俞耀軍,盛維為,葉海波,屠洋洋,劉帥,孫維建,游濤,王飛海,鄭志強
(溫州醫(yī)科大學附屬第二醫(yī)院 胃腸外科,浙江 溫州 325027)
欖香烯和PD98059誘導人胃癌SCG-7901細胞株凋亡及其機制的探討
俞耀軍,盛維為,葉海波,屠洋洋,劉帥,孫維建,游濤,王飛海,鄭志強
(溫州醫(yī)科大學附屬第二醫(yī)院 胃腸外科,浙江 溫州 325027)
目的:探討欖香烯及PD98059對人胃癌SCG-7901細胞株凋亡的影響,及其與ERK1/2、P38MAPK信號通路的關系。方法:用不同濃度的欖香烯和PD98059處理人胃癌SCG-7901細胞,體外細胞增殖抑制實驗(MTT)法檢測細胞增殖情況;Western-blot法檢測ERK1/2、磷酸化ERK1/2(p-ERK1/2)和磷酸化P38(p-P38)的表達;RT-PCR檢測bcl-2 mRNA及bax mRNA的表達;TUNEL法檢測胃癌細胞凋亡并計算凋亡指數(shù)。結果:欖香烯和PD98059單獨作用都有抑制胃癌細胞增殖的作用,前者呈濃度和時間依賴性,后者則呈時間依賴性但無濃度依賴性,兩藥聯(lián)合作用時對胃癌細胞增殖的抑制作用顯著大于單一用藥時(P<0.05);隨欖香烯的濃度增加p-ERK1/2蛋白的表達量增加(P<0.05),總ERK1/2無明顯變化;欖香烯(0.08 mg/ mL)、PD98059(50 μmol/L)及欖香烯+PD98059組作用胃癌細胞24 h,p-P38的表達均高于對照組(P<0.05),且欖香烯+PD98059組較欖香烯組或PD98059組更高(P<0.05);隨欖香烯濃度的增加,bax mRNA的表達增加,bcl-2 mRNA的表達降低,且欖香烯+PD98059組表現(xiàn)最顯著;實驗組細胞凋亡率均高于對照組(P<0.05),具有濃度依賴性(P<0.05),且欖香烯+PD98059組的凋亡率明顯高于單一作用組(P<0.05)。結論:欖香烯及PD98059可以抑制胃癌細胞增殖,前者具有時間和濃度依賴性;欖香烯及PD98059還可以促進胃癌細胞凋亡。欖香烯抑制細胞增殖、促進細胞凋亡的機制包括促進ERK1/2磷酸化和上調(diào)p-P38MAPK信號通路的表達;PD98059抑制ERK1/2的磷酸化,但通過上調(diào)p-P38 MAPK信號通路的表達而發(fā)揮其細胞調(diào)節(jié)作用。
胃腫瘤;欖香烯;PD98059;細胞凋亡;ERK1/2;P38MAPK
欖香烯是從香茅草中提取的有效抗癌成分,具有抗腫瘤譜廣、不良反應輕微的突出優(yōu)點。研究[1-4]證明欖香烯對多種腫瘤,如胰腺癌、肺癌、宮頸癌、乳腺癌、白血病等具有增殖抑制和凋亡誘導作用。有文獻[5-6]報道,欖香烯抗胃癌作用與下調(diào)生存素表達,增強天冬氨酸特異性的半胱氨酸蛋白水解酶活性及下調(diào)過氧化物酶體增殖激活物受體γ mRNA表達有關。我們的前期研究[7]發(fā)現(xiàn)欖香烯可以通過上調(diào)p-P38MAPK信號通路而抑制胃癌細胞增殖,誘導細胞凋亡。P38MAPK、ERK1/2通路均為絲裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)通路的分支,然而欖香烯是否也通過ERK1/2通路產(chǎn)生作用,ERK1/2與P38MAPK通路之間是否存在相互作用,目前鮮見相關報道。PD98059為ERK1/2的特異性抑制劑,可以抑制ERK1/2的磷酸化。本研究進一步探討欖香烯、PD98059對人胃癌細胞SGC-7901凋亡的可能作用機制。
1.1 細胞株人胃癌SGC-7901細胞株購自中國科學院上海生命科學研究院。
