鄭亞潔+潘英姿
[摘 要] 青光眼是全球第一大不可逆致盲性眼病。 原發(fā)性開角型青光眼神經(jīng)損傷累及視覺通路的中樞神經(jīng)元,利用功能磁共振技術(shù)評估視神經(jīng)損傷是一種新型無創(chuàng)技術(shù)。用于原發(fā)性開角型青光眼研究的功能磁共振成像技術(shù)主要包括:血氧水平依賴的功能性磁共振成像、彌散張量成像、磁共振波譜法。本文就其在原發(fā)性開角型青光眼研究中應(yīng)用進(jìn)展進(jìn)行綜述。
[關(guān)鍵詞] 原發(fā)性開角型青光眼;功能磁共振成像;血氧水平依賴的功能性磁共振成像;彌散張量成像;磁共振波譜法
中圖分類號:R775,R445 文獻(xiàn)標(biāo)識碼:A 文章編號:2055-5200(2014)01-022-05
Doi:10.11876/mimt201401006
Application of fMRI in the study of primary open angle glaucoma ZHENG Ya-jie,PAN Ying-zi. (Department of Ophthalmology, Peking University First Hospital,Beijing 100034)
[Abstract] Glaucoma is one of the leading causes of irreversible blindness worldwide. Primary open angle glaucoma is considered to be a neurodegenerative disease that affects central nervous system of the visual pathway. functional magnetic resonance imaging(fMRI) technologies provide a new and noninvasive device in assessing the injury of optic nerve. Now there are some kinds of method used in primary open angle glaucoma(POAG):blood oxygen level dependent fMRI (BOLD-fMRI)、Diffusion Tensor Imaging (DTI)、Magnetic Resonance Spectroscopy, (MRS)。their application progress in POAG were summarized in this paper.
[Key words] Primary open angle glaucoma; functional magnetic resonance imaging; DTI;BOLDfMRI;MRS
青光眼是全球第一大不可逆致盲性眼病,在一項(xiàng)新加坡華人中進(jìn)行的調(diào)查表明,60 歲以上的老人青光眼發(fā)病率為4.8%[1]。其中原發(fā)性開角型青光眼(Primary open angle glaucoma, POAG)的房角始終是開放的,通常進(jìn)展緩慢,許多患者覺察不出自己的變化,也無任何警告癥狀,被稱作視野“不易察覺的小偷”。除體檢發(fā)現(xiàn)外,往往到了病變晚期,或因其他眼病才來就診。據(jù)統(tǒng)計(jì)估計(jì),2010年世界范圍40歲以上人群原發(fā)性開角型青光眼發(fā)病占整個(gè)原發(fā)性青光眼的比例約73.96%[2]。其發(fā)病機(jī)制不明,主要包括視神經(jīng)灌注壓降低導(dǎo)致缺血缺氧性神經(jīng)損傷,小梁網(wǎng)功能障礙導(dǎo)致房水排出受阻,神經(jīng)調(diào)節(jié)功能異?;蜓芡ㄍ感栽黾右鸬姆克稍龆嗟缺姸嘁蛩?。
