杜宇翔 郭大東 畢宏生
視覺系統(tǒng)中鈣庫操縱鈣內(nèi)流通路的研究進(jìn)展△
杜宇翔 郭大東 畢宏生
鈣庫操縱的鈣內(nèi)流; 基質(zhì)相互作用因子; 鈣釋放激活鈣通道蛋白;眼科疾病
鈣庫操縱的鈣通道(store operated Ca2+channel,SOCC)和鈣庫操縱的鈣內(nèi)流(store-operated calcium entry, SOCE)普遍存在于細(xì)胞之中,是非興奮細(xì)胞主要的鈣內(nèi)流方式,參與了機(jī)體眾多的生理過程。許多眼科疾病的發(fā)生和發(fā)展與SOCE的異常密切相關(guān)。本文就近年來對(duì)SOCE途徑的機(jī)制、STIM和Orai不同亞型的結(jié)構(gòu)及在眼科疾病中的作用研究進(jìn)行了回顧,以期為眼科疾病治療提供新的思路。
[眼科新進(jìn)展,2014,34(4):389-393]
鈣離子(Ca2+)主要存在于細(xì)胞外和一些細(xì)胞器中,是細(xì)胞內(nèi)重要的第二信使。細(xì)胞內(nèi)的Ca2+濃度通常在100~300 nmol·L-1之間[1],顯著低于細(xì)胞外1~2 mmol·L-1的水平。因此,維持細(xì)胞內(nèi)的鈣穩(wěn)態(tài)對(duì)細(xì)胞的正常生長(zhǎng)和生理功能十分重要。目前,人們所熟知的Ca2+通道主要包括電壓門控式鈣離子通道(voltage-gated Ca2+channel,VOCC)、受體門控式鈣通道(receptor- operated calcium channel,ROCC)、 鈣庫操縱的鈣通道(store-operated calcium channel,SOCC)以及Na+-Ca2+交換通道。SOCC廣泛存在于非興奮細(xì)胞和部分興奮細(xì)胞的細(xì)胞膜上,是非興奮細(xì)胞主要的鈣通道,可通過刺激內(nèi)質(zhì)網(wǎng)或肌漿網(wǎng)中的Ca2+排空來激活細(xì)胞膜上的Ca2+通道,其最顯著的特征是Ca2+釋放所激活的Ca2+流(ICRAC)。SOCC最初是在大鼠的嗜堿細(xì)胞性白血病肥大細(xì)胞中發(fā)現(xiàn)的[2],后來在其他類型的細(xì)胞中被陸續(xù)發(fā)現(xiàn)。鈣庫操縱的鈣內(nèi)流(store operated calcium entry,SOCE)是當(dāng)細(xì)胞內(nèi)Ca2+庫耗竭時(shí),細(xì)胞膜上的Ca2+通道被激活,使細(xì)胞內(nèi)Ca2+增加,內(nèi)質(zhì)網(wǎng)(endoplasmic reticulum,ER)中的Ca2+庫填充時(shí)引發(fā)的鈣流。SOCE參與了胞吐作用、酶的激活、肌肉收縮、細(xì)胞遷移、基因轉(zhuǎn)錄、細(xì)胞增殖、炎癥和細(xì)胞凋亡等眾多的生理病理過程[3-4]。 本文簡(jiǎn)要綜述了近年來SOCC在視覺系統(tǒng)光電轉(zhuǎn)化、白內(nèi)障形成、糖尿病視網(wǎng)膜病變和Best病的病理生理過程中的作用的研究進(jìn)展。
目前已明確的SOCC的組成分子有基質(zhì)相互作用因子(stromal interaction molecule,STIM)、Ca2+釋放激活Ca2+通道蛋白 (calcium release-activated calcium channel protein,Orai)和瞬時(shí)受體電位通道蛋白(transient receptor potential channel,TRPC)[5]。哺乳動(dòng)物表達(dá)兩個(gè)STIM 蛋白亞型:STIM1和STIM2,三個(gè)Orai蛋白亞型:Orai1、Orai2和Orai3[6]。