1.2 試劑和藥品RPMIl640培養(yǎng)基(美國Gibcol公司);胰蛋白酶-EDTA(美國Gibicol公司);體外細胞增殖抑制實驗(MTT)試劑盒(美國Sigma公司);二甲基亞砜(DMSO)(美國Sigma公司);欖香烯注射液(國藥準字H109601 15,大連金港制藥有限公司);兔抗人p-P38、兔抗人ERK1/2及p-ERK1/2一抗、辣根過氧化物酶(HRP)標記的羊抗兔二抗(美國Cell Signaling Technology公司);PD98059(美國Sigma公司);TUNEL試劑盒(美國Roche公司);細胞裂解液Trizol(Invitrogen公司);反轉錄試劑盒(日本TaKaRa公司);SYBR Green(美國Roche公司)。
1.3 實驗方法
1.3.1 細胞培養(yǎng):采用含10%胎牛血清、100 U/mL青霉素、100 mg/L鏈霉素的RPMIl640培養(yǎng)基,在37 ℃、CO2體積分數(shù)為5%、相對濕度95%條件下培養(yǎng)胃癌SGC-7901細胞株。用0.05%胰蛋白酶-EDTA消化傳代細胞。選用對數(shù)生長期細胞進行實驗。
1.3.2 MTT法:取對數(shù)生長期細胞,以4 000個/孔接種于96孔板,每孔體積100μL,置37 ℃、5% C02及95%相對濕度培養(yǎng)箱中培養(yǎng)24 h,按照實驗要求分為空白組、對照組和實驗組,實驗組包括欖香烯組、PD98059組、欖香烯+PD98059組,每組設5個復孔。空白組不種細胞;對照組不做干預;欖香烯組欖香烯終濃度分別為0.02、0.04、0.08和0.16 mg/mL;PD98059組PD98059終濃度分別為25、50、75和100μmol/L;欖香烯+PD98059組為0.08 mg/mL的欖香烯+50μmol/L PD98059。分別培養(yǎng)6、12、24和48 h,每孔加入5 mg/mL MTT試劑20 μL,繼續(xù)孵育4 h后,吸去孔內(nèi)培養(yǎng)液,每孔加150μ L DMSO振蕩混勻,選擇492 nm波長,在自動酶標儀上測定各孔吸光度(A值),計算抑制率。細胞增殖抑制率=[1-(實驗組A值-空白組A值)/(對照組A值-空白組A值)×100%]。
1.3.3 Western-blot法:對照組、欖香烯組(0.02、0.04、0.08、0.16 mg/mL)、PD98059組(50μ mol/ L)、欖香烯+PD98059組(0.08 mg/mL欖香烯+50 μmol/L PD98059)作用24 h,提取總蛋白,并計算出上樣體積。變性后SDS聚丙烯酰胺凝膠垂直電泳,電轉膜,5%脫脂奶粉封閉,TBST洗膜,然后分別加入ERK1/2(1:1 000)、p-ERK1/2(1:1 000)、p-P38一抗(1:500)4 ℃孵育過夜,TBST洗膜后加入HRP標記的IgG二抗(1:6 000)室溫孵育2 h,應用超敏ECL化學發(fā)光試劑盒曝光,以tubu-lin蛋白作為內(nèi)參照。采用ImageTool凝膠圖像分析系統(tǒng)進行分析。觀察ERK1/2、p-ERK1/2、p-P38蛋白的表達情況。
1.3.4 Real-time PCR:將對照組、欖香烯組(0.02、0.04、0.08、0.16 mg/mL)、PD98059組(50μ mol/ L)、欖香烯+PD98059組(0.08 mg/mL欖香烯+50 μ mol/L PD98059)細胞按照1×104/孔密度接種于6孔板,待細胞貼壁后分別加藥物作用24 h,采用Trizol法提取各孔中總的RNA,產(chǎn)物加入20 mL DEPC水溶解,測OD值,OD260/OD280均在1.8~2.0之間。按照TaKaRa反轉錄試劑盒說明書進行反轉錄獲得cDNA,RT-PCR檢測采用10μL體系,成分為:SYBR Green 5μ L,上下引物分別為0.5μ L,稀釋后的模板DNA 2μ L,無菌ddH2O 2μ L。