肖 颯,童東紳,趙立知,任倩倩,劉豐國,俞衛(wèi)華,周春暉
(浙江工業(yè)大學(xué)化學(xué)工程學(xué)院,浙江 杭州 310014)
甘油主要來自動(dòng)植物和化工產(chǎn)業(yè)(如肥皂、生物柴油產(chǎn)業(yè)),具有可降解、可再生等優(yōu)點(diǎn)。因其獨(dú)特的性質(zhì),甘油成為近年來的研究熱點(diǎn)。目前,甘油可轉(zhuǎn)化為各種高附加值的精細(xì)化學(xué)品[1-2]。其中,從甘油催化氫解制1,2-丙二醇(1,2-PDO)的技術(shù)最受關(guān)注。1,2-PDO 的傳統(tǒng)生產(chǎn)工藝包括環(huán)氧丙烷水解法、丙烯氧化法和酯交換法。上述工藝原料來自不可再生的石油資源,流程復(fù)雜,環(huán)境污染嚴(yán)重,經(jīng)濟(jì)效益低。而甘油氫解法使用綠色清潔的甘油作原料,產(chǎn)物種類少、收率高、易分離提純,具有替代傳統(tǒng)生產(chǎn)工藝的潛力。
甘油催化氫解反應(yīng)成功的關(guān)鍵是選擇合適的催化劑。目前研究較多的催化劑有兩大類:貴金屬催化劑(如Ru、Rh、Pt、Pd)和過渡金屬催化劑(如Cu、Ni、Co),載體研究較多的是碳材料、金屬氧化物和層狀雙氫氧化物。這些催化劑所采用的制備方法不同,工藝參數(shù)不同,催化性能也有差異。
單一貴金屬催化劑的選擇性一般較差,添加其他組分可提高選擇性。例如Ru/C 催化劑中加入12-磷鎢酸作共催化劑后,大幅度提高了1,2-PDO 的收率[3]。
此外,載體表面的酸堿度也對(duì)催化劑的性能有一定影響[4]。酸性位有利于C-O 鍵斷裂,但酸性位過多會(huì)促進(jìn)C-C 鍵斷裂。對(duì)Ru 催化劑,TiO2載體的酸性位數(shù)量較合適[5],HZSM5 載體的酸性導(dǎo)致副產(chǎn)物CH4選擇性提高,1,2-PDO 選擇性降低[6]。堿性氧化物負(fù)載的Ru 催化劑中,因CeO2表面呈弱堿性,甘油轉(zhuǎn)化率和1,2-PDO 選擇性較高[7]。堿性的層狀水滑石作載體對(duì)Pt 催化劑性能有促進(jìn)作用[8]。
甘油氫解反應(yīng)通常需在H2或合成氣等還原性氣氛下進(jìn)行,存在一定的安全隱患。D’Hondt 等首次發(fā)現(xiàn)在不通氫氣的條件下就能實(shí)現(xiàn)甘油氫解;采用Pt/NaY 催化劑,以20wt% 甘油水溶液為原料,在503 K 反應(yīng)15 h 后,甘油轉(zhuǎn)化率和1,2-PDO 選擇性分別為85.4% 和64.0%[9]。同樣在不加氫氣條件下,Ru/Al2O3和Pt/Al2O3混合物[10]或Pd/Fe2O3催化劑[11]也能催化甘油氫解。
過去,Ag 基催化劑催化甘油轉(zhuǎn)化制備1,2-PDO 的研究較少。最近研究表明,Ag 摻雜的分子篩催化劑[12]和Ag/γ-Al2O3催化劑[13]對(duì)于甘油催化氫解反應(yīng)也具有活性和選擇性。
相對(duì)于貴金屬催化劑,Cu 催化劑價(jià)格低廉,對(duì)C-O 鍵加氫活性較高,對(duì)C-C 鍵斷裂活性較低,因此1,2-PDO 選擇性較高。最近,開發(fā)高效Cu 催化劑成為研究熱點(diǎn)。例如,在相對(duì)較低的壓力下(1.4 MPa)使用Raney Cu 催化劑,甘油轉(zhuǎn)化率可達(dá)100%,1,2-PDO 收率也高達(dá)94%[14]。
載體是影響催化性能的因素之一。對(duì)于氧化物改性的Raney Cu 催化劑,催化載體活性順序是MgO>ZnO>SiO2>TiO2>ZrO2>Al2O3[15]。層狀雙氫氧化物作載體能提供堿性位[16],例如層狀雙氫氧化物Cu0.4Mg5.6Al2(OH)16CO3熱解產(chǎn)物作催化劑,在453 K,30 bar H2壓力下,反應(yīng)20 h 后,1,2-PDO選擇性98.2%,甘油轉(zhuǎn)化率80%[17]。介孔分子篩SBA-15 作載體,1,2-PDO 選擇性和甘油轉(zhuǎn)化率最高分別為92.4%和96.0%[18]。1173 K 預(yù)處理SBA-15,可提高催化劑結(jié)構(gòu)穩(wěn)定性[19]。在463 K 和0.64 MPa H2壓力下,使用Cu/ZnO/Al2O3雙載體催化劑,1,2-PDO 選擇性為92%[20]。