STIM1是定位于內(nèi)質(zhì)網(wǎng)和細(xì)胞膜上、由685個(gè)氨基酸組成的受磷酸化調(diào)控的鈣感受器蛋白[7],能感知內(nèi)質(zhì)網(wǎng)鈣庫內(nèi)Ca2+水平[8]。內(nèi)質(zhì)網(wǎng)Ca2+的存儲(chǔ)耗盡激活STIM1,將它轉(zhuǎn)位靠近質(zhì)膜。這種易位使Orai1與STIM1發(fā)生相互作用,進(jìn)而激活Orai1通道[1]并誘發(fā)細(xì)胞外的Ca2+內(nèi)流[9]。STIM2蛋白與STIM1蛋白在結(jié)構(gòu)上有著相似的EF-hand-SAM區(qū)域和C末端的可變區(qū),也有著明顯不同的N末端,絲氨酸富含區(qū)域缺失,但包含了組氨酸富含區(qū)域和一個(gè)更長(zhǎng)的可變尾端[10]。STIM2也是內(nèi)質(zhì)網(wǎng)上的鈣感受器蛋白,但其對(duì)SOCE的作用要明顯弱于STIM1。
Orai1是定位于細(xì)胞膜上的四次跨膜蛋白,以二聚體的形式存在于細(xì)胞膜上,可以與STIM1相互作用形成四聚體,激活SOCC引發(fā)ICRAC[11],是對(duì)SOCC的水平起主要調(diào)節(jié)作用的蛋白質(zhì)[5]。Orai2和Orai3在SOCC中的作用機(jī)制目前尚有爭(zhēng)議。Orai2和Orai3在不同類型細(xì)胞SOCC中的作用效果不同。例如,在人乳腺癌細(xì)胞中SOCE顯示出對(duì)Orai3蛋白依賴性,對(duì)抑制Orai1和Orai2蛋白并不敏感;抑制血管平滑肌細(xì)胞的Orai2和Orai3對(duì)SOCE沒有顯著影響[12];而Mercer等[13]對(duì)HEK293細(xì)胞研究發(fā)現(xiàn),在該細(xì)胞表達(dá)的STIM1、Orai1、Orai2 和Orai3中,所有Orai蛋白均能調(diào)節(jié)SOCE,且作用順序依次為Orai1>Orai2>Orai3,其中Orai3能部分代償Orai1缺乏時(shí)的功能。TRPC超家族中以TRPC1蛋白與SOCC通路的關(guān)系最為密切[14]。
最近的研究提出了STIM1既可以和Orai1相互作用,也可以和TRPC相互作用的假說。該假說認(rèn)為二者與STIM1發(fā)生相互作用的結(jié)果不同。STIM1-TRPC1介導(dǎo)的內(nèi)質(zhì)網(wǎng)鈣通道對(duì)Ca2+選擇性差于STIM1-Orai1鈣通道,可容許其他二價(jià)陽離子通過[15]。此外,TRPC和Orai通道對(duì)SOCC 抑制劑2-APB (2-aminoethoxydiphenyl borane)靈敏度也有所不同[16]。2-APB可以阻斷TRPC; 而2-APB對(duì)Orai通道作用效果更為復(fù)雜,2-APB濃度相對(duì)高(>10 μmol·L-1)時(shí)抑制Orai通道,濃度較低(<5 μmol·L-1)時(shí)則增加Orai通道活性[17]。
2.1SOCC對(duì)光感受器細(xì)胞光電轉(zhuǎn)化的作用視覺的初始過程發(fā)生在光感受器細(xì)胞(視錐細(xì)胞和視桿細(xì)胞)的光電轉(zhuǎn)化。光誘發(fā)的光感受器反應(yīng)是超極化反應(yīng),并且是一種分級(jí)超極化電位。Szikra等[18]用多克隆抗體進(jìn)行視網(wǎng)膜神經(jīng)元免疫組織化學(xué)染色分析,結(jié)果表明STIM1在視桿細(xì)胞和視錐細(xì)胞中均有表達(dá)。
VOCC過去一直被認(rèn)為是視錐細(xì)胞內(nèi)節(jié)最重要的Ca2+通道。但近期的研究表明視錐細(xì)胞輸出沖動(dòng)信號(hào)的動(dòng)態(tài)范圍為膜電位低于-70 mV[19],這超出了VOCC的激活閾值(-50 mV)[20]。對(duì)單個(gè)細(xì)胞的Ca2+內(nèi)流記錄結(jié)果表明,VOCC抑制劑只對(duì)超出其電壓閾值時(shí)的Ca2+內(nèi)流有抑制作用,而對(duì)低于其閾值的視錐細(xì)胞Ca2+內(nèi)流沒有影響,這表明還有另一種Ca2+內(nèi)流機(jī)制的運(yùn)作參與了光照時(shí)視錐細(xì)胞的光電轉(zhuǎn)化過程。