反應條件為:95 ℃15 min,95 ℃ 10 s,60 ℃ 30 s,72 ℃ 30 s,45個循環(huán);最后95 ℃ 1 min,55 ℃ 1 min,95 ℃ l min。同時擴增β-actin作為內(nèi)參對照,觀察bcl-2 mRNA、bax mRNA的表達情況。bcl-2上游引物為5’-CGCAGAGGGGCTACGAGT-3’,下游引物為5’-GTTGACGCT CTCCACACACAT-3’;bax上游引物為5’-TTTCTGACGGCA ACTTCAACTG-3’,下游引物為5’-CAACCACCCTGGTCTTG GAT-3’;內(nèi)參基因β-actin上游引物為5’-CGTGGACA TCCGCAAAGAC-3’,下游引物為5’-AAGAAAGGGTGTAACG CAACTAAG-3’。結果判定:實驗組相對于對照組的表達量=2-ΔΔCt。
1.3.5 TUNEL法檢測細胞凋亡:對照組、欖香烯組(0.02、0.04、0.08、0.16 mg/mL)、PD98059組(50 μ mol/L)、欖香烯+PD98059組(0.08 mg/mL欖香烯+50 μmol/L PD98059)以l×104個/mL的密度將細胞接種于預先放置蓋玻片的6孔板中,于37 ℃、5% CO2的培養(yǎng)箱中培養(yǎng),過夜后各孔加藥物干預作用24 h。按TUNEL檢測試劑盒說明書進行操作并加以改進,取出帶有細胞的載玻片,用4%多聚甲醛室溫固定1 h,PBS洗2 min×3次,0.3% H202室溫作用30 min,PBS洗5 min×3次,體積分數(shù)0.1% Triton×100,4 ℃作用2 min。PBS洗5 min×3次,滴加TUNEL反應液50 μL。在濕盒內(nèi)37 ℃溫育l h,PBS洗后加過氧化物酶轉化劑,37 ℃溫育30 min,DAB顯色,蘇木素復染,梯度乙醇脫水,二甲苯透明,中性樹膠封片。TUNEL反應液中不加TdT酶作為陰性對照,用DNase I部分降解的標本作為陽性對照組,細胞核呈棕褐色或棕黑色的為凋亡細胞。在高倍鏡下隨機取5個視野,總細胞數(shù)>1 000個,計算凋亡指數(shù),凋亡指數(shù)=陽性細胞數(shù)/總細胞數(shù)×100%。
1.4 統(tǒng)計學處理方法采用SPSSl3.0統(tǒng)計軟件進行分析。每組實驗重復3次。計量資料以±s表示,組間比較采用單因素方差分析及LSD檢驗;組間率的比較采用卡方檢驗。P<0.05為差異有統(tǒng)計學意義。
2.1 欖香烯、PD98059對胃癌細胞SGC-790l細胞的增殖抑制作用MTT法檢測顯示欖香烯、PD98059能夠顯著抑制細胞增殖,前者隨著藥物濃度的增加和作用時間的延長抑制率逐漸增加,呈現(xiàn)濃度和時間依賴性,后者呈時間依賴性,而二者聯(lián)用較單一作用效果更明顯(見圖1、表1)。
圖1 不同濃度欖香烯及PD98059對胃癌SGC-7901細胞的增殖抑制曲線
2.2 Westren-blot法檢測ERK1/2、p-ERK1/2、p-P38的表達情況
2.2.1 不同濃度欖香烯作用胃癌SCG-7901細胞24 h后各組ERK1/2、p-ERK1/2表達情況:隨著欖香烯濃度的增加,REK1/2的表達無明顯變化,p-ERK1/2的表達逐漸增加,濃度為0.08 mg/mL后,p-ERK1/2被迅速激活,p-ERK1/2相對表達量為對照組的2.68倍。詳見圖2、表2。
表1 不同濃度欖香烯及PD98059對胃癌SGC-7901細胞株增殖的影響(n=5)
圖2 不同濃度欖香烯作用24 h后ERK1/2、p-ERK1/2蛋白表達情況