Cu 還能與載體MxOy結(jié)合形成CuMxOy晶相。例如Cu 和CuCr2O4[21-22]之間有明顯的相互作用,Cu/CuCr2O4活性比Cu/Cr2O3高。Cu-Fe 催化劑含有CuFe2O4晶相,在463 K,4.1 MPa H2壓力下反應(yīng)10 h,甘油轉(zhuǎn)化率和1,2-PDO 選擇性分別為47% 和92%[23]。納米CuAl2O4催化劑只有CuAl2O4一個(gè)晶相,還原性高,對(duì)氫氣吸附-脫附能力強(qiáng),甘油轉(zhuǎn)化率和1,2-PDO 選擇性都大于90%[24]。
此外,制備方法不同,催化劑的催化性能也有差異。浸漬法制備的Cu/SiO2催化劑比離子交換法活性好,在1.5 MPa,528 K,300 mL/min H2反應(yīng)條件下,甘油可完全轉(zhuǎn)化,1,2-PDO 的選擇性為87%[25]。共沉淀法制備的Cu/Al2O3催化劑,甘油轉(zhuǎn)化率和1,2-PDO 選擇性最高分別為63%和88%,而使用固態(tài)熔融法制備的Cu/Al2O3催化劑,甘油轉(zhuǎn)化率最高僅39%[26]。溶膠凝膠法制備的Cu/ZnO催化劑表面積約為共沉淀法的兩倍,因此活性更高[29]。
影響催化性能的因素還有負(fù)載量、甘油濃度、溶劑類型、氫氣壓力、pH 和反應(yīng)溫度等。Cu 負(fù)載量較低時(shí),Cu/MgO 催化劑活性較高[27]。添加少量NaOH 進(jìn)一步提高了Cu/MgO 的活性,可代替Ru/C (或Rh/SiO2)+Amberlyst、Pt/C (或Ru/C) +NaOH 催化劑體系[28]。反應(yīng)中生成的水會(huì)造成Cu/ZnO 催化劑失活,改用1,2-丁二醇作溶劑,甘油轉(zhuǎn)化率從5%增至55%[29]。Cu 催化劑添加助劑(如Ba[30]、Ga2O3[31])也可使催化劑抗失活。
除了Cu 催化劑,Raney Ni[32-33],Ni/AC[34],Ni/NaX[35],Ni/SiO2-Al2O3[36],Ni/Mg/Al 層狀雙氫氧化物[37]同樣對(duì)甘油催化氫解具有很好的活性。Raney Ni 作催化劑時(shí),可使用粗甘油作原料[38]。KBH4處理Ni/AC 催化劑,使得AC 表面的羰基還原為酚基,大大提高了催化劑酸性[34]。此外,Ni 還可以作為摻雜劑或者載體。例如,將金屬Ni 摻在Cu-Cr催化劑中有助于提高1,2-PDO 的選擇性[39]。若增加原料中水的含量,甘油的轉(zhuǎn)化率和1,2-PDO 的選擇性都會(huì)增加,這是因?yàn)榈蜐舛雀视涂蓽p少脫水反應(yīng)和加氫裂化[40]。
Co 催化劑的研究相對(duì)較少。在較高溫度下處理Co/MgO 催化劑時(shí),Co3O4和MgO 之間的相互作用得到了加強(qiáng),形成了MgCo2O4晶體和Mg-Co-O 固溶體[41],減少了鈷氧化物的還原性,同時(shí)阻止了Co 粒子的聚集,所得的Co/MgO 催化劑表現(xiàn)出良好的穩(wěn)定性。Co/Zn/Al 催化劑在反應(yīng)前后物理性質(zhì)能保持幾乎不變,可重復(fù)使用[42]。
使用雙金屬催化劑如Pt-Ru、Au-Ru 可提高1,2-PDO 的收率[43]。Re 的加入對(duì)抑制C-C 鍵斷裂發(fā)揮了作用,Ru-Re[44-46]、Pd-Re[47]、Pt-Re[48]催化劑均比單一Ru、Pd、Pt 或Re 催化劑活性好。
此外,銅和貴金屬結(jié)合的雙金屬催化劑的研究也有較多報(bào)道。例如,在453 K、2.0 MPa 氫氣下,使用Pd0.04Cu0.4/Mg5.5Al2O8.56催化劑,反應(yīng)10 h后,甘油的轉(zhuǎn)化率為88.0%,1,2-PDO 選擇性為99.6%[49]。使用Rh0.02Cu0.4/Mg5.6Al1.98O8.57催化劑,甘油轉(zhuǎn)化率和1,2-PDO 的選擇性最高分別為91.0%和98.7%[50]。此外,碳納米管[51]、膨潤(rùn)土[52]、HMS[53]也可作為Cu-Ru 催化劑的載體。對(duì)于Cu-Ag/γ-Al2O3催化劑,Ag 的加入使CuO 原位還原為Cu,這有助于提高銅在載體表面上分散性[54],還能抑制甘油C-C 鍵斷裂生成乙二醇,1,2-PDO 的選擇性最高98.3%,此時(shí)甘油轉(zhuǎn)化率為100%[55]。Ni-Cu/Al2O3催化劑能將溶劑中的氫轉(zhuǎn)移到甘油之上[56-58]。當(dāng)甲酸作氫源,45 bar N2,493 K,Ni-Cu/Al2O3催化劑,反應(yīng)24 h,甘油轉(zhuǎn)化率和1,2-PDO選擇性分別為90% 和82%[59]。