近年來,隨著對于青光眼研究的不斷深入,一些新的發(fā)現(xiàn)對傳統(tǒng)的青光眼發(fā)病機(jī)制提出了挑戰(zhàn),動(dòng)物實(shí)驗(yàn)研究發(fā)現(xiàn), 外側(cè)膝狀體神經(jīng)元的萎縮要早于視神經(jīng)纖維的丟失[3]軸索末梢損傷可先于視網(wǎng)膜RGC損傷, 且軸漿運(yùn)輸障礙早于軸索結(jié)構(gòu)的改變[4]。人們逐漸認(rèn)識到青光眼并不僅僅是一種眼部疾病,青光眼性神經(jīng)損害可能包括視覺皮層在內(nèi)的整個(gè)視覺通路[5]。其跨突觸神經(jīng)變性累及視覺通路的中樞神經(jīng)元,具體包括外側(cè)膝狀體神經(jīng)元的萎縮丟失[6]、神經(jīng)元密度的減小[7],外側(cè)膝狀體神經(jīng)元樹突的復(fù)雜性和長度均下降[8],外側(cè)膝狀體和視皮質(zhì)存在明顯星型膠質(zhì)細(xì)胞及小膠質(zhì)細(xì)胞的激活[9],外側(cè)膝狀體萎縮[7, 10, 11],視皮質(zhì)的細(xì)胞色素氧化酶的代謝活性明顯下降[12]。有研究證實(shí)視覺皮層的變化與視功能損傷有關(guān)[13],與視野負(fù)相關(guān)[14-15]。
功能性磁共振成像技術(shù)(functional Magnetic Resonance Imaging,fMRI)是近年來發(fā)展的一種新的磁共振技術(shù), 不但可以無創(chuàng)地測量白質(zhì)纖維結(jié)構(gòu),還可以評價(jià)灰質(zhì)功能、評價(jià)視覺通路、測量后膝狀體纖維軸索密度。它使臨床磁共振成像從單一的形態(tài)學(xué)研究進(jìn)入了形態(tài)與功能相結(jié)合的領(lǐng)域。其作為無創(chuàng)的影像學(xué)設(shè)備,被越來越多地運(yùn)用于青光眼發(fā)病機(jī)制的探索中,是目前研究臨床腦疾病最重要的技術(shù)之一。近年來,fMRI技術(shù)在實(shí)驗(yàn)設(shè)計(jì)、影像采集、和數(shù)據(jù)處理等方面的發(fā)展日新月異。涌現(xiàn)出彌散張量影像(DTI)、功能磁共振波譜(fMRS)、血氧水平依賴的功能性磁共振成像(BOLD-fMRI)等多種新的技術(shù)。其中DTI及BOLD成為用于開角型青光眼研究的主要手段。本文將對fMRI在POAG研究中的進(jìn)展進(jìn)行敘述。
1 血氧水平依賴功能磁共振成像(BOLDfMRI)
BOLD-fMRI是目前使用最廣泛的fMRI 方法,此技術(shù)利用體內(nèi)去氧血紅蛋白作為內(nèi)源性的對比劑進(jìn)行成像。在血液中,脫氧血紅蛋白帶有順磁性,會(huì)引起周圍磁場的畸變(不均勻效果增強(qiáng))。當(dāng)腦激活時(shí),局部腦組織血流和血氧消耗增加的比例不同, 靜脈中血流量增加明顯超過氧耗量的增加, 這種差異導(dǎo)致腦激活區(qū)的靜脈血氧合血紅蛋白增加, 脫氧血紅蛋白比例相對減少,磁場均勻度好,引起T2*延長,因此在T2*WI上,此局部區(qū)域相對于靜息狀態(tài)信號增強(qiáng)。BOLD-fMRI因其具有很高的安全性和實(shí)用性,已被廣泛用于腦功能和心理學(xué)方面的研究[16- 17]
對青光眼的BOLD研究發(fā)現(xiàn),POAG患者初級視皮層的BOLD信號下降[18-19],并且與視敏度、視野檢測雙眼PSD差值[19]、視網(wǎng)膜神經(jīng)纖維厚度具有相關(guān)性[14];視皮質(zhì)信號下降可能與POAG患者慢性病程所導(dǎo)致的視皮質(zhì)萎縮,局部血流下降,體積減少有關(guān),同時(shí)增生的角質(zhì)細(xì)胞可能會(huì)擾亂血管代償,導(dǎo)致BOLD信號下降;研究還發(fā)現(xiàn)POAG患者外側(cè)膝狀體區(qū)神經(jīng)活動(dòng)下降,BOLD信號下降。
2007年,Duncan等[20-21]對6例單眼POAG患者進(jìn)行BOLD-fMRI研究。發(fā)現(xiàn)POAG患者雙眼視敏度相差越大,雙側(cè)V1區(qū)的BOLD信號的差異也越大;且BOLD信號的波幅值與視野檢測雙眼PSD差值、視網(wǎng)膜神經(jīng)纖維厚度、平均高度輪廓線均相關(guān)。
我國學(xué)者王寧利等[22]也進(jìn)行了相關(guān)研究 ,對6例青光眼患者進(jìn)行視覺功能刺激及BOLD-fMRI掃描,結(jié)果發(fā)現(xiàn)BOLD信號與視野檢測PSD結(jié)果呈負(fù)相關(guān)。他們認(rèn)為,視皮質(zhì)BOLD信號的下降可能與POAG患者慢性病程所導(dǎo)致的視皮質(zhì)萎縮,局部血流下降,體積減少有關(guān)。同時(shí),增生的膠質(zhì)細(xì)胞可能會(huì)擾亂血管代償,導(dǎo)致BOLD下降。