表2 不同濃度欖香烯作用胃癌SCG-7901細胞后各組ERK1/ 2、p-ERK1/2蛋白相對表達量
2.2.2 欖香烯、PD98059及欖香烯+PD98059作用SCG-7901細胞后各組ERK1/2、p-ERK1/2表達情況:作用24 h后與對照組比較,欖香烯(0.08 mg/mL)組SCG-7901細胞p-ERK1/2表達明顯增加(P<0.05),PD98059(50μ mol/L)組p-ERK1/2表達明顯降低(P<0.05),欖香烯+PD98059組則差異無統(tǒng)計學意義;但欖香烯+PD98059組較欖香烯組p-ERK1/2表達降低,較PD98059組則表達增加(P<0.05)。各組間ERK1/2表達水平差異均無統(tǒng)計學意義(P>0.05),詳見圖3、表3。
圖3 各組ERK1/2、p-ERK1/2蛋白表達情況
表3 欖香烯、PD98059及欖香烯+PD98059作用SCG-7901細胞后各組ERK1/2、p-ERK1/2、p-P38相對表達量
2.2.3 欖香烯、PD98059及欖香烯+PD98059作用SCG-7901細胞后各組p-P38表達情況:作用24 h后與對照組比較,欖香烯(0.08 mg/mL)組、PD98059(50μ mol/L)組及欖香烯+PD98059組p-P38表達均明顯增加(P<0.05),且欖香烯+PD98059組較單一用藥組p-P38表達量增加(P<0.05),詳見圖4、表3。
圖4 各組p-P38蛋白表達情況
2.3 TUNEL法檢測細胞凋亡實驗結果顯示陰性對照組細胞呈多邊形或多角形,染色質(zhì)呈顆粒狀,染成淡藍色,極少數(shù)細胞被染成棕褐色,經(jīng)欖香烯、PD98059、欖香烯+PD98059處理后的SGC7901細胞明顯變小,染色質(zhì)呈團塊狀,邊聚核固縮被染成棕褐色,呈凋亡的形態(tài)改變,詳見圖5。與對照組相比,欖香烯(0.02、0.04、0.08、0.16 mg/mL)組及PD98059(50μmol/L)組、欖香烯+PD98059組凋亡率明顯增高,且隨欖香烯濃度增高,凋亡率明顯增高。對照組細胞凋亡指數(shù)為3.25%±0.24%,0.02、0.04、0.08、0.16 mg/mL的欖香烯組凋亡指數(shù)分別為8.26%±0.54%、17.34%±0.68%、25.87% ±1.04%、35.67%±0.84%,PD98059組為15.05% ±0.25%,PD98059+欖香烯組為41.34%±0.89%,實驗組較對照組明顯增高,差異均有統(tǒng)計學意義(P<0.05),其余各組間相比差異亦均有統(tǒng)計學意義(P<0.05)。
圖5 TUNEL法檢測各組細胞凋亡情況(×400)
2.4 RT-PCR結果隨著欖香烯濃度的升高,bax mRNA的表達增加,而bcl-2 mRNA的表達降低;PD98059組及欖香烯+PD98059組相比于對照組,bax mRNA的表達增加,bcl-2 mRNA的表達降低。欖香烯濃度為0.02 mg/mL時bax mRNA的表達量為對照組的1.3985倍,到0.16 mg/mL時為3.4382倍,欖香烯+PD98059組升高最明顯,為對照組的4.8636倍(見表4)。欖香烯濃度為0.02 mg/mL時bcl-2 mRNA表達水平為對照組的0.9634倍,到0.16 mg/mL時為0.3020倍,欖香烯+PD98059組下降最明顯,為0.1763倍(見表4)。
表4 不同濃度欖香烯及PD98059對胃癌SGC-7901細胞bax mRNA、bcl-2 mRNA表達的影響(n=3)
