沈麗+段衛(wèi)明+陶敏
[摘 要] 乳腺癌是女性最常見的惡性腫瘤,也是導(dǎo)致女性死亡的主要原因之一。基因、激素、年齡和環(huán)境都是乳腺癌發(fā)病的相關(guān)風(fēng)險因素。近年來國內(nèi)外流行病學(xué)和臨床研究提出糖尿病,尤其是2型糖尿?。═2DM,type-2 diabetes mellitus)也是導(dǎo)致乳腺癌發(fā)病的高危因素。常規(guī)地給予抗糖尿病藥物二甲雙胍不但可以有效控制血糖水平,還能在一定程度上降低乳腺癌的風(fēng)險,但其具體機制尚未被證實。此外,近年來關(guān)于miRNA在乳腺癌與糖尿病之間的作用也越來越被關(guān)注。本文就乳腺癌與糖尿病關(guān)系的最新研究進展作一綜述。
[關(guān)鍵詞] 乳腺癌;糖尿病;二甲雙胍;微小RNA
中圖分類號:R737.9 文獻標(biāo)識碼:A 文章編號:2055-5200(2014)01-017-05
Doi: 10.11876/mimt201401005
Recent research progress on the relationship between breast cancer and diabetes SHEN Li,DUAN Wei-ming,TAO Min . (Department of Oncology,the first Affiliated Hospital of Soochow University ,Suzhou,215006)
[Abstract] Breast cancer is the most common malignant tumors of women and is one of the leading causes of womens death.Studies confirmed that genetics,hormones,aging and environment are risk factors for breast cancer.Furthermore,many epidemiological and clinical studies have suggested that diabetes mellitus,especially type-2 diabetes mellitus(T2DM) are associated with higher risk of breast cancer.Accumulating clinical data have shown that administration of anti-diabete drugs metformin not only can effectively control blood glucose levels,also can reduce the risk of breast cancer in a certain extent,although its detailed mechanism remains largely unknown.Recently,more and more attention has been focused on the potenital roles of miRNA in the pathogenesis of breast cancer and diabetes.This review aims to summarize the research progress of the complicated relationship between breast cancer and diabetes.
[Keywords] breast cancer;diabetes mellitus;metformin;miRNA
近年來,隨著經(jīng)濟的發(fā)展和人口老齡化進程的加快,糖尿病和乳腺癌的發(fā)病率呈上升趨勢。流行病學(xué)資料顯示,目前全球糖尿病患者約2.46億,而我國糖尿病患者近1億。在許多國家,乳腺癌是女性高發(fā)的惡性腫瘤,發(fā)病率僅次于肺癌,我國的乳腺癌發(fā)病率在20~50人/10萬人,居女性癌癥死亡率的第二位。這兩種疾病嚴(yán)重威脅著人類的健康和生命,正逐漸成為全球關(guān)注的公共衛(wèi)生問題。近來流行病學(xué)和臨床研究顯示:糖尿病尤其是2型糖尿病是乳腺癌發(fā)病的高危因素之一。