上述結(jié)果表明,BOLD可用于研究青光眼全視路功能損害,能直接檢測神經(jīng)退行性變化,特別是能對活體視路的神經(jīng)功能活動(dòng)區(qū)進(jìn)行檢測,檢測出青光眼特異的神經(jīng)退行性改變, 為青光眼的活體研究方法提供新思路。
2 彌散張量成像(DTI)
DTI是目前唯一能在活體觀察腦白質(zhì)纖維走行及形態(tài)結(jié)構(gòu)的無創(chuàng)性檢查技術(shù)。它利用組織水分子彌散的各向異性來探測組織微觀結(jié)構(gòu)。腦白質(zhì)的各向異性是由于平行走行的髓鞘軸索纖維所致,腦白質(zhì)彌散在平行神經(jīng)纖維方向最大,即彌散各向異性比值(Fractional Anisotropy,F(xiàn)A)最大,接近于1。這一特性用彩色標(biāo)記可反映腦白質(zhì)的空間方向性,即彌散最快的方向指示纖維走行的方向。DTI對于神經(jīng)科學(xué)是一個(gè)新的突破,使得研究者得以了解活體的神經(jīng)纖維走行,這不僅有助于深入了解人腦纖維的結(jié)構(gòu),而且在臨床上有很大的價(jià)值,被認(rèn)為是評價(jià)疾病的神經(jīng)病理學(xué)改變的敏感方法[23-24],成為近期腦功能成像技術(shù)研究的最新熱點(diǎn)之一。
DTI常用的各向異性參數(shù)包括FA、RA 和VR值,其中FA 值最常用,F(xiàn)A 值高提示該部位白質(zhì)纖維的完整性好。Garaci 等[25]將l6例青光眼患者根據(jù)視野損害程度分為6級, 并使用高場MRI進(jìn)行DTI檢查。與正常對照組相比,青光眼患者的視放射和視神經(jīng)纖維的MD值明顯升高,F(xiàn)A 值明顯降低。視神經(jīng)纖維的平均MD 值與青光眼分期呈正相關(guān)(r=0.8087,P<0.0001)。視神經(jīng)的平均FA 值與青光眼分期呈負(fù)相關(guān)(r=- 0.7464,P<0.0001)。還得出相關(guān)理論:FA值的降低比MD值的升高對于青光眼視神經(jīng)損害的評估更具有可靠性。這一假說與之前 Khong 等[26]提出的理論相一致,即在評估神經(jīng)退變時(shí),F(xiàn)A 值這類量化白質(zhì)纖維各項(xiàng)異向程度的值較MD 值這類描述水分子彌散強(qiáng)度變化的值更加敏感。
Zikou AK[27]利用DTI技術(shù)觀察18例POAG患者及18例正常人的腦損害,結(jié)果顯示POAG患者下方額枕葉纖維束、殼核、尾狀核、前部和后部丘腦輻射、內(nèi)囊前后肢等部分腦區(qū)存在明顯FA值的降低,而這些腦區(qū)是與立體視覺功能或者視覺記憶功能存在密切聯(lián)系,提示青光眼神經(jīng)變性累及與視功能相關(guān)的其它腦區(qū)或核團(tuán)。
Engdhom T等[28-29] 對50例青光眼及50例正常對照者行DTI檢查,發(fā)現(xiàn)44%的青光眼患者視放射體積明顯減小,并且與青光眼視神經(jīng)萎縮程度分級相關(guān),其為半自動(dòng)分割的定量分析,可能會(huì)遺漏部分視放射組織。El-Rafei A等[30]使用基于體素的DTI形態(tài)學(xué)分析法,也發(fā)現(xiàn)了青光眼視放射的纖維變性。
2007年,Hui ES等[31]首次利用7.0T-MR進(jìn)行高眼壓大鼠視神經(jīng)變性的DTI研究,發(fā)現(xiàn)高眼壓鼠視神經(jīng)FA值較正常明顯降低,MD值明顯升高,并且與節(jié)細(xì)胞軸突數(shù)目下降的組織學(xué)檢查結(jié)果相關(guān)。在另一項(xiàng)青光眼鼠模型中[32],DTI技術(shù)可在測到的視網(wǎng)膜神經(jīng)節(jié)細(xì)胞組織學(xué)變化之前,活體發(fā)現(xiàn)節(jié)細(xì)胞軸突的DTI彌散參數(shù)的改變。青光眼患者在發(fā)生視野損害時(shí),己有50-60%視網(wǎng)膜祌經(jīng)節(jié)細(xì)胞丟失[33, 34]。而節(jié)細(xì)胞的變性還要早于節(jié)細(xì)胞的丟失[35]。
DTI技術(shù)可精確定位視路各個(gè)部分纖維微小的形態(tài)及功能損害,明確POAG視路神經(jīng)纖維損害的時(shí)間窗口及進(jìn)展特點(diǎn),不但為臨床青光眼的早期診斷提供幫助,也為視神經(jīng)保護(hù)藥物的應(yīng)用提供依據(jù)和評估方法。