將視錐細(xì)胞暴露于SOCE特異性抑制劑MRS1845,可以在不影響視錐細(xì)胞VOCC的情況下,減少40%光激發(fā)后水平細(xì)胞電信號(hào)的產(chǎn)生。盡管SOCE本身并不直接引發(fā)視錐細(xì)胞去極化,但SOCC的Ca2+內(nèi)流降低了視錐細(xì)胞的靜息電位,使其細(xì)胞膜上的VOCC更易被激活。因此,SOCC和VOCC協(xié)同對(duì)視錐細(xì)胞信號(hào)輸出的調(diào)控作用使視錐細(xì)胞在明暗視轉(zhuǎn)化時(shí)可以更加平穩(wěn)。對(duì)獼猴、小鼠和大鼠的免疫組織化學(xué)分析和TRPC6基因敲除小鼠視網(wǎng)膜電生理記錄[21]表明,一些脊椎動(dòng)物視網(wǎng)膜的視錐細(xì)胞可功能性表達(dá)TRPC6,但目前尚無證據(jù)表明TRPC1在視錐細(xì)胞中表達(dá)[22]。哺乳動(dòng)物視錐細(xì)胞SOCE由Orai和TRPC6介導(dǎo)[23]。
最初證實(shí)TRPC1與無脊椎動(dòng)物感光dTRP通道具有同源性[24],后發(fā)現(xiàn)其在兩棲動(dòng)物光感受器細(xì)胞有表達(dá)[22]。到目前為止,TRPC1約在50%的兩棲類蠑螈視桿細(xì)胞中表達(dá)并介導(dǎo)SOCE[25]。然而,SOCE在血小板和血管平滑肌等細(xì)胞中均表現(xiàn)出TRPC1非依賴性,因此TRPC1參與的SOCE機(jī)制似乎只存在于特定細(xì)胞中[26]。TRPC1/3-/-基因敲除鼠視桿細(xì)胞的Ca2+基線水平和SOCE信號(hào)與野生型小鼠的視桿細(xì)胞相比并無明顯差異,因此TRPC1/3并未參與小鼠細(xì)胞內(nèi)Ca2+基線水平的調(diào)控和SOCE的調(diào)控,鼠視桿細(xì)胞SOCE通路由Orai1 和STIM1構(gòu)成,與TRPC1無關(guān)[27-29]。
2.2晶狀體上皮細(xì)胞的SOCC與白內(nèi)障白內(nèi)障是全球首位致盲性眼病,約占可致盲眼病的48%[30]。研究證明,晶狀體上皮細(xì)胞的凋亡是白內(nèi)障形成的細(xì)胞學(xué)基礎(chǔ)。而晶狀體上皮細(xì)胞的凋亡可通過Ca2+途徑激活[31],因此維持晶狀體上皮細(xì)胞內(nèi)Ca2+的動(dòng)態(tài)平衡對(duì)于保持晶狀體透明至關(guān)重要。已有研究結(jié)果表明,晶狀體發(fā)生皮質(zhì)混濁時(shí)細(xì)胞內(nèi)的Ca2+水平明顯升高,遠(yuǎn)遠(yuǎn)超出正常的生理濃度。此外,白內(nèi)障的發(fā)展與鈣穩(wěn)態(tài)的破壞和鈣蛋白酶的激活密切相關(guān)[32]。因此,對(duì)晶狀體內(nèi)鈣穩(wěn)態(tài)的深入探究,有助于理解晶狀體皮質(zhì)混濁的發(fā)生和發(fā)展過程。
Rhodes等[33]對(duì)人晶狀體上皮細(xì)胞mRNA的研究表明,STIM1和Orai1表達(dá)水平在人晶狀體上皮細(xì)胞中均有表達(dá),且赤道部的晶狀體上皮細(xì)胞的Orai1 mRNA 表達(dá)水平明顯高于瞳孔區(qū)前囊膜下的晶狀體上皮細(xì)胞。同時(shí)Western blotting結(jié)果顯示赤道部晶狀體上皮細(xì)胞的 STIM1 和 Orai1 均高于瞳孔區(qū)的晶狀體上皮細(xì)胞。 用1 μmol·L-1的SOCC激動(dòng)劑(毒胡蘿卜內(nèi)酯)刺激晶狀體上皮細(xì)胞可以誘發(fā)細(xì)胞內(nèi)Ca2+水平的升高,且赤道部晶狀體上皮細(xì)胞Ca2+內(nèi)流要強(qiáng)于瞳孔區(qū)晶狀體上皮細(xì)胞Ca2+內(nèi)流。SOCE 抑制劑2-APB (50~100 μmol·L-1)可以明顯抑制赤道部晶狀體上皮細(xì)胞的Ca2+內(nèi)流、部分抑制瞳孔區(qū)晶狀體上皮細(xì)胞的Ca2+內(nèi)流。因此,SOCC是赤道部晶狀體上皮細(xì)胞Ca2+內(nèi)流的主要途徑,同時(shí)也是瞳孔區(qū)晶狀體上皮細(xì)胞Ca2+內(nèi)流的重要途徑之一。SOCC與晶狀體周邊皮質(zhì)性混濁關(guān)系更為密切。