全球胃癌發(fā)病率高,由胃癌導致的死亡人數(shù)僅次于肺癌,在惡性腫瘤中位居第二,而在我國各種惡性腫瘤中居首位[8]。目前治療以手術聯(lián)合細胞毒性化療藥物為主,而化療對重要器官的損傷和腫瘤耐藥是臨床經(jīng)常遇到的難題。大量研究表明欖香烯能夠抑制包括胃癌在內(nèi)的多種腫瘤細胞的增殖[1-7,9-11]。欖香烯發(fā)揮抗腫瘤效應是一個極其復雜的生物學過程,其具體作用機制尚不清楚。
Liu等[12]研究了β-欖香烯對人胃癌細胞的抗腫瘤效應及其機制,認為β-欖香烯通過抑制PI3K/Akt/ mTOR通路,一方面抑制細胞增殖、促進凋亡,另一方面激活一個保護性的自噬體從而避免細胞凋亡。Qu等[13]研究發(fā)現(xiàn),在胃癌細胞中,激活ERK信號通路可以上調(diào)DR4、DR5的表達,從而通過腫瘤壞死因子相關凋亡誘導配體(TNF-related apoptosisinducing ligand,TRAIL)誘導細胞凋亡。
本研究采用不同濃度的欖香烯作用胃癌細胞株SGC-7901,發(fā)現(xiàn)隨著藥物濃度的增加和作用時間的延長,胃癌細胞的增殖抑制率逐漸增加,而采用不同濃度的PD98059作用于胃癌細胞,胃癌細胞的增殖抑制率并不隨其濃度的增加而增加,而是隨時間的延長而增加;當欖香烯和PD98059同時作用于胃癌細胞時,其對細胞株的增殖抑制率明顯比同一濃度的欖香烯或PD98059單一作用時高。我們通過Westren-blot法檢測ERK1/2蛋白的表達,發(fā)現(xiàn)隨著欖香烯濃度的增加,p-ERK1/2的表達逐漸增加,總ERK1/2則沒有明顯變化,說明欖香烯可以通過促進ERK1/2的磷酸化而發(fā)揮作用,同樣,在加入ERK1/2磷酸化抑制劑PD98059后,更能證明這一結論。我們還發(fā)現(xiàn)欖香烯及PD98059都能明顯促進p-P38MAPK的表達,并且二者合用比單一用藥時效果更顯著,這一結果同文獻[14-15]的報道一致。
bcl-2、bax為癌基因家族的成員之一,前者是凋亡抑制基因,后者則是促凋亡基因。二者的比值決定細胞接受刺激信號后是凋亡還是存活[16]。本研究通過TUNEL法觀察到欖香烯促進胃癌細胞凋亡,其凋亡率隨欖香烯濃度的增高而增高。PD98059亦可促進胃癌細胞凋亡,且二者聯(lián)合作用較單一作用明顯。通過RT-PCR檢測發(fā)現(xiàn)bax mRNA的表達隨欖香烯濃度的增高而增加,但是bcl-2 mRNA的表達則降低,這提示欖香烯及PD98059可能通過RAS/RAF/ERK、P38MAPK通路誘導SGC-7901胃癌細胞凋亡[17-19]。本研究結果表明,欖香烯抑制人胃癌細胞SGC-7901增殖、誘導其凋亡與p-ERK1/2以及p-P38表達增加、bcl-2表達下降和bax表達增加有關;PD98059抑制人胃癌細胞SGC-7901增殖、誘導其凋亡與p-P38表達增加、bcl-2表達下降和bax表達增加有關,聯(lián)合欖香烯和PD98059作用后效果更加明顯。
綜上所述,本實驗研究表明,欖香烯及PD98059可以抑制胃癌細胞增殖,前者具有時間和濃度依賴性;欖香烯及PD98059還可以促進胃癌細胞凋亡。欖
香烯抑制細胞增殖、促進細胞凋亡的機制包括促進ERK1/2磷酸化和上調(diào)p-P38MAPK信號通路的表達;PD98059抑制ERK1/2的磷酸化,但通過上調(diào)p-P38 MAPK信號通路的表達而發(fā)揮其細胞調(diào)節(jié)作用。
[1]Tan G, Wang ZY, Wang XG, et al. Immunotherapeutic effects of beta-elemene combined with interleukin-23 genemodified dendritic cells on murine pancreatic carcinoma[J]. Ai Zheng, 2006, 25(9): 1082-1086.
