±0.04)和(0.38±0.05);TrkB蛋白相對表達量分別為(0.23±0.03)和(0.36±0.04),差異均有統(tǒng)計學意義(t=10.37、8.76,均P < 0.05)。與模型組比較,1.0和10.0 μg/kg Apelin-13處理組大鼠腦梗死側皮層BDNF和TrkB蛋白表達均顯著性增加,BDNF蛋白相對表達量分別為(0.38±0.05)、(0.57±0.06)和(0.71±0.08);TrkB蛋白相對表達量分別為(0.36±0.04)、(0.51±0.07)和(0.68±0.07),呈濃度依賴性,差異均有統(tǒng)計學意義(F=9.72、10.48,均P < 0.05)。見圖3、4。
與假手術組比較,*P < 0.05;與模型組比較,#P < 0.05;與0.1 μg/kg組比較,▼P < 0.05;與1.0 μg/kg組比較,◆P < 0.05;BDNF:腦源性神經(jīng)營養(yǎng)因子
圖3 Apelin-13對局灶性腦缺血再灌注損傷大鼠腦梗死側皮層BDNF蛋白表達的影響
與假手術組比較,*P < 0.05;與模型組比較,#P < 0.05;與0.1 μg/kg組比較,▼P < 0.05;與1.0 μg/kg組比較,◆P < 0.05;TrkB:酪氨酸激酶B 圖4 Apelin-13對局灶性腦缺血再灌注損傷大鼠腦梗死側皮層
腦源性神經(jīng)營養(yǎng)因子的受體TrkB蛋白表達的影響
3 討論
冠狀動脈硬化導致的心肌梗死、腦卒中等缺血損傷所引的組織損傷是導致死亡的主要原因。研究表明缺血組織血液供應恢復后,對組織造成損傷反而加重,這種損傷稱為缺血-再灌注損傷。缺血-再灌注損傷的機制十分復雜,其中過量自由基的產生是一個重要的原因[7]。
神經(jīng)營養(yǎng)因子是一種對神經(jīng)組織起特殊營養(yǎng)作用的蛋白質或多肽分子。它們可調節(jié)神經(jīng)細胞的生長分化,調節(jié)神經(jīng)細胞的代謝和生理功能。BDNF是由中樞神經(jīng)系統(tǒng)的神經(jīng)元和星形膠質細胞產生,在腦內發(fā)布最為廣泛的一種神經(jīng)營養(yǎng)因子[8]。BDNF能調節(jié)交感、運動和感覺神經(jīng)元的分化和增殖,防止神經(jīng)細胞的退行性病變,抑制神經(jīng)細胞的凋亡。BDNF保護神經(jīng)細胞的機制包括上調鈣結合蛋白表達,維持細胞內正常Ca2+濃度,防止細胞內鈣超載;抑制NMDA受體功能,抑制興奮性氨基酸毒性;增加超氧化物岐化酶和谷胱甘肽過氧化物酶等的水平,清除自由基,保護神經(jīng)元免受自由基的攻擊;抑制神經(jīng)細胞凋亡等[9-10]。在缺血損傷早期,BDNF及其受體TrkB表達均上調。TrkB表達的上調,BDNF通過激活TrkB受體,防止神經(jīng)元發(fā)生變性、壞死,發(fā)揮神經(jīng)細胞保護的作用[11]。
Apelin是在1998年由Tatemoto等通過反向藥理學方法從牛胃的分泌物中分離純化的一種小分子內源性神經(jīng)肽,是G蛋白耦聯(lián)受體血管緊張素受體AT1相關的受體蛋白(putative receptor protein related to the angiotensinreceptor AT1,APJ)的天然配體[12]。Apelin/APJ在神經(jīng)系統(tǒng)廣泛分布,研究表明Apelin/APJ具有神經(jīng)保護作用,能對抗興奮性毒性損傷、氧化應激損傷,抑制神經(jīng)細胞的凋亡等,是一種內源性神經(jīng)保護因子。研究發(fā)現(xiàn)海馬細胞中有APJ和Aelin的表達,Apelin-13能誘導Akt和Raf/ERK1/2的磷酸化,對抗N-甲基-D-門冬氨酸(N-methyl-D-aspartic acid,NMDA)對海馬神經(jīng)元的興奮性毒性損傷[13]。Apelin-13可通過活化三磷酸肌醇IP3、PKC、MEK1/2和ERK1/2調節(jié)NMDA受體的NR2B亞單位的1480絲氨酸磷酸化,減少Ca2+積聚,以及降低鈣蛋白酶calpain的活化,保護大腦皮質神經(jīng)元抵抗谷氨酸的興奮性毒性損傷[14]。Apelin能抑制大腦皮質細胞中活性氧的產生、線粒體膜電位去極化、細胞色素C的釋放以及caspase-3的激活,促進Akt和ERKl/2的磷酸化,抑制細胞凋亡[15-16]。
Apelin前體肽在蛋白水解酶的作用下可分解為長度不同的多肽片段,主要有Apelin-36、Apelin-17、Apelin-13和Apelin-12等片段。不同長度的Apelin多肽片段在體內的分布以及與APJ的結合能力都不相同,在體內外發(fā)揮的生理與藥理作用也不盡相同,其中Apelin-13在神經(jīng)系統(tǒng)的表達水平較高,與神經(jīng)系統(tǒng)的關系密切。本實驗結果顯示Apelin-13上調了腦缺血再灌注損傷大鼠腦內BDNF及其受體TrkB表達,提示Apelin-13可能通過增加神經(jīng)營養(yǎng)因子的表達而發(fā)揮神經(jīng)保護作用。BDNF和TrkB表達調控的機制十分復雜,Apelin-13上調BDNF和TrkB表達涉及到哪些信號通路還有待進一步研究。