2.3視網(wǎng)膜血管內(nèi)皮SOCC與糖尿病視網(wǎng)膜病變Ca2+是細(xì)胞內(nèi)重要的第二信使,同時(shí)控制血管平滑肌細(xì)胞的收縮和基因表達(dá)[34-35]。因此,對(duì)動(dòng)脈平滑肌細(xì)胞內(nèi)Ca2+調(diào)節(jié)機(jī)制的研究,有助于我們了解如何調(diào)控血管阻力和改變血管形態(tài),以達(dá)到改善機(jī)體血流動(dòng)力學(xué)的目的。以往觀點(diǎn)認(rèn)為,血管平滑肌細(xì)胞L型VOCC的激活和細(xì)胞外Ca2+內(nèi)流,可使平滑肌細(xì)胞去極化,進(jìn)而促進(jìn)動(dòng)脈收縮[36]。然而,在微循環(huán)系統(tǒng)中,毛細(xì)血管管壁僅由內(nèi)皮細(xì)胞構(gòu)成,血管張力受微循環(huán)阻力和局部縮血管物質(zhì)釋放量的影響。血管內(nèi)皮細(xì)胞的Ca2+內(nèi)流途徑主要為SOCC和ROCC,而非VOCC[37]。
前期的研究結(jié)果表明,低濃度2-APB激發(fā)的細(xì)胞外Ca2+內(nèi)流是STIM1/Orai型SOCE典型特征[38-39]。 Potier等[40]研究表明, 3 μmol·L-12-APB并不能提高視網(wǎng)膜微血管平滑肌(MVSM)細(xì)胞SOCE,因此MVSM細(xì)胞SOCC可能并非以O(shè)rai型為主。這與眼部其他細(xì)胞多以O(shè)rai型SOCC為主的特征不同。同時(shí)研究還表明, MVSM功能性地表達(dá)TRPC1和TRPC2蛋白,且其SOCE的藥理和分子檢測(cè)也表現(xiàn)出與TRPC1 型SOCE相符合的特征[41]。
血糖升高將引起視網(wǎng)膜小動(dòng)脈持久性擴(kuò)張,增加眼部血液流量,導(dǎo)致下游毛細(xì)血管高壓,繼而引發(fā)血管結(jié)構(gòu)改變,如周細(xì)胞減少和小動(dòng)脈平滑肌缺失,微動(dòng)脈瘤和毛細(xì)血管滲漏,無灌注區(qū)形成,這容易導(dǎo)致視網(wǎng)膜局部缺血和新生血管形成,進(jìn)而導(dǎo)致糖尿病視網(wǎng)膜病變的發(fā)生。Scholfield等[42]研究表明,視網(wǎng)膜動(dòng)脈直徑受MVSM細(xì)胞內(nèi)Ca2+水平的調(diào)控。視網(wǎng)膜MVSM細(xì)胞Ca2+內(nèi)流主要依賴VOCC和SOCE。Curtis等[43]的研究進(jìn)一步證實(shí),糖尿病視網(wǎng)膜病變僅抑制MVSM細(xì)胞SOCC的Ca2+內(nèi)流,未對(duì)VOCC的Ca2+內(nèi)流造成影響。SOCE大幅度的抑制可能參與了糖尿病大鼠視網(wǎng)膜血管病變的病理過程。因此認(rèn)為糖尿病的早期階段,SOCC受到抑制,SOCE大幅度下降,引發(fā)視網(wǎng)膜小動(dòng)脈的擴(kuò)張,眼血流增加。因?yàn)檩^小的毛細(xì)動(dòng)脈內(nèi)皮細(xì)胞中缺乏VOCC,缺乏SOCC的替代性Ca2+內(nèi)流通道,因此SOCC被抑制,對(duì)視網(wǎng)膜小毛細(xì)動(dòng)脈的影響要比視盤主干動(dòng)脈更為強(qiáng)烈[42]。這可以在某種程度上解釋為什么糖尿病視網(wǎng)膜病變多表現(xiàn)為微小血管損傷。