1 乳腺癌與糖尿病的相關(guān)性
據(jù)報道,18%的乳腺癌患者合并糖尿病[1],且伴有糖尿病的乳腺癌患者腫塊更大,更易出現(xiàn)淋巴結(jié)浸潤和遠處轉(zhuǎn)移[2]。糖尿病能縮短乳腺癌患者的無病生存期和/或增加患者死亡率[2-3]。研究發(fā)現(xiàn)糖化血紅蛋白>7%的女性乳腺癌患者的死亡率是糖化血紅蛋白<6.5%的患者的2倍以上,同時糖化血紅蛋白>7%的患者無病生存期縮短[4]。此外,同時患有乳腺癌和糖尿病的患者其化療后毒副作用較高[5]。因此,是否合并糖尿病應(yīng)成為乳腺癌患者個體化治療和預(yù)后判斷時需考慮的因素之一。
2 乳腺癌與糖尿病的可能生物學(xué)機制
2.1 糖尿病與乳腺癌的共同機制
糖尿病患者通常伴有高胰島素血癥,而胰島素水平的升高可以促進胰島素抵抗的形成及胰島素樣生長因子(insulin-like growth factor,IGF)生物學(xué)活性的提高[6-7]。研究發(fā)現(xiàn)乳腺癌細胞中的胰島素、IGF-ⅠR(IGF-Ⅰreceptor)和IRS-Ⅰ/Ⅱ(insulin receptor substrates-Ⅰ/Ⅱ)表達水平較高。Key等[8]發(fā)現(xiàn)血液中高濃度的IGF-Ⅰ使乳腺癌的發(fā)病風(fēng)險升高28%。Henkens等[9]發(fā)現(xiàn)用胰島素控制糖尿病患者的血糖水平能增加包括乳腺癌在內(nèi)許多腫瘤的發(fā)生和發(fā)展風(fēng)險。
糖尿病促進乳腺癌發(fā)生和發(fā)展的可能機制包括:
1、胰島素的直接作用:胰島素作為一種生長因子,能活化促有絲分裂原激活MAPK,加快細胞有絲分裂,促進腫瘤的發(fā)生[10]。
2、IGF途徑:糖尿病患者高胰島素血癥能通過促進IGF-Ⅰ的合成和抑制胰島素樣生長因子結(jié)合蛋白(insulin-like growth factor binding protein,IGFBP)的合成,使游離的IGF-Ⅰ濃度增加,生物學(xué)活性增強。與胰島素相比,IGF-Ⅰ的促細胞有絲分裂及抗細胞凋亡作用更強。
3、相關(guān)信號通路:高胰島素血癥通過IRS介導(dǎo)胰島素/IGF相關(guān)信號通路,如PI3K、AKT、mTOR等信號通路,促進腫瘤細胞增殖、抑制細胞凋亡并且促進血管新生,加速乳腺癌的進展[11-12]。這些提示,糖尿病可能通過胰島素/IGF、高胰島素血癥及胰島素抵抗等在一定程度上促進乳腺癌的發(fā)生和發(fā)展并造成其不良預(yù)后。
2.2 多肽類激素在糖尿病和乳腺癌中的作用
現(xiàn)在普遍認(rèn)為肥胖能通過促進胰島素抵抗的形成和活化胰島素/IGF相關(guān)信號通路,增加糖尿病與乳腺癌的發(fā)病風(fēng)險,并且是不良預(yù)后的危險因素[13]。但近來研究發(fā)現(xiàn),一種由脂肪細胞所產(chǎn)生的多肽類激素(脂聯(lián)素)能在一定程度上降低糖尿病和乳腺癌的發(fā)病風(fēng)險。Gokulakrishnan等發(fā)現(xiàn)2型糖尿病及乳腺癌患者的脂聯(lián)素水平較低[14-15];但另一種多肽類激素(瘦素)則對糖尿病和乳腺癌的發(fā)生起促進作用,臨床研究發(fā)現(xiàn)瘦素能在一定程度上增加糖尿病與乳腺癌的發(fā)病風(fēng)險[16-17]
2.2.1 脂聯(lián)素 首先,脂聯(lián)素被認(rèn)為是一種胰島素增敏激素,能在肌肉組織中通過胰島素受體的酪氨酸磷酸化作用增加胰島素的敏感性,降低胰島素抵抗,從而下調(diào)胰島素/IGF-Ⅰ相關(guān)信號通路,抑制細胞的增殖、促進細胞凋亡。其次,脂聯(lián)素類似一種抗炎因子,不但可以抑制炎癥因子的表達,如NF-KB,IL-6等,而且可以限制炎癥因子的活性,起到抑制細胞增殖、促進細胞凋亡及抑制血管新生的作用;另外,脂聯(lián)素通過激活PPAR-γ(peroxisome proliferator-activated receptor-γ)抑制血管新生,并且通過激活細胞內(nèi)的半胱氨酸級聯(lián)反應(yīng)誘導(dǎo)自噬,抑制細胞分化[18]??傊?lián)素通過不同的作用機制對糖尿病和乳腺癌患者起保護作用。