3 磁共振波譜(MRS)
磁共振波譜(MRS)是醫(yī)學(xué)影像學(xué)近年來發(fā)展的新的檢查手段,作為一種無創(chuàng)傷性研究活體器官組織代謝、生化變化及化合物定量分析的方法,隨著MRI、MRS裝置不斷改進(jìn),軟件開發(fā)及臨床研究的不斷深入,人們通過MRS對各種疾病的生化代謝的認(rèn)識將不斷提高,為臨床的診斷、鑒別、分期、治療和預(yù)后提供更多有重要價(jià)值的信息。MRS能夠檢測和量化大腦中的某些生化化合物, 如: N2乙酰天門冬氨酸, 肌酸, 膽堿, 脂質(zhì)[36]。N2乙酰天門冬氨酸濃度的降低已經(jīng)作為神經(jīng)元丟失和功能失調(diào)的指示物[37]。
在對高眼壓大鼠視皮層的MRS研究中發(fā)現(xiàn),視皮質(zhì)中膽堿含量顯著降低,谷氨酸鹽含量明顯升高,提示膽堿和谷氨酸鹽MRS含量的測定可能為青光眼的臨床觀察提供一個(gè)生物標(biāo)記[38]。
Boucard等[39]應(yīng)用MRS比較青光眼患者, 黃斑變性患者和正常人的枕葉腦組織煙酰胺、肌酸、膽堿的含量, 結(jié)果并未發(fā)現(xiàn)3組有明顯的差異。上述研究未能檢測出青光眼腦組織代謝產(chǎn)物的改變,考慮可能與樣本量小或代謝變化太小無法檢測出顯著改變有關(guān)。
這些結(jié)果表明, 青光眼進(jìn)展可能伴隨著視皮質(zhì)中膽堿復(fù)合物的代謝變化, 這或許與青光眼視路中類膽堿能系統(tǒng)機(jī)能失調(diào)這一病理生理機(jī)制相關(guān)。MRS是研究活體青光眼代謝變化一個(gè)潛在的工具,但目前可能由于光譜分辨率磁場強(qiáng)度低, 或代謝物敏感性低,難以檢測出青光眼患者的代謝改變,其臨床應(yīng)用仍存在局限性。
4 展望
與其它研究方法相比,fMRI在POAG的中樞神經(jīng)研究方面有明顯的優(yōu)越性。多焦視野激發(fā)電位(multifocal visual evoked potientials, mfVEP)不能在腦功能區(qū)準(zhǔn)確定位,而且周邊有效空間分辨率低。Werring 等[40]認(rèn)為fMRI在評價(jià)視覺通路功能上較視覺電生理和常規(guī)MRI更敏感。正電子發(fā)射體層攝影(positron emissiontomography , PET) 、單光子發(fā)射計(jì)算體層攝影 (single photon emission computedtomography,SPECT)由于使用放射性同位素,為有創(chuàng)操作,重復(fù)監(jiān)測青光眼不實(shí)際,且空間分辨率低。fMRI無創(chuàng)性、活體成像,具有信噪比相對較高、空間分辨率好等優(yōu)點(diǎn),把單一形態(tài)學(xué)研究推向功能研究的新高度,可重復(fù)性較好、可操作性較強(qiáng),可量化神經(jīng)變性,有望測量人類活體青光眼視路上各級水平的神經(jīng)活動(dòng)狀態(tài),填補(bǔ)解剖學(xué)、電生理學(xué)方法上的不足。
fMRI在探索POAG發(fā)病機(jī)制的同時(shí),有望促進(jìn)發(fā)現(xiàn)POAG新的治療方向。隨著研究的深入,目前fMRI的活體研究已證實(shí)POAG視神經(jīng)、視放射、視皮質(zhì)均存在形態(tài)及功能損害,并且與青光眼病情嚴(yán)重程度呈現(xiàn)一定相關(guān)性,提示中樞神經(jīng)系統(tǒng)損害在POAG的發(fā)病過程中起著一定的作用。此外,杏仁核\藍(lán)斑核等多個(gè)顱內(nèi)核團(tuán)被發(fā)現(xiàn)與眼壓變化和調(diào)節(jié)有關(guān)[41-43]。所以,目前僅僅局部應(yīng)用降低眼壓藥物對POAG進(jìn)行治療,是不完善的,已有研究指出應(yīng)用腦源性營養(yǎng)因子比單用降眼壓藥物能更明顯促進(jìn)神經(jīng)纖維細(xì)胞成活和功能水平的提高[44]。隨著磁共振技術(shù)的廣泛應(yīng)用及不斷進(jìn)展, fMRI 快速掃描系列如 EPI 可以在較短時(shí)間內(nèi)獲取全部腦功能數(shù)據(jù),時(shí)間分辨率明顯提高。該技術(shù)與 MEG 聯(lián)合,還可望達(dá)到實(shí)時(shí)檢測腦激活區(qū)的信號,提高時(shí)間分辨率[45],更高場強(qiáng)磁共振掃描儀的應(yīng)用及數(shù)據(jù)分析方法的進(jìn)步,也將為POAG的診斷和臨床觀察提供敏感有效的指標(biāo),推進(jìn)對POAG中樞損傷機(jī)制的了解,探尋新的治療靶點(diǎn)。