2.4視網(wǎng)膜色素上皮細(xì)胞的SOCC與Best病視網(wǎng)膜色素上皮(retinal pigment epithelium,RPE)細(xì)胞的多種細(xì)胞生物學(xué)作用,如吞噬作用、生長(zhǎng)因子分泌或跨膜離子轉(zhuǎn)運(yùn),都受到細(xì)胞內(nèi)Ca2+水平的調(diào)控[44]。因此,了解Ca2+依賴性RPE細(xì)胞功能的調(diào)節(jié),將有助于對(duì)其疾病病理機(jī)制的了解。早在1999年Strauss等[45]的研究表明RPE細(xì)胞中存在SOCC的表達(dá)。Cordeiro等[46]對(duì)人類RPE細(xì)胞系(ARPE-19)的RT-PCR研究結(jié)果表明,RPE細(xì)胞可以表達(dá)SOCC通道蛋白Orai1、Orai2、Orai3和STIM1、STIM2。同時(shí)低濃度(2 μmol·L-1)2-APB可導(dǎo)致ARPE-19細(xì)胞Ca2+內(nèi)流增加,而75 μmol·L-12-APB能顯著阻斷ARPE-19細(xì)胞Ca2+內(nèi)流,因此,RPE細(xì)胞中存在Orai型為主的SOCC[46]。
Best病又稱Best黃斑營(yíng)養(yǎng)不良,是一種常染色體顯性遺傳性疾病,也有散發(fā)病例。其典型的臨床特征是為雙眼黃斑部卵黃狀的脂質(zhì)樣沉積,后極部視網(wǎng)膜色素上皮萎縮,纖維瘢痕形成,并繼發(fā)脈絡(luò)膜新生血管形成和視網(wǎng)膜下出血,導(dǎo)致視力不可逆性損害。眼電圖檢查的特征表現(xiàn)為光峰/暗谷比值(Arden值)降低。前期的研究表明Best病相關(guān)基因即BEST1基因[47]的表達(dá)產(chǎn)物bestrophin是一種特異性表達(dá)在RPE細(xì)胞上鈣依賴性氯離子跨膜通道蛋白[48]。BEST1基因突變,導(dǎo)致bestrophin蛋白中氨基酸序列的改變,從而造成RPE細(xì)胞膜上氯離子通道功能障礙,引起RPE細(xì)胞內(nèi)pH值改變,聯(lián)合細(xì)胞內(nèi)Ca2+濃度改變,將影響RPE細(xì)胞對(duì)光感受器外節(jié)的吞噬作用及對(duì)脂褐質(zhì)的代謝作用,從而導(dǎo)致脂褐質(zhì)在RPE層沉積[49], Arden比下降,引發(fā)Best病的發(fā)生[50]。
Gómez等[51]的研究發(fā)現(xiàn),免疫組織化學(xué)分析bestrophin-1的表達(dá)位置與SOCC的STIM1位置相一致,siRNA敲除bestrophin-1表現(xiàn)出與Orai1敲除相一致的SOCE減低。Barro-Soria 等[52]發(fā)現(xiàn)bestrophin-1調(diào)節(jié)毒胡蘿卜素誘導(dǎo)的SOCE。因此認(rèn)為bestrophin-1同樣參與了RPE細(xì)胞中SOCC通道的調(diào)控。BEST1基因突變,導(dǎo)致bestrophin蛋白中氨基酸序列的改變,引發(fā)SOCC Ca2+流的改變,從而影響細(xì)胞內(nèi)Ca2+平衡,進(jìn)而誘發(fā)了Best病的發(fā)生。
綜上所述,SOCC是非興奮性細(xì)胞Ca2+內(nèi)流的主要途徑之一,對(duì)Ca2+具有高度選擇性,幾乎不允許除Ca2+外的其他陽離子通過。視覺系統(tǒng)SOCC的研究目前還處于起步階段,SOCC調(diào)控視覺感光細(xì)胞的光電轉(zhuǎn)化和視網(wǎng)膜血管內(nèi)皮細(xì)胞收縮、增殖和色素上皮細(xì)胞的吞噬、分泌功能,SOCE的功能異常與眼科臨床疾病的發(fā)生和發(fā)展有著密切的關(guān)系。因此對(duì)SOCC的深入研究,將有助于我們進(jìn)一步了解鈣通路介導(dǎo)視覺活動(dòng)的各種機(jī)制,并為眼科疾病的診斷和治療提供新的思路。
1 Hogan PG,Lewis RS,Rao A.Molecular basis of calcium signaling in lymphocytes:STIM and ORAI[J].AnnuRevImmunol,2010,23(28):491-533
2 Hoth M,Penner R.Depletion of intracellular calcium stores activates a calcium current in mast cells[J].Nature,1992,355(6358):353-356.