2.2.2 瘦素 首先,瘦素通過與其受體結(jié)合,活化有關(guān)信號通路,如JAK/STAT通路、JNK通路及其下游與細胞分裂增殖有關(guān)的PI3K、ERK1/2、AKT/ GSK3、PKC-a、AP-1及NF-KB等通路,促進細胞增殖、抑制細胞凋亡。其次,瘦素通過增強蛋白水解酶的活性,降解細胞外基質(zhì),促進腫瘤血管新生和腫瘤轉(zhuǎn)移。此外,瘦素能通過活化芳香化酶而增強雌激素的合成,加快乳腺癌的發(fā)生和發(fā)展[19]。綜上,瘦素通過這些作用機制增加了乳腺癌與糖尿病的發(fā)病風(fēng)險。
2.3 微小RNA在糖尿病和乳腺癌中的作用
微小RNA(microRNA,miRNA)是一類由內(nèi)源基因編碼的長度約為22個核苷酸的非編碼單鏈RNA分子。通常在轉(zhuǎn)錄后水平調(diào)控基因表達,廣泛參與細胞增殖、分化和凋亡等生命過程。近年來研究者發(fā)現(xiàn),miRNA在糖尿病與乳腺癌患者中的表達譜發(fā)生了不同程度的失調(diào),其可能會成為糖尿病和乳腺癌發(fā)展進程中的潛在分子標(biāo)志物與治療靶點[20]。
2.3.1 miR-21 miR-21被認(rèn)為是一類促癌miRNA,通過直接或間接調(diào)控一些抑癌基因如:PTEN、PDCD4等,促進腫瘤的發(fā)生和發(fā)展[21-22]。有報道,敲除MDA-MB-231細胞株的miR-21可顯著降低乳腺癌細胞的侵襲性和轉(zhuǎn)移能力。臨床上,miR-21在人類乳腺癌中過表達與腫瘤的分期和淋巴結(jié)轉(zhuǎn)移有關(guān),提示其可作為乳腺癌侵襲性預(yù)后的分子標(biāo)志物。此外,miR-21在乳腺癌中過表達可引起細胞凋亡蛋白抑制因子(inhibitor of apoptosis,IAPs)及多藥耐藥蛋白1(multidrug resistance 1,MDR1)表達上調(diào),導(dǎo)致腫瘤細胞凋亡受阻和化療耐藥[23]。已有研究發(fā)現(xiàn)糖尿病患者的miR-21表達上調(diào),miR-21可能通過抑制胰島素刺激的葡萄糖吸收,導(dǎo)致胰島素抵抗的形成,最終促使糖尿病發(fā)生[24],而這又可以促進乳腺癌的發(fā)生和發(fā)展。
2.3.2 miR-34a miR-34a是P53基因的重要下游效應(yīng)子,在P53信號通路中起抑癌基因的作用,通過靶向作用于Notch-1和CD44而顯示出有效的抗細胞增殖和促細胞凋亡活性 [25]。研究證實,腫瘤細胞的能量代謝主要來源于糖酵解,這種不同于正常細胞需求的變化稱為瓦氏效應(yīng)(Warbrug effect)。miR-34a則可以通過靶向作用于多種糖代謝相關(guān)酶基因mRNA的3-UTR,如HK1、HK2、GP1和PDK1等降低糖酵解率,進而起到抗細胞增殖和促細胞凋亡的作用[26]。Peural等[27]研究發(fā)現(xiàn)miR-34a的高表達與乳腺癌患者的復(fù)發(fā)及死亡的低風(fēng)險相一致。另外,Kong等[28]發(fā)現(xiàn)糖尿病患者的miR-34a高表達能導(dǎo)致葡萄糖刺激的胰島素分泌改變并誘導(dǎo)凋亡。因此,miR-34a有望成為乳腺癌和糖尿病的潛在治療靶點。
2.3.3 Let-7 Let-7被認(rèn)為是一種抑癌miRNA,通過與cyclin D2、CDK6、CDC25、H-RAS及高遷移率族蛋白A2(high mobility group AT-hook 2,HMGA2)基因等的3-UTR結(jié)合,抑制其表達,調(diào)節(jié)細胞的分裂和細胞周期的進程,抑制細胞增殖,達到抑制腫瘤發(fā)生和發(fā)展的作用[29]。臨床研究顯示,某些Let-7家族成員(如Let-7c、Let-7f-1、Let-7a-2和Let-7a-3)的低表達與乳腺癌預(yù)后不良相關(guān)[30]。另外,Let-7在胰島細胞中的高表達不僅會導(dǎo)致葡萄糖耐量降低及葡萄糖誘導(dǎo)的胰島素分泌減少[31],而且還能起到調(diào)節(jié)PPAR-γ表達的作用[32],最終起到抗糖尿病和抗乳腺癌的作用。因此,Let-7對糖尿病和乳腺癌的發(fā)病可能起抑制作用。
3 抗糖尿病藥物二甲雙胍在乳腺癌中的作用