然而,fMRI在POAG的研究中尚存不足。fMRI掃描時(shí)間相對較長,老年患者配合欠佳,頭動(dòng)、眼動(dòng)等易影響圖像質(zhì)量。后期數(shù)據(jù)處理過程復(fù)雜,存在主觀因素影響,易產(chǎn)生誤差。老年患者腦血管疾病、老年癡呆、藥物服用等情況都有可能影響實(shí)驗(yàn)結(jié)果。且目前fMRI用于POAG的研究處于初級階段,有待更多大樣本多中心的研究論證其在POAG研究中的作用。
參 考 文 獻(xiàn)
[1] Sim DH, Goh LG, Ho T. Glaucoma pattern amongst the elderly Chinese in Singapore[J]. Ann Acad Med Singapore. 1998,27(6): 819-23.
[2] Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020[J]. Br J Ophthalmol. 2006,90(3): 262-267.
[3] Yucel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N. Atrophy of relay neurons in magno- and parvocellular layers in the lateral geniculate nucleus in experimental glaucoma[J]. Invest Ophthalmol Vis Sci. 2001,42(13): 3216-3222.
[4] Crish SD, Sappington RM, Inman DM, Horner PJ, Calkins DJ. Distal axonopathy with structural persistence in glaucomatous neurodegeneration[J]. Proc Natl Acad Sci U S A. 2010,107(11): 5196-5201.
[5] Kitsos G, Zikou AK, Bagli E, Kosta P, Argyropoulou MI. Conventional MRI and magnetisation transfer imaging of the brain and optic pathway in primary open-angle glaucoma[J]. Br J Radiol. 2009,82(983): 896-900.
[6] Ito Y, Shimazawa M, Chen YN, et al. Morphological changes in the visual pathway induced by experimental glaucoma in Japanese monkeys[J]. Exp Eye Res. 2009,89(2): 246-255.
[7] Weber AJ, Chen H, Hubbard WC, Kaufman PL. Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus[J]. Invest Ophthalmol Vis Sci. 2000,41(6): 1370-1379.
[8] Ly T, Gupta N, Weinreb RN, Kaufman PL, Yucel YH. Dendrite plasticity in the lateral geniculate nucleus in primate glaucoma[J]. Vision Res. 2011,51(2): 243-250.
[9] Lam D, Jim J, To E, Rasmussen C, Kaufman PL, Matsubara J. Astrocyte and microglial activation in the lateral geniculate nucleus and visual cortex of glaucomatous and optic nerve transected primates[J]. Mol Vis. 2009,15: 2217-2229.