3 Lewis RS.Store-operated calcium channels:new perspectives on mechanism and function[J].ColdSpringHarbPerspectBiol,2011,3(12):1101-1106
4 Zhang W,Trebak M.STIM1 and Orai1:novel targets for vascular diseases[J]?SciChinaLifeSci,2011,54(8):780-785.
5 Feske S,Gwack Y,Prakriya M,Srikanth S,Puppel SH,Tanasa B,etal.A mutation in Orail causes immune deficiency by abrogating CRAC channel functiorl[J].Nature,2006,441(7090):179-185.
6 Wissenbach U,Philipp SE,Gross SA,Cavalié A,Flockerzi V.Primary structure,chromosomal localization and expression in immune cells of the murine ORAI and STIM genes[J].Cellcalcium,2007,42(4-5):439-446.
7 Hewavitharana T,Deng X,Soboloff J,Gill DL.Role of STIM and Orai proteins in the store-operated calcium signaling pathway[J].CellCalcium,2007,42(2):173-182.
8 Cahalan MD,Zhang SL,Yeromin AV,Ohlsen K,Roos J,Stauderman KA.Molecular basis of the CRAC channel[J].CellCalcium,2007,42(2):133-44.
9 Yeromin AV,Zhang SL,Jiang W,Yu Y,Safrina O,Cahalan MD.Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai[J].Nature,2006,443(7108):226-229.
10 Lopez E,Salido GM,Rosado JA,Berna-Erro A.Unraveling STIM2 function[J].JPhysiolBiochem,2012,68(4):619-633.
11 Penna A,Demuro A,Yeromin AV,Zhang SL,Safrina O,Parker I,etal.The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimmers[J].Nature,2008,456(7218):116-120.
12 Bisaillon JM,Motiani RK,Gonzalez-Cobos JC,Potier M,Halligan KE,Alzawahra WF,etal.Essential role for STIM1/Orai1-mediated calcium influx in PDGF-induced smooth muscle migration[J].AmJPhysiolCellPhysiol,2010,27(298):C993-1005.
13 Mercer JC,Dehaven WI,Smyth JT,Wedel B,Boyles RR,Bird GS,etal.Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor,Stim1[J].JBiolChem,2006,281(34):24979-24990.
14 Liu X,Cheng KT,Bandyopadhyay BC,Pani B,Dietrich A,Paria BC,etal.Attenuation of store-operated Ca2+current impairs salivary gland fluid secretion in TRPC1(-/-)mice[J].ProcNatlAcadSciUSA,2007,104(44):17542-17547.
15 Pani B,Bollimuntha S,Singh BB.The TR (i)P to Ca2+signaling just got STIMy:an update on STIM1 activated TRPC channels[J].FrontBiosci,2012,17:805-823.
16 Zhang SL,Yeromin AV,Zhang XH,Yu Y,Safrina O,Penna A,etal.Genome-wide RNAi screen of Ca2+influx identifies genes that regulate Ca2+release-activated Ca2+channel activity[J].ProcNatlAcadSciUSA,2006,103(24):9357-9362.
17 Prakriya M,Lewis RS.Potentiation and inhibition of Ca2+release-activated Ca2+channels by 2-aminoethyldiphenyl borate (2-APB)occurs independently of IP(3)receptors[J].JPhysiol,2001,536(Pt 1):3-19.
18 Szikra T,Barabas P,Bartoletti TM,Huang W,Akopian A,Thoreson WB,etal.Calcium homeostasis and cone signaling are regulated by interactions between calcium stores and plasma membrane ion channels[J].PLoSONE,2009,4(8):e6723.
19 Normann RA,Perlman I.Signal transmission from red cones to horizontal cells in the turtle retina[J].JPhysiol,1979,286:509-524.
20 Vessey JP,Stratis AK,Daniels BA,Da Silva N,Jonz MG,Lalonde MR,etal.Protonmediated feedback inhibition of presynaptic calcium channels at the cone photoreceptor synapse[J].JNeurosci,2005,25(16):4108-4117.
21 Warren EJ,Allen CN,Brown RL,Robinson DW.The light-activated signaling pathway in SCN-projecting rat retinal ganglion cells[J].EurJNeurosci,2006,23(9):2477-2487.
22 Szikra T,Cusato K,Thoreson WB,Barabas P,Bartoletti TM,Krizaj D.Depletion of calcium stores regulates calcium influx and signal transmission in rod photoreceptors[J].JPhysiol,2008,586(Pt 20):4859-4875.
23 Trebak M,Vazquez G,Bird GS,Putney JW Jr.The TRPC3/6/7 subfamily of cation channels[J].CellCalcium,2003,33(5-6):451-461.
24 Wes PD,Chevesich J,Jeromin A,Rosenberg C,Stetten G,Montell C.TRPC1,a human homolog of a Drosophila store-operated channel[J].ProcNatlAcadSciUSA,1995,92(21):9652-9656.