總之,本研究闡明Apelin-13對大鼠局灶性腦缺血-再灌注損傷有保護作用,其機制可能與上調BDNF及受體TrkB的表達有關。
[參考文獻]
[1] Tao T,Liu Y,Zhang J,et al. Therapeutic hypercapnia improves functional recovery and attenuates injury via antiapoptotic mechanisms in a rat focal cerebral ischemia/reperfusion model [J]. Brain Res,2013,1533(1):52-62.
[2] Khaksari M,Aboutaleb N,Nasirinezhad F,et al. Apelin-13 protects the brain against ischemic reperfusion injury and cerebral edema in a transient model of focal cerebral ischemia [J]. J Mol Neurosci,2012,48(1):201-208.
[3] Gu Q,Zhai L,F(xiàn)eng X,et al. Apelin-36,a potent peptide, protects against ischemic brain injury by activating the PI3K/Akt pathway [J]. Neurochem Int,2013,186(13):245-243.
[4] Foussal C,Lairez O,Calise D,et al. Activation of catalase by Apelin prevents oxidative stress-linked cardiac hypertrophy [J]. FEBS Lett,2010,584(11):2363-2370.
[5] Cook DR,Gleichman AJ,Cross SA,et al. NMDA receptor modulation by the neuropeptide Apelin: implications for excitotoxic injury [J]. J Neurochem,2011,118(6):1113-1123.
[6] Tao J,Zhu W,Li Y,et al. Apelin protects the heart against ischemia-reperfusion injury through inhibition of ER-dependent apoptotic pathways in a time-dependent fashion [J]. Am J Physiol Heart Circ Physiol,2011,301(4):H1471-1486.
[7] Jaeschke H,Woolbright BL. Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species [J]. Transplant Rev (Orlando),2012,26(2):103-114.
[8] Nurjono M,Lee J,Chong SA. A Review of Brain-derived Neurotrophic Factor as a Candidate Biomarker in Schizophrenia [J]. Clin Psychopharmacol Neurosci,2012,10(2):61-70.
[9] 李昕,王建平,盧宏,等.黃體酮對大鼠局灶性腦缺血再灌注損傷后腦組織神經(jīng)生長因子表達的影響[J].中國老年醫(yī)學雜志,2012,31(7):615-618.
[10] Lidian A,Stenkvist AM,Linder B,et al. Early hearing protection by brain-derived neurotrophic factor [J]. Acta Otolaryngol,2013,133(1):12-21.
[11] Chuang CM,Hsieh CL,Lin HY,et al. Panax Notoginseng Burk attenuates impairment of learning and memory functions and increases ED1,BDNF and beta-secretase immunoreactive cells in chronic stage ischemia-reperfusion injured rats [J]. Am J Chin Med,2008,36(4):685-693.
[12] O'Carroll AM,Lolait SJ,Harris LE,et al. The Apelin receptor APJ: journey from an orphan to a multifaceted regulator of homeostasis [J]. J Endocrinol,2013,219(1):R13-35.