[2]Wang G, Li X, Huang F, et a1. Antitumor effect of β-elemene in non-small-ceil lung cancer cells is mediated via induction of cell cycle arrest and apoptotic cell death[J]. Cell Mol Life Sci, 2005, 62(7-8): 881-893.
[3]Wang XS, Yang W, Tao SJ, et al. Effect of delta-elemene on Hela cell lines by apoptosis induction[J]. Yakugaku Zasshi, 2006, 126(10): 979-990.
[4]Hu J, Jin W, Yang PM. Reversal of resistance to adriamycin in human breast cancer cell line MCF-7/ADM by betaelemene[J]. Zhonghua Zhong Liu Za Zhi, 2004, 26(5): 268-270.
[5]關文明, 范鈺, 郭學良, 等. β-欖香烯對人胃癌SGC-7901細胞凋亡及Survivin表達和Caspase酶活性的影響[J]. 復旦大學學報(醫(yī)學版), 2003, 30(5): 434-438.
[6]陳亦明, 余震, 張培趁, 等. 欖香烯對胃癌SGC-7901細胞株PPAR γ基因的影響[J]. 浙江醫(yī)學, 2008, 30(7): 689-693.
[7]李丕宏, 孫維建, 盧明東, 等. 欖香烯對胃癌細胞p38絲裂原活化蛋白激酶信號通路的影響[J]. 中華普通外科雜志, 2010, 25(2): 130-133.
[8]Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world[J]. J Clin Oncol, 2006, 24 (14): 2137-2150.
[9]Xie CY, Yang W, Li M, et a1. Cell apoptosis induced by delta-e1emene in colorectal adenocarcinoma cells via a mitochondrial-mediatedpathway[J]. Yakugaku Zasshi, 2009, 129(11): 1403-1413.
[10]Tao L, Zhou L, Zheng L, et a1. Elemene displays anticancer ability on laryngeal cancer cells in vifro and in vivo [J]. Cancer Chemother Pharmacoi, 2006, 58(1):24-34.
[11]Yang H, Wang X, Yu L. The antitumor activity of elemene is associated with apoptosis[J]. Zhonghua Zhong Liu Za Zhi, 1996, 18(3): 169-172.
[12]Liu J, Zhang Y, Qu J, et al.β-Elemene-induced autophagy protects human gastric cancer cells from undergoing apoptosis[J]. BMC Cancer, 2011(11): 183.
[13]Qu J, Zhao M, Teng Y, et a1. Interferon-αsensitizes human gastric cancer cells to TRAIL-induced apoptosis via activa-tion of the c-Cbl-dependent MAPK/ERK pathway[J]. Cancer Biol Ther, 2011, 12(6): 494-502.
[14]Al-Shanti N, Stewart CE. PD98059 enhances C2 myoblast differentiation through p38 MAPK activation: a novel role for PD98059[J]. J Endocrinol, 2008, 198(1): 243-252.
[15]Hotokezaka H, Sakai E, Kanaoka K, et al. U0126 and PD98059, specific inhibitors of MEK, accelerate differentiation of RAW264.7 cells into osteoclast-like cells[J]. J Biol Chem, 2002, 277(49): 47366-47372.