25 Bobanovic LK,Laine M,Petersen CC,Bennett DL,Berridge MJ,Lipp P,etal.Molecular cloning and immunolocalization of a novel vertebrate trp homologue from Xenopus[J].BiochemJ,1999,340(Pt 3):593-599.
26 Varga-Szabo D,Authi KS,Braun A,Bender M,Ambily A,Hassock SR,etal.Store-operated Ca2+entry in platelets occurs independently of transienteceptor potential (TRP)C1[J].PflügersArch,2008,457(2):377-387.
27 DeHaven WI,Jones BF,Petranka JG,Smyth JT,Tomita T,Bird GS,etal.TRPC channels function independently of STIM1 and Orai1[J].JPhysiol,2009,587(Pt 10):2275-2298.
28 Lyfenko AD,Dirksen RT.Differential dependence of store-operated and excitation-coupled Ca2+entry in skeletal muscle on STIM1 and Orai1[J].JPhysiol,2008,586(Pt 20):4815-4824.
29 Zanazzi G,Matthews G.The molecular architecture of ribbon presynaptic terminals[J].MolNeurobiol,2009,39(2):130-148.
30 Foster A,Resnikoff S.The impact of Vision 2020 on global blindness[J].Eye,2005,19(10):1133-1135.
31 Hightower KR,Duncan G,Dawson A,Wormstone IM,Reddan J,Dziedizc D.Ultraviolet irradiation (UVB)interrupts calcium cell signaling in lens epithelial[J].CellsPhotochemPhotobiol,1999,69(5):595-598.
32 Wu Q,Guo D,Bi H,Wang D,Du Y.UVB irradiation-induced dysregulation of plasma membrane calcium ATPase1 and intracellular calcium homeostasis in human lens epithelial cells[J].MolCellBiochem,2013,382(1-2):263-272.
33 Rhodes JD,Russell SL,Illingworth CD,Duncan G,Wormstone IM.Regional differences in store-operated Ca2+entry in the epithelium of the intact human lens[J].InvestOphthalmolVisSci,2009,50(9):4330-4336.
34 Curtis TM,Scholfield C,McGeown DJ.Calcium signaling in ocular arterioles[J].CritRevEukaryotGeneExpr,2007,17(1):1-12.
35 Wamhoff BR,Bowles DK,Owens GK.Excitation-transcription coupling in arterial smooth muscle[J].CircRes,2006,98(7):868-878.
36 Gollasch M,Nelson MT.Voltage-dependent Ca2+channels in arterial smooth muscle cells[J].KidneyBloodPressRes,1997,20(6):355-371.
37 Abdullaev IF,Bisaillon JM,Potier M,Gonzalez JC,Motiani RK,Trebak M.Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cellproliferation[J].CircRes,2008,103(11):1289-1299.
38 Ohana L,Newell EW,Stanley EF,Schlichter LC.The Ca2+release-activated Ca2+current (I(CRAC))mediates store-operated Ca2+entry in rat microglia[J].Channels(Austin),2009,3(2):129-139.
39 Peinelt C,Lis A,Beck A,Fleig A,Penner R.2-Aminoethoxydiphenyl borate directly facilitates and indirectly inhibits STIM1-dependent gating of CRAC channels[J].JPhysiol,2008,586(13):3061-3073.
40 Potier M,Gonzalez JC,Motiani RK,Abdullaev IF,Bisaillon JM,Singer HA,etal.Evidence for STIM1- and Orai1-dependent store-operated calcium influx through ICRAC in vascular smooth muscle cells:role in proliferation and migration[J].FASEBJ,2009,23(8):2425-2437.
41 McGahon MK,McKee J,Dash DP,Brown E,Simpson DA,Curtis TM,etal.Pharmacological profiling of store-operated Ca2+entry in retinal arteriolar smooth muscle[J].Microcirculation,2012,19(7):586-597.
42 Scholfield CN,Curtis TM.Heterogeneity in cytosolic calcium regulation among different microvascular smooth muscle cells of the rat retina[J].MicrovascRes,2000,59(2):233-242.
43 Curtis TM,Major EH,Trimble ER,Scholfield CN.Diabetes-induced activation of protein kinase C inhibits store-operated Ca2+uptake in rat retinal microvascular smooth muscle[J].Diabetologia,2003,46(9):1252-1259.
44 Wimmers S,Karl MO,Strauss O.Ion channels in the RPE[J].ProgRetinEyeRes,2007,26(3):263-301.
45 Strauss O,Steinhausen K,Mergler S,Stumpff F,Wiederholt M.Involvement of protein tyrosine kinase in the InsP3- induced activation of Ca2+-dependent Cl- currents in cultured cells of the rat retinal pigment epithelium[J].JMembrBiol,1999,169(3):141-153.