要想設(shè)計(jì)出高效的催化劑,認(rèn)識(shí)甘油氫解反應(yīng)的機(jī)理至關(guān)重要,根據(jù)文獻(xiàn)報(bào)道,可能的反應(yīng)機(jī)理有5 種。其中脫氫-脫水-加氫機(jī)理[60]、脫水-加氫機(jī)理[61]和螯合氫解機(jī)理[62]已有較多綜述提到,本文不予贅述,只對(duì)直接氫解機(jī)理和原位氫解機(jī)理進(jìn)行解釋說明。
圖1 甘油氫解過渡態(tài)模型[63]
直接氫解機(jī)理由Shinmi 等提出,后來被該研究小組進(jìn)一步完善[63-64]。首先,甘油的-CH2OH 基團(tuán)吸附在ReOx表面上形成醇鹽,然后活化氫攻擊醇鹽的3 號(hào)位,使C-O 鍵斷裂,最后醇鹽水解得到產(chǎn)物1,2-PDO(見圖1)。
Chia 等提出了一種不同的直接氫解路徑[65]。第一步甘油通過質(zhì)子化-脫水反應(yīng)形成碳正離子,-CH2OH 基團(tuán)發(fā)生氫轉(zhuǎn)移,碳正離子形成更穩(wěn)定的含氧碳正離子。最后氫轉(zhuǎn)移生成1,2-PDO 或1,3-PDO[65]。這與Qin 等的研究結(jié)果一致[66]。反應(yīng)過程如下所示:
原位氫解機(jī)理是基于脫水-加氫機(jī)理發(fā)展而來的,理論上甘油自身可以通過水相重整(APR)產(chǎn)生氫氣[67],將甘油制氫和甘油氫解結(jié)合起來,使生成的氫氣被消耗,即APR 原位氫解機(jī)理(見圖2)。除甘油本身作氫源,乙醇[11]、甲酸[56]、異丙醇[56]、甲醇[58]等也可作氫源,通過催化轉(zhuǎn)移加氫(CTH)實(shí)現(xiàn)甘油催化氫解,即CTH 原位氫解機(jī)理。首先載體酸中心吸附甘油形成醇鹽,金屬活性位活化氫源分解產(chǎn)生的氫,然后醇鹽和吸附的活性氫原子相互作用生成1,2-PDO。
圖2 甘油水相重整與氫解制備1,2-PDO[68]
甘油催化氫解制1,2-PDO 已成為甘油轉(zhuǎn)化的研究熱點(diǎn),近五年來有了新的進(jìn)展。研究表明,金屬催化劑性能順序?yàn)镽u≈Cu≈Ni>Pt>Pd,其中Cu 催化劑價(jià)格相對(duì)低廉,1,2-PDO 選擇性較高,具有工業(yè)化前景;雙金屬催化劑可提高金屬分散性、減小金屬粒徑,不同金屬針對(duì)不同反應(yīng)步驟發(fā)揮作用,因此催化性能比單一金屬好;載體、制備方法等也是影響催化劑性能的關(guān)鍵因素,特別是采用溶膠凝膠法制備的催化劑,甘油轉(zhuǎn)化率和1,2-PDO 選擇性較高;酸堿添加劑能提高催化劑的熱穩(wěn)定性,加快反應(yīng)速率或減少副產(chǎn)物生成;金屬氧化物類助劑可提高催化劑表面酸性,或使活性組分不易被氧化;此外,認(rèn)識(shí)甘油氫解反應(yīng)的各種機(jī)理,對(duì)設(shè)計(jì)高效催化劑具有重要意義。目前,甘油氫解制備1,2-PDO 的技術(shù)已趨于成熟,如何實(shí)現(xiàn)工業(yè)化應(yīng)是未來探索的主要方向。
[1]Zhou C H,Zhao H,Tong D S,et al.Recent advances in catalytic conversion of glycerol[J].Catalysis Reviews,2013,55(4):369-453.
[2]Zhou C H C,Beltramini J N,Fan Y X,et al.Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals [J].Chemical Society Reviews,2008,37(3):527-549.
[3]BalaraJu M,Rekha V,Prasad P S,et al.Influence of solid acids as co-catalysts on glycerol hydrogenolysis to propylene glycol over Ru/C catalysts [J].Applied Catalysis A:General,2009,354(1):82-87.