[16]Yang E, Korsmeyer SJ. Molecular thanatopsis: a discourse on the BCL2 family and cell death[J]. Blood, 1996, 88(2): 386-401.
[17]Cagnol S, Chambard JC. ERK and cell death: mechanisms of ERK-induced cell death--apoptosis, autophagy and senescence[J]. FEBS Journal, 2010, 277(1): 2-21.
[18]Woessmann W, Chen X, Borkhardt A. Ras-mediated activation of ERK by cisplatin induces cell death independently of p53 in osteosarcoma and neuroblastoma cell lines[J]. Cancer Chemother Pharmacol, 2002, 50(5): 397-404.
[19]Liu SI, Huang CC, Huang CJ, et a1. Thimerosal-induced apoptosis in human SCMI gastric cancer cells: activation of p38MAP kinase and caspase-3 pathways without involvement of [ca2+]i elevation[J]. Toxieol Sci, 2007, 100(1): 109-117.
(本文編輯:丁敏嬌)
The mechanism of elemene and PD98059 inducing apoptosis of human gastric cancer cell line SCG-7901
YU Yaojun, SHENG Weiwei, YE Haibo, TU Yangyang, LIU Shuai, SUN Weijian, YOU Tao, WANG Feihai, ZHENG Zhiqiang.Department of General Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027
Objective:To explore the effect of elemene and PD98059 on the apoptosis of human gastric cancer cell line SGC-790l and the relationship of ERK1/2, P38MAPK signal pathway.Methods:SGC-790l cells were treated with elemene and PD98059. MTT assay was used to detect the proliferation of SGC-790l cells. The expression of ERK1/2, phosphorylation REK1/2 (p-ERK1/2) and phosphorylated P38 (p-P38) was detected by western-blot.The bcl-2 mRNA and bax mRNA was detected with RT-PCR. The gastric cancer cell apoptosis index was detected by TUNEL method.Results:Elemene and PD98059 alone effectively inhibited the proliferation of gastric cancer cells SGC-7901, and the former was in a dose-dependent and time-dependent manner, the latter was in a time-dependence but no in dose-dependent manner, and the combined effects of the two drugs on gastric cancer cell proliferation inhibition was significantly greater than that of single agent (P<0.05). The expression of p-ERK1/2 protein was increased (P<0.05), and the total ERK1/2 was no significant change with the concentration of elemene increased. The expression of p-P38 of elemene group, PD98059 group and the combined group were significantly higher than that of the control group (P<0.05), and the combined group was the highest (P<0.05). The mRNA of bcl-2 expression was down-regulated while the expression of bax mRNA was up-regulated and both changes had good dose-dependent tendency, and the combined group was most significantly. Cell in experimental groupsapoptosis rate was higher than that in the control group (P<0.05), and in a dose-dependent manner with elemene (P<0.05).The apoptosis rate of elemene+PD98059 group was significantly higher than that of the single-action group (P<0.05). Conclusion: Elemene and PD98059 can inhibite the proliferation of gastric cancer cells SGC-7901, and the former was in a dose-dependent and time-dependent manner. Elemene and PD98059 can also promote the apoptosis of gastric cancer cells. Elemene promotes apoptosis and inhibites the proliferation of gastric cancer cells by up-regulating the expression of p-ERK1/2 signaling pathway and p-P38MAPK signaling pathway. PD98059 inhibites the ERK1/2 phosphorylation, but can promote the expression of p-P38 MAPK signaling pathway, then inhibites the proliferation and promotes gastric cancer cell apoptosis.
gastric cancer; elemene; PD98059; apoptosis; ERK1/2; P38MAPK
R735.2
A
1000-2138(2014)04-0258-07
2013-11-05
浙江省衛(wèi)生廳科研基金資助項目(2011KYA112)。
俞耀軍(1977-),男,浙江紹興人,主治醫(yī)師,碩士。
鄭志強,教授,碩士生導師,Email:zzq652992@163.com。