46 Cordeiro S,Strauss O.Expression of Orai genes and ICRAC activation in the human retinal pigment epithelium[J].GraefesArchClinExpOphthalmol.2011,249(1):47-54.
47 St?hr H,Marquardt A,Rivera A,Cooper PR,Nowak NJ,Shows TB,etal.A gene map of the Best's vitelliform macular dystrophy region in chromosome 11q12-q13.1.[J].GenomeRes,1998,8(1):48-56.
48 Marmorstein LY,McLaughlin PJ,Stanton JB,Yan L,Crabb JW,Marmorstein AD.Bestrophin interacts physically and functionally with protein phosphatase 2A[J].JBiolChem,2002,277(34):30591-30597.
49 Marmorstein AD,Cross HE,Peachey NS.Functional roles of bestrophins in ocular epithelia[J].ProgRetinEyeRes,2009,28(3):206-226.
50 Marchant D,Yu K,Bigot K,Roche O,Germain A,Bonneau D,etal.New VMD2 gene mutations identified in patients affected by Best vitelliform macular dystrophy[J].JMedGenet,2007,44(3):e70.
51 Gómez NM,Tamm ER,Strauβ O.Role of bestrophin-1 in store-operated calcium entry in retinal pigment epithelium[J].PflugersArch,2013,465(4):481-495
52 Barro-Soria R,Aldehni F,Almaca J,Witzgall R,Schreiber R,Kunzelmann K.ER-localized bestrophin 1 activates Ca2+- dependent ion channels TMEM16A and SK4 possibly by acting as a counterion channel[J].PflugersArch,2010,459(3):485-497.
date:Oct 27,2013
Research advances in store operated Ca2+ entry channel in vision system
DU Yu-Xiang,GUO Da-Dong,BI Hong-Sheng
store-operated Ca2+entry; stromal interacting molecule; calcium release-activated calcium channel protein; eye disease
Store operated Ca2+channel (SOCC)and store-operated Ca2+entry (SOCE)are ubiquitously present in every cell type, which represent a predominant pathway of Ca2+entry into nonexcitable cells. Nevertheless, the phenomenon of aberrant expressed SOCE has been observed in a growing number of eye diseases. In this paper, the pathways involved in SOCE, STIM (stromal interaction molecule)and Orai (calcium release-activated calcium channel protein)in different subtypes are reviewed, further the structure and the role of SOCE in eye diseases are elucidated to provide new ideas approach for eye diseases.
杜宇翔,女,1991年6月出生,山東濟(jì)寧人,在讀碩士研究生。研究方向:白內(nèi)障及屈光不正。聯(lián)系電話:15154142299; E-mail:dyx622@163.com
AboutDUYu-Xiang:Female,born in June,1991.Postgraduate student.Tel:15154142299; E-mail:dyx622@163.com
2013-10-27
國(guó)家自然科學(xué)基金資助(編號(hào):81072961);山東省自然科學(xué)基金資助(編號(hào):ZR2010HM032)
250014 山東省濟(jì)南市,山東中醫(yī)藥大學(xué)(杜宇翔);250002山東省濟(jì)南市,山東中醫(yī)藥大學(xué)眼科研究所、山東省高校中西醫(yī)結(jié)合眼病防治技術(shù)重點(diǎn)實(shí)驗(yàn)室(郭大東,畢宏生)
畢宏生,E-mail:bhs201307@163.com
Accepteddate:Feb 6,2014Foundationitem:National Natural Science Foundation of China (No:81072961); Natural Science Research Foundation of Shandong Province (No:ZR2010HM032)From theShandongUniversityofTraditionalChineseMedicine(DU Yu-Xiang),Jinan250014,ShandongProvince,China;EyeInstituteofShandongUniversityofTraditionalChineseMedicine,KeyLaboratoryofIntegratedTraditionalChineseandWesternMedicineforPreventionandTherapyofOcularDiseasesinUniversitiesofShandong(GUO Da-Dong,BI Hong-Sheng),Jinan250002,ShandongProvince,China
杜宇翔,郭大東,畢宏生.視覺系統(tǒng)中鈣庫操縱鈣內(nèi)流通路的研究進(jìn)展[J].眼科新進(jìn)展,2014,34(4):389-393.
??
10.13389/j.cnki.rao.2014.0108
修回日期:2014-02-06
本文編輯:周志新
Responsibleauthor:BI Hong-Sheng,E-mail:bhs201307@163.com
[RecAdvOphthalmol,2014,34(4):389-393]