[13] O'Donnell LA,Agrawal A,Sabnekar P,et al. Apelin,an endogenous neuronal peptide,protects hippocampal neurons against excitotoxic injury [J]. J Neurochem,2007,102(6):1905-1917.
[14] Cook DR,Gleichman AJ,Cross SA,et al. NMDA receptor modulation by the neuropeptide Apelin: implications for excitotoxic injury [J]. J Neurochem,2011,118(6):1113-1123.
[15] Zeng XJ,Yu SP,Zhang L,et al. Neuroprotective effect of the endogenous neural peptide Apelin in cultured mouse cortical neurons [J]. Exp Cell Res,2010,316(11):1773-1783.
[16] 武菲,張秋玲.Apelin/APJ系統(tǒng)的神經(jīng)保護作用及其機制[J].生理科學進展,2013,44(1):39-43.
(收稿日期:2013-11-02 本文編輯:衛(wèi) 軻)
總之,本研究闡明Apelin-13對大鼠局灶性腦缺血-再灌注損傷有保護作用,其機制可能與上調BDNF及受體TrkB的表達有關。
[參考文獻]
[1] Tao T,Liu Y,Zhang J,et al. Therapeutic hypercapnia improves functional recovery and attenuates injury via antiapoptotic mechanisms in a rat focal cerebral ischemia/reperfusion model [J]. Brain Res,2013,1533(1):52-62.
[2] Khaksari M,Aboutaleb N,Nasirinezhad F,et al. Apelin-13 protects the brain against ischemic reperfusion injury and cerebral edema in a transient model of focal cerebral ischemia [J]. J Mol Neurosci,2012,48(1):201-208.
[3] Gu Q,Zhai L,F(xiàn)eng X,et al. Apelin-36,a potent peptide, protects against ischemic brain injury by activating the PI3K/Akt pathway [J]. Neurochem Int,2013,186(13):245-243.
[4] Foussal C,Lairez O,Calise D,et al. Activation of catalase by Apelin prevents oxidative stress-linked cardiac hypertrophy [J]. FEBS Lett,2010,584(11):2363-2370.
[5] Cook DR,Gleichman AJ,Cross SA,et al. NMDA receptor modulation by the neuropeptide Apelin: implications for excitotoxic injury [J]. J Neurochem,2011,118(6):1113-1123.
[6] Tao J,Zhu W,Li Y,et al. Apelin protects the heart against ischemia-reperfusion injury through inhibition of ER-dependent apoptotic pathways in a time-dependent fashion [J]. Am J Physiol Heart Circ Physiol,2011,301(4):H1471-1486.
[7] Jaeschke H,Woolbright BL. Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species [J]. Transplant Rev (Orlando),2012,26(2):103-114.
[8] Nurjono M,Lee J,Chong SA. A Review of Brain-derived Neurotrophic Factor as a Candidate Biomarker in Schizophrenia [J]. Clin Psychopharmacol Neurosci,2012,10(2):61-70.
[9] 李昕,王建平,盧宏,等.黃體酮對大鼠局灶性腦缺血再灌注損傷后腦組織神經(jīng)生長因子表達的影響[J].中國老年醫(yī)學雜志,2012,31(7):615-618.
[10] Lidian A,Stenkvist AM,Linder B,et al. Early hearing protection by brain-derived neurotrophic factor [J]. Acta Otolaryngol,2013,133(1):12-21.
[11] Chuang CM,Hsieh CL,Lin HY,et al. Panax Notoginseng Burk attenuates impairment of learning and memory functions and increases ED1,BDNF and beta-secretase immunoreactive cells in chronic stage ischemia-reperfusion injured rats [J]. Am J Chin Med,2008,36(4):685-693.
[12] O'Carroll AM,Lolait SJ,Harris LE,et al. The Apelin receptor APJ: journey from an orphan to a multifaceted regulator of homeostasis [J]. J Endocrinol,2013,219(1):R13-35.
[13] O'Donnell LA,Agrawal A,Sabnekar P,et al. Apelin,an endogenous neuronal peptide,protects hippocampal neurons against excitotoxic injury [J]. J Neurochem,2007,102(6):1905-1917.
[14] Cook DR,Gleichman AJ,Cross SA,et al. NMDA receptor modulation by the neuropeptide Apelin: implications for excitotoxic injury [J]. J Neurochem,2011,118(6):1113-1123.