[4]Gandarias I,Arias P L,Requies J,et al.Hydrogenolysis of glycerol to propanediols over a Pt/ASA catalyst:The role of acid and metal sites on product selectivity and the reaction mechanism [J].Applied Catalysis B:Environmental,2010,97(1):248-256.
[5]BalaraJu M,Rekha V,Devi B L A,et al.Surface and structural properties of titania-supported Ru catalysts for hydrogenolysis of glycerol[J].Applied Catalysis A:General,2010,384(1):107-114.
[6]Li Y,Ma L,Liu H,et al.Influence of HZSM5 on the activity of Ru catalysts and product selectivity during the hydrogenolysis of glycerol [J].Applied Catalysis A:General,2014,469:45-51.
[7]Feng J,Xiong W,Xu B,et al.Basic oxide-supported Ru catalysts for liquid phase glycerol hydrogenolysis in an additive-free system[J].Catalysis Communications,2014,46:98-102.
[8]Yuan Z,Wu P,Gao J,et al.Pt/solid-base:A predominant catalyst for glycerol hydrogenolysis in a base-free aqueous solution[J].Catalysis letters,2009,130(1-2):261-265.
[9]D'Hondt E,Van de Vyver S,Sels B F,et al.Catalytic glycerol conversion into 1,2-propanediol in absence of added hydrogen [J].Chemical Communications,2008(45):6011-6012.
[10]Roy D,Subramaniam B,Chaudhari R V.Aqueous phase hydrogenolysis of glycerol to 1,2-propanediol without external hydrogen addition[J].Catalysis Today,2010,156(1):31-37.
[11]Musolino M G,Scarpino L A,Mauriello F,et al.Selective transfer hydrogenolysis of glycerol promoted by palladium catalysts in absence of hydrogen [J].Green Chemistry,2009,11(10):1511-1513.
[12]Yadav G D,Chandan P A,Tekale D P.Hydrogenolysis of glycerol to 1,2-propanediol over nano-fibrous Ag-OMS-2 catalysts [J].Industrial &Engineering Chemistry Research,2011,51(4):1549-1562.
[13]Zhou J,Zhang J,Guo X,et al.Ag/Al2O3for glycerol hydrogenolysis to 1,2-propanediol:activity,selectivity and deactivation[J].Green Chemistry,2012,14(1):156-163.