二甲雙胍是雙胍類的口服降糖藥,通過抑制肝糖原再生相關(guān)基因的轉(zhuǎn)錄及促進骨骼肌糖原攝取,降低血糖、增加胰島素活性并降低胰島素抵抗相關(guān)基因的高胰島素血癥,是2型糖尿病治療的基石。近年來,有關(guān)二甲雙胍的抗腫瘤作用研究日益增多。2010年瑞士學(xué)者BodmetM發(fā)現(xiàn),長期使用二甲雙胍可以降低女性糖尿病患者乳腺癌的發(fā)生風(fēng)險[33]。一項回顧性研究顯示,早期乳腺癌合并糖尿病患者術(shù)后輔助化療聯(lián)合二甲雙胍的病理完全反應(yīng)率為24%,而未服用二甲雙胍者的病理完全反應(yīng)率僅為8%[34]。
二甲雙胍的抗乳腺癌可能作用機制:1.大部分乳腺癌細胞表面的胰島素受體高表達,二甲雙胍通過激活A(yù)MPK增加胰島素敏感性及降低胰島素水平來發(fā)揮抗腫瘤作用[35]。2.二甲雙胍通過肝激酶B1介導(dǎo)AMPK活化,使TSC的不同部位磷酸化抑制mTOR復(fù)合物1信號通路,抑制細胞生長,甚至誘導(dǎo)細胞凋亡[36]。3.二甲雙胍刺激乳腺癌患者的長期記憶細胞(Tm淋巴細胞)增生,提高抗腫瘤免疫,AMPK可能參與該過程,但具體機制有待進一步闡明[37]。4.二甲雙胍通過調(diào)節(jié)乳腺癌細胞與乳腺正常細胞之間的動態(tài)轉(zhuǎn)換,選擇性抑制乳腺癌干細胞[38]。并且能在轉(zhuǎn)錄水平上抑制上皮間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT),影響腫瘤的浸潤、轉(zhuǎn)移等過程。另外,二甲雙胍還可以抑制黏附分子CD24的表達,CD24不僅是乳腺癌干細胞的標(biāo)志物,也是三陰性乳腺癌不良預(yù)后的指標(biāo)之一[39]。綜上,抗糖尿病藥物二甲雙胍對乳腺癌的發(fā)病起抑制作用。
4 小結(jié)與展望
綜上所述,糖尿病可以通過胰島素抵抗、胰島素/IGF相關(guān)信號通路等機制促進乳腺癌的發(fā)生和發(fā)展。脂肪細胞產(chǎn)生的多肽類激素可以通過不同的機制對糖尿病和乳腺癌起不同作用,如脂聯(lián)素起保護作用,而瘦素的作用與之相反。隨著對miRNA研究的不斷深入,發(fā)現(xiàn)其在糖尿病和乳腺癌中的表達譜發(fā)生了不同程度的失調(diào)。另外,越來越多的證據(jù)提示二甲雙胍能通過多種途徑起抗腫瘤作用,但其具體作用機制仍待進一步闡明。我們相信,隨著這些轉(zhuǎn)化研究的不斷深入,其成果可能會為糖尿病和乳腺癌的防治提供新的視角。
參 考 文 獻
[1] Hardefeldt PJ, Edirmanne S, Eslick GD. Diabetes increases the risk of breast cancer: a meta-analysis[J]. Endocr Relat Cancer, 2012, 19(6): 793-803.
[2] Schrauder MG, Fasching PA, Haberle L, et al. Diabetes and prognosis in a breast cancer cohort[J]. J Cancer Res Clin Oncol, 2010,137(6): 975-983.
[3] Chen WW, Shao YY, Shau WY, et al. The impact of diabetes mellitus on prognosis of early breast cancer in Asia[J].Oncologist, 2012,17(4): 485-491.
[4] Erickson K, Patterson RE, Flatt SW, et al. Clinically defined type 2 diabetes mellitus and prognosis in early-stage breast cancer[J]. J Clin Oncol, 2011, 29(1): 54-60.
[5] Srokowski TP, Fang S, Hortobagyi GN, et al. Impact of diabetes mellitus on complications ans outcones of adjuvant chemotherapy in older patients with breast cancer[J]. J Clin Oncol, 2009,27:2170-2176.