[10] Gupta N, Greenberg G, de Tilly LN, Gray B, Polemidiotis M, Yucel YH. Atrophy of the lateral geniculate nucleus in human glaucoma detected by magnetic resonance imaging[J]. Br J Ophthalmol. 2009,93(1): 56-60.
[11] Yucel YH, Zhang Q, Gupta N, Kaufman PL, Weinreb RN. Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma[J]. Arch Ophthalmol. 2000,118(3): 378-384.
[12] Yucel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma[J]. Prog Retin Eye Res. 2003,22(4): 465-481.
[13] Garaci FG, Cozzolino V, Nucci C, et al. Advances in neuroimaging of the visual pathways and their use in glaucoma[J]. Prog Brain Res. 2008,173: 165-177.
[14] Duncan RO, Sample PA, Weinreb RN, Bowd C, Zangwill LM. Retinotopic organization of primary visual cortex in glaucoma: a method for comparing cortical function with damage to the optic disk[J]. Invest Ophthalmol Vis Sci. 2007,48(2): 733-744.
[15] Qing G, Zhang S, Wang B, Wang N. Functional MRI signal changes in primary visual cortex corresponding to the central normal visual field of patients with primary openangle glaucoma[J]. Invest Ophthalmol Vis Sci. 2010,51(9): 4627-4634.
[16] Escarti MJ, de la Iglesia-Vaya M, Marti-Bonmati L, et al. Increased amygdala and parahippocampal gyrus activation in schizophrenic patients with auditory hallucinations: an fMRI study using independent component analysis[J]. Schizophr Res. 2010,117(1): 31-41.
[17] Mahon BZ, Caramazza A. A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content[J]. J Physiol Paris. 2008,102(1-3): 59-70.
[18] Qing G, Zhang S, Wang B, Wang N. Functional MRI signal changes in primary visual cortex corresponding to the central normal visual field of patients with primary openangle glaucoma[J]. Invest Ophthalmol Vis Sci. 2010,51(9): 4627-4634.
[19] Duncan RO, Sample PA, Weinreb RN, Bowd C, Zangwill LM. Retinotopic organization of primary visual cortex in glaucoma: Comparing fMRI measurements of cortical function with visual field loss[J]. Prog Retin Eye Res. 2007, 26(1): 38-56.
[20] Duncan RO, Sample PA, Weinreb RN, Bowd C, Zangwill LM. Retinotopic organization of primary visual cortex in glaucoma: Comparing fMRI measurements of cortical function with visual field loss[J]. Prog Retin Eye Res. 2007, 26(1): 38-56.
[21] Duncan RO, Sample PA, Weinreb RN, Bowd C, Zangwill LM. Retinotopic organization of primary visual cortex in glaucoma: a method for comparing cortical function with damage to the optic disk[J]. Invest Ophthalmol Vis Sci. 2007,48(2): 733-744.
[22] Qing G, Zhang S, Wang B, Wang N. Functional MRI signal changes in primary visual cortex corresponding to the central normal visual field of patients with primary openangle glaucoma[J]. Invest Ophthalmol Vis Sci. 2010,51(9): 4627-4634.
[23] Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain[J]. Neurotherapeutics. 2007,4(3): 316-329.
[24] Chanraud S, Zahr N, Sullivan EV, Pfefferbaum A. MR diffusion tensor imaging: a window into white matter integrity of the working brain[J]. Neuropsychol Rev. 2010, 20(2): 209-225.
[25] Garaci FG, Bolacchi F, Cerulli A, et al. Optic nerve and optic radiation neurodegeneration in patients with glaucoma: in vivo analysis with 3-T diffusion-tensor MR imaging[J]. Radiology. 2009,252(2): 496-501.
[26] Khong PL, Zhou LJ, Ooi GC, Chung BH, Cheung RT, Wong VC. The evaluation of Wallerian degeneration in chronic paediatric middle cerebral artery infarction using diffusion tensor MR imaging[J]. Cerebrovasc Dis. 2004,18(3): 240-247.
[27] Zikou AK, Kitsos G, Tzarouchi LC, Astrakas L, Alexiou GA, Argyropoulou MI. Voxel-Based Morphometry and Diffusion Tensor Imaging of the Optic Pathway in Primary Open-Angle Glaucoma: A Preliminary Study. AJNR Am J Neuroradiol. 2011.