[14]Schmidt S R,Tanielyan S K,Marin N,et al.Selective conversion of glycerol to propylene glycol over fixed bed raneyCu Catalysts[J].Topics in Catalysis,2010,53(15-18):1214-1216.
[15]Yue C J,Zhang Q Y,Gu L P,et al.Oxides-modified Raney copper as catalysts for selective hydrogenolysis of glycerol [J].Asia-Pacific Journal of Chemical Engineering,2014,doi:10.1002/apj.1787.
[16]Sánchez T,Salagre P,Cesteros Y,et al.Use of delaminated hectorites as supports of copper catalysts for the hydrogenolysis of glycerol to 1,2-propanediol [J].Chemical Engineering Journal,2012,179:302-311.
[17]Yuan Z,Wang L,Wang J,et al.Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts[J].Applied Catalysis B:Environmental,2011,101 (3):431-440.
[18]Zheng J,Zhu W,Ma C,et al.Hydrogenolysis of glycerol to 1,2-propanediol on the high dispersed SBA-15 supported copper catalyst prepared by the ion-exchange method[J].Reaction Kinetics,Mechanisms and Catalysis,2010,99(2):455-462.
[19]Vasiliadou E S,Eggenhuisen T M,Munnik P,et al.Synthesis and performance of highly dispersed Cu/SiO2catalysts for the hydrogenolysis of glycerol[J].Applied Catalysis B:Environmental,2014,145:108-119.
[20]Huang L,Zhu Y L,Zheng H Y,et al.Continuous production of 1,2-propanediol by the selective hydrogenolysis of solvent-free glycerol under mild conditions [J].Journal of chemical technology and biotechnology,2008,83 (12):1670-1675.
[21]Kim N D,Oh S,Joo J B,et al.The Promotion effect of cr on copper catalyst in hydrogenolysis of glycerol to propylene glycol [J].Topics in Catalysis,2010,53 (7-10):517-522.
[22]Ma Z,Xiao Z,van Bokhoven J A,et al.A non-alkoxide sol-gel route to highly active and selective Cu-Cr catalysts for glycerol conversion [J].Journal of Materials Chemistry,2010,20(4):755-760.
[23]Xiao Z,Jin S,Wang X,et al.Preparation,structure and catalytic properties of magnetically separable Cu-Fe catalysts for glycerol hydrogenolysis [J].Journal of Materials Chemistry,2012,22(32):16598-16605.
[24]Kwak B K,Park D S,Yun Y S,et al.Preparation and characterization of nanocrystalline CuAl2O4spinel catalysts by sol-gel method for the hydrogenolysis of glycerol[J].Catalysis Communications,2012,24:90-95.
[25]Bienholz A,Hofmann H,Claus P.Selective hydrogenolysis of glycerol over copper catalysts both in liquid and vapour phase:Correlation between the copper surface area and the catalyst's activity [J].Applied Catalysis A:General,2011,391(1):153-157.
[26]Mane R B,Kondawar S E,Niphadkar P S,et al.Effect of preparation parameters of Cu catalysts on their physicochemical properties and activities for glycerol hydrogenolysis[J].Catalysis Today,2012,198(1):321-329.
[27]BalaraJu M,Jagadeeswaraiah K,Prasad P S S,et al.Catalytic hydrogenolysis of biodiesel derived glycerol to 1,2-propanediol over Cu-MgO catalysts[J].Catalysis Science&Technology,2012,2(9):1967-1976.
[28]Yuan Z,Wang J,Wang L,et al.Biodiesel derived glycerol hydrogenolysis to 1,2-propanediol on Cu/MgO catalysts[J].Bioresource technology,2010,101(18):7088-7092.
[29]Bienholz A,Schwab F,Claus P.Hydrogenolysis of glycerol over a highly active CuO/ZnO catalyst prepared by an oxalate gel method:influence of solvent and reaction temperature on catalyst deactivation [J].Green Chemistry,2010,12(2):290-295.
[30]Mane R B,Ghalwadkar A A,Hengne A M,et al.Role of promoters in copper chromite catalysts for hydrogenolysis of glycerol[J].Catalysis Today,2011,164(1):447-450.