[15] Zeng XJ,Yu SP,Zhang L,et al. Neuroprotective effect of the endogenous neural peptide Apelin in cultured mouse cortical neurons [J]. Exp Cell Res,2010,316(11):1773-1783.
[16] 武菲,張秋玲.Apelin/APJ系統(tǒng)的神經(jīng)保護作用及其機制[J].生理科學進展,2013,44(1):39-43.
(收稿日期:2013-11-02 本文編輯:衛(wèi) 軻)
總之,本研究闡明Apelin-13對大鼠局灶性腦缺血-再灌注損傷有保護作用,其機制可能與上調BDNF及受體TrkB的表達有關。
[參考文獻]
[1] Tao T,Liu Y,Zhang J,et al. Therapeutic hypercapnia improves functional recovery and attenuates injury via antiapoptotic mechanisms in a rat focal cerebral ischemia/reperfusion model [J]. Brain Res,2013,1533(1):52-62.
[2] Khaksari M,Aboutaleb N,Nasirinezhad F,et al. Apelin-13 protects the brain against ischemic reperfusion injury and cerebral edema in a transient model of focal cerebral ischemia [J]. J Mol Neurosci,2012,48(1):201-208.
[3] Gu Q,Zhai L,F(xiàn)eng X,et al. Apelin-36,a potent peptide, protects against ischemic brain injury by activating the PI3K/Akt pathway [J]. Neurochem Int,2013,186(13):245-243.
[4] Foussal C,Lairez O,Calise D,et al. Activation of catalase by Apelin prevents oxidative stress-linked cardiac hypertrophy [J]. FEBS Lett,2010,584(11):2363-2370.
[5] Cook DR,Gleichman AJ,Cross SA,et al. NMDA receptor modulation by the neuropeptide Apelin: implications for excitotoxic injury [J]. J Neurochem,2011,118(6):1113-1123.
[6] Tao J,Zhu W,Li Y,et al. Apelin protects the heart against ischemia-reperfusion injury through inhibition of ER-dependent apoptotic pathways in a time-dependent fashion [J]. Am J Physiol Heart Circ Physiol,2011,301(4):H1471-1486.
[7] Jaeschke H,Woolbright BL. Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species [J]. Transplant Rev (Orlando),2012,26(2):103-114.
[8] Nurjono M,Lee J,Chong SA. A Review of Brain-derived Neurotrophic Factor as a Candidate Biomarker in Schizophrenia [J]. Clin Psychopharmacol Neurosci,2012,10(2):61-70.
[9] 李昕,王建平,盧宏,等.黃體酮對大鼠局灶性腦缺血再灌注損傷后腦組織神經(jīng)生長因子表達的影響[J].中國老年醫(yī)學雜志,2012,31(7):615-618.
[10] Lidian A,Stenkvist AM,Linder B,et al. Early hearing protection by brain-derived neurotrophic factor [J]. Acta Otolaryngol,2013,133(1):12-21.
[11] Chuang CM,Hsieh CL,Lin HY,et al. Panax Notoginseng Burk attenuates impairment of learning and memory functions and increases ED1,BDNF and beta-secretase immunoreactive cells in chronic stage ischemia-reperfusion injured rats [J]. Am J Chin Med,2008,36(4):685-693.
[12] O'Carroll AM,Lolait SJ,Harris LE,et al. The Apelin receptor APJ: journey from an orphan to a multifaceted regulator of homeostasis [J]. J Endocrinol,2013,219(1):R13-35.
[13] O'Donnell LA,Agrawal A,Sabnekar P,et al. Apelin,an endogenous neuronal peptide,protects hippocampal neurons against excitotoxic injury [J]. J Neurochem,2007,102(6):1905-1917.
[14] Cook DR,Gleichman AJ,Cross SA,et al. NMDA receptor modulation by the neuropeptide Apelin: implications for excitotoxic injury [J]. J Neurochem,2011,118(6):1113-1123.
[15] Zeng XJ,Yu SP,Zhang L,et al. Neuroprotective effect of the endogenous neural peptide Apelin in cultured mouse cortical neurons [J]. Exp Cell Res,2010,316(11):1773-1783.
[16] 武菲,張秋玲.Apelin/APJ系統(tǒng)的神經(jīng)保護作用及其機制[J].生理科學進展,2013,44(1):39-43.
(收稿日期:2013-11-02 本文編輯:衛(wèi) 軻)