[28] Engelhorn T, Haider S, Michelson G, Doerfler A. A new semi-quantitative approach for analysing 3T diffusion tensor imaging of optic fibres and its clinical evaluation in glaucoma[J]. Acad Radiol. 2010,17(10): 1313-1316.
[29] Engelhorn T, Michelson G, Waerntges S, Struffert T, Haider S, Doerfler A. Diffusion tensor imaging detects rarefaction of optic radiation in glaucoma patients[J]. Acad Radiol. 2011,18(6): 764-769.
[30] El-Rafei A, Engelhorn T, Warntges S, Dorfler A, Hornegger J, Michelson G. A framework for voxel-based morphometric analysis of the optic radiation using diffusion tensor imaging in glaucoma[J]. Magn Reson Imaging. 2011,29(8): 1076-1087.
[31] Hui ES, Fu QL, So KF, Wu EX. Diffusion tensor MR study of optic nerve degeneration in glaucoma[J]. Conf Proc IEEE Eng Med Biol Soc. 2007,2007: 4312-4315.
[32] Song SK, Sun SW, Ju WK, Lin SJ, Cross AH, Neufeld AH. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia[J]. Neuroimage. 2003,20(3): 1714-1722.
[33] Harwerth RS, Carter-Dawson L, Shen F, Smith EL 3rd, Crawford ML. Ganglion cell losses underlying visual field defects from experimental glaucoma[J]. Invest Ophthalmol Vis Sci. 1999,40(10): 2242-2250.
[34] Harwerth RS, Quigley HA. Visual field defects and retinal ganglion cell losses in patients with glaucoma[J]. Arch Ophthalmol. 2006,124(6): 853-859.
[35] Buckingham BP, Inman DM, Lambert W, et al. Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma[J]. J Neurosci. 2008,28(11): 2735-2744.
[36] Gujar SK, Maheshwari S, Bjorkman-Burtscher I, Sundgren PC. Magnetic resonance spectroscopy[J]. J Neuroophthalmol. 2005,25(3): 217-226.
[37] Chan KC, So KF, Wu EX. Proton magnetic resonance spectroscopy revealed choline reduction in the visual cortex in an experimental model of chronic glaucoma[J]. Exp Eye Res. 2009,88(1): 65-70.
[38] Block W, Traber F, Flacke S, Jessen F, Pohl C, Schild H. In-vivo proton MR-spectroscopy of the human brain: assessment of N-acetylaspartate (NAA) reduction as a marker for neurodegeneration[J]. Amino Acids. 2002,23(1-3): 317-323.
[39] Boucard CC, Hoogduin JM, der Grond J v, Cornelissen FW. Occipital proton magnetic resonance spectroscopy(1H-MRS) reveals normal metabolite concentrations in retinal visual field defects[J]. PLoS One. 2007,2(2): 222.
[40] Werring DJ, Bullmore ET, Toosy AT, et al. Recovery from optic neuritis is associated with a change in the distribution of cerebral response to visual stimulation: a functional magnetic resonance imaging study[J]. J Neurol Neurosurg Psychiatry. 2000,68(4): 441-449.
[41] Myagkov AV, Danilov GE, Fatykhov IR. The correcting influence of the locus ceruleus on ophthalmic hypertension of hypothalamic origin[J]. Neurosci Behav Physiol. 2004, 34(1): 97-100.
[42] Egorkina SB, Danilov GE. [Changes in intraocular pressure in response to experimental testing of the amygdaloid complex] [J]. Fiziol Zh SSSR Im I M Sechenova. 1985, 71(6): 714-718.
[43] Kryzhanovskii GN, Ponomarchuk VS, Ruseev VV. [Disorder of ophthalmotonus regulation after formation of a generator of pathologically enhanced hippocampus stimulation[J]. Biull Eksp Biol Med. 1983,95(1): 14-17.
[44] Weber AJ, Harman CD, Viswanathan S. Effects of optic nerve injury, glaucoma, and neuroprotection on the survival, structure, and function of ganglion cells in the mammalian retina[J]. J Physiol. 2008,586(18): 4393-4000.
[45] Yoshioka T, Toyama K, Kawato M, et al. Evaluation of hierarchical Bayesian method through retinotopic brain activities reconstruction from fMRI and MEG signals[J]. Neuroimage. 2008,42(4): 1397-1413.