[31]Bienholz A,Blume R,Knop-Gericke A,et al.Prevention of catalyst deactivation in the hydrogenolysis of glycerol by Ga2O3-modified copper/zinc oxide catalysts[J].The Journal of Physical Chemistry C,2010,115(4):999-1005.
[32]Maglinao R L,He B B.Catalytic thermochemical conversion of glycerol to simple and polyhydric alcohols using Raney nickel catalyst [J].Industrial &Engineering Chemistry Research,2011,50(10):6028-6033.
[33]Yin A Y,Guo X Y,Dai W L,et al.The synthesis of propylene glycol and ethylene glycol from glycerol using Raney Ni as a versatile catalyst [J].Green Chemistry,2009,11(10):1514-1516.
[34]Yu W,Xu J,Ma H,et al.A remarkable enhancement of catalytic activity for KBH4treating the carbothermal reduced Ni/AC catalyst in glycerol hydrogenolysis[J].Catalysis Communications,2010,11(5):493-497.
[35]Zhao J,Yu W,Chen C,et al.Ni/NaX:a bifunctional efficient catalyst for selective hydrogenolysis of glycerol[J].Catalysis letters,2010,134(1-2):184-189.
[36]Marinoiu A,Ionita G,Gáspár C L,et al.Glycerol hydrogenolysis to propylene glycol [J].Reaction Kinetics and Catalysis Letters,2009,97(2):315-320.
[37]Meher L C,Gopinath R,Naik S N,et al.Catalytic hydrogenolysis of glycerol to propylene glycol over mixed oxides derived from a hydrotalcite-type precursor [J].Industrial &Engineering Chemistry Research,2009,48 (4):1840-1846.
[38]Hosgün H L,Y1ld1z M,Ger觭el H F.Hydrogenolysis of aqueous glycerol over Raney nickel catalyst:Comparison of pure and biodiesel by-product[J].Industrial &Engineering Chemistry Research,2012,51(10):3863-3869.
[39]Marinoiu A,Ionita G,Gáspár C L,et al.Selective hydrogenolysis of glycerol to propylene glycol using heterogeneous catalysts [J].Reaction Kinetics,Mechanisms and Catalysis,2010,99(1):111-118.
[40]Chiu C W,Tekeei A,Ronco J M,et al.Reducing byproduct formation during conversion of glycerol to propylene glycol [J].Industrial &Engineering Chemistry Research,2008,47(18):6878-6884.
[41]Guo X,Li Y,Shi R,et al.Co/MgO catalysts for hydrogenolysis of glycerol to 1,2-propanediol [J].Applied Catalysis A:General,2009,371(1):108-113.
[42]Guo X,Li Y,Song W,et al.Glycerol hydrogenolysis over Co catalysts derived from a layered double hydroxide precursor[J].Catalysis letters,2011,141(10):1458-1463.
[43]Maris E P,Ketchie W C,Murayama M,et al.Glycerol hydrogenolysis on carbon -supported PtRu and AuRu bimetallic catalysts [J].Journal of Catalysis,2007,251(2):281-294.
[44]Ma L,He D.Hydrogenolysis of glycerol to propanediols over highly active Ru-Re bimetallic catalysts [J].Topics in Catalysis,2009,52(6-7):834-844.
[45]Ma L,He D.Influence of catalyst pretreatment on catalytic properties and performances of Ru-Re/SiO2in glycerol hydrogenolysis to propanediols[J].Catalysis Today,2010,149(1):148-156.
[46]Shinmi Y,Koso S,Kubota T,et al.Modification of Rh/SiO2catalyst for the hydrogenolysis of glycerol in water [J].Applied Catalysis B:Environmental,2010,94(3):318-326.
[47]Li Y,Liu H,Ma L,et al.Glycerol hydrogenolysis to propanediols over supported Pd-Re catalysts [J].RSC Advances,2014,4(11):5503-5512.
[48]Daniel O M,DeLaRiva A,Kunkes E L,et al.X-ray absorption spectroscopy of bimetallic Pt-Re catalysts for hydrogenolysis of glycerol to propanediols[J].ChemCatChem,2010,2(9):1107-1114.
[49]Xia S,Yuan Z,Wang L,et al.Hydrogenolysis of glycerol on bimetallic Pd-Cu/solid-base catalysts prepared via layered double hydroxides precursors[J].Applied Catalysis A:General,2011,403(1):173-182.