[6] Godsland IF. Insulin resistance and hyperinsulinaemia in the development and progression of cancer[J]. Clin Sci, 2009, 118(5):315-332.
[7] Wolpin BM, Bao Y, Qian ZR, et al.Hyperglycemia, insulin resistance, impaired pancreatic beta-cell function, and risk of pancreatic cancer[J]. J Natl Cancer Inst, 2013, 105(14): 1027-1035.
[8] Key TJ, Appleby PN, Reeves GK, et al. Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies[J]. Lancet Oncol, 2010, 11(6): 530-542.
[9] Gu Y, Wang C, Zheng Y, et al. Cancer incidence and mortality in patients with type 2 diabetes treated with human insulin: a cohort study in Shanghai[J]. PLoS One, 2013, 8(1): 53411.
[10] Giovannucci E, Harlan DM, Archer MC, et al. Diabetes and cancer: a consensus report[J]. CA Cancer J Clin, 2010, 60(4): 207-221.
[11] Busaidy NL, Farooki A, Dowlati A, et al.Management of metabolic effects associated with anticancer agents targeting the PI3K-Akt-mTOR pathway[J]. J Clin Oncol, 2012, 30(23): 2919-2928.
[12] Nakamura K, Sasajima J, Mizukami Y, et al. Hedgehog promotes neovascularization in pancreatic cancers by regulating Ang-1 and IGF-1 expression in bone-marrow derived pro-angiogenic cells[J]. PLoS One,2010, 5(1): 8824.
[13] Jiralerspong S, Kim ES, Dong W, et al. Obesity, diabetes, and survival outcomes in a large cohort of early-stage breast cancer patients[J]. Ann Oncol, 2013, 24(10):2506-2514.
[14] Gokulakrishnan K, Aravindhan V, Amutha A, et al. Serum adiponectin helps to differentiate type 1 and type 2 diabetes among young Asian Indians[J]. Diabetes Technol Ther, 2013, 15(8): 696-702.
[15] Gulcelik MA, Colakoglu K, Dincer H, et al. Associations between adiponectin and two different cancers: breast and colon[J]. Asian Pac J Cancer Prev ,2012, 13(1): 395-398.
[16] Del Socorro Romero-Figueroa M, Garduno-Garcia JD, Duarte-Mote J, et al. Insulin and Leptin Levels in Obese Patients With and Without Breast Cancer[J]. Clin Breast Cancer, 2013, 28(13):175-181.
[17] Mohammadzadeh G, Zarghami N. Serum leptin level is reduced in non-obese subjects with type 2 diabetes[J]. Int J Endocrinol Metab, 2013, 11(1): 3-10.
[18] Santillan-Benitez JG, Mendieta-Zeron H,Gomez-Olivan LM, et al. The tetrad BMI, leptin, leptin/adiponectin (L/ A) ratio and CA 15-3 are reliable biomarkers of breast cancer[J]. J Clin Lab Anal ,2013,27(1): 12-20.
[19] Guo S, Liu M, Wang G, et al.Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells[J]. Biochim Biophys Acta,2012, 1825(2): 207-222.
[20] Chabre O, Libe R, Assie G, et al. Serum miR-483-5p and miR-195 are predictive of recurrence risk in adrenocortical cancer patients[J]. Endocr Relat Cancer, 2013, 20(4):579-594.
[21] Ali S, Ahmad A, Banerjee S, et al. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF[J]. Cancer Res, 2010, 70(9): 3606-3617.
[22] Qi L, Bart J, Tan LP, et al. Expression of miR-21 and its
targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma[J]. BMC Cancer,2009, 9:163.
[23] Bao L, Yan Y, Xu C, et al. MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways[J]. Cancer Lett, 2013, 337(2):226-236.
[24] Yu X, Zhang X, Dhakal IB, et al. Induction of cell proliferation and survival genes by estradiol-repressed microRNAs in breast cancer cells[J]. BMC Cancer, 2012,12: 29.
[25] Vogt M, Munding J, Gruner M, et al. Frequent concomitant inactivation of miR-34a and miR-34b/c by CpGmethylation in colorectal pancreatic mammary ovarian urothelial and renal cell carcinomasand soft tissue sarcomas[J]. Virchows Arch , 2011, 458(3):313-322.
[26] Kim HR, Roe JS, Lee JE, et al. P53 regulates glucose metabolism by miR-34a[J]. Biochem Biophys