[50]Xia S,Yuan Z,Wang L,et al.Catalytic production of 1,2-propanediol from glycerol in bio-ethanol solvent [J].Bioresource technology,2012,104:814-817.
[51]Wu Z,Mao Y,Wang X,et al.Preparation of a Cu-Ru/carbon nanotube catalyst for hydrogenolysis of glycerol to 1,2-propanediol via hydrogen spillover [J].Green Chemistry,2011,13(5):1311-1316.
[52]Jiang T,Zhou Y,Liang S,et al.Hydrogenolysis of glycerol catalyzed by Ru-Cu bimetallic catalysts supported on clay with the aid of ionic liquids[J].Green Chemistry,2009,11(7):1000-1006.
[53]Vasiliadou E S,Lemonidou A A.Investigating the performance and deactivation behaviour of silica-supported copper catalysts in glycerol hydrogenolysis[J].Applied Catalysis A:General,2011,396(1):177-185.
[54]Zhou J,Guo L,Guo X,et al.Selective hydrogenolysis of glycerol to propanediols on supported Cu -containing bimetallic catalysts [J].Green Chemistry,2010,12(10):1835-1843.
[55]Sun D,Yamada Y,Sato S.Effect of Ag loading on Cu/Al2O3catalyst in the production of 1,2-propanediol from glycerol [J].Applied Catalysis A:General,2014,475,63-68.
[56]Gandarias I,Arias P L,Requies J,et al.Liquid-phase glycerol hydrogenolysis to 1,2-propanediol under nitrogen pressure using 2-propanol as hydrogen source [J].Journal of Catalysis,2011,282(1):237-247.
[57]Gandarias I,Requies J,Arias P L,et al.Liquid-phase glycerol hydrogenolysis by formic acid over Ni-Cu/Al2O3catalysts[J].Journal of Catalysis,2012,290:79-89.
[58]Gandarias I,Arias P L,Fernández S G,et al.Hydrogenolysis through catalytic transfer hydrogenation:Glycerol conversion to 1,2-propanediol [J].Catalysis Today,2012,195(1):22-31.
[59]Gandarias I,Fernández S G,El Doukkali M,et al.Physicochemical study of glycerol hydrogenolysis over a Ni-Cu/Al2O3catalyst using formic acid as the hydrogen source[J].Topics in Catalysis,2013,56(11):995-1007.
[60]Montassier C,Giraud D,Barbier J.Polyol conversion by liquid phase heterogeneous catalysis over metals[J].Studies in Surface Science and Catalysis,1988,41:165-170.
[61]Dasari M A,Kiatsimkul P P,Sutterlin W R,et al.Lowpressure hydrogenolysis of glycerol to propylene glycol[J].Applied Catalysis A:General,2005,281(1):225-231.
[62]Chaminand J,aurent DJakovitch L,Gallezot P,et al.Glycerol hydrogenolysis on heterogeneous catalysts [J].Green Chemistry,2004,6(8):359-361.
[63]Amada Y,Shinmi Y,Koso S,et al.Reaction mechanism of the glycerol hydrogenolysis to 1,3-propanediol over Ir-ReOx/SiO2catalyst [J].Applied Catalysis B:Environmental,2011,105(1):117-127.
[64]Nakagawa Y,Shinmi Y,Koso S,et al.Direct hydrogenolysis of glycerol into 1,3-propanediol over rhenium-modified iridium catalyst[J].Journal of Catalysis,2010,272(2):191-194.
[65]Chia M,Pagán-Torres Y J,Hibbitts D,et al.Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium-rhenium catalysts [J].Journal of the American Chemical Society,2011,133 (32):12675-12689.
[66]Qin L Z,Song M J,Chen C L.Aqueous-phase deoxygenation of glycerol to 1,3-propanediol over Pt/WO3/ZrO2catalysts in a fixed-bed reactor [J].Green chemistry,2010,12(8):1466-1472.
[67]楊光星,賴超鳳,李爽,等.甘油制氫研究進(jìn)展[J].工業(yè)催化,2010,18(1):1-6.
[68]Hu J,Liu X,Fan Y,et al.Physically mixed ZnO and skeletal NiMo for one-pot reforming-hydrogenolysis of glycerol to 1,2-propanediol[J].Chinese Journal of Catalysis,2013,34(5):1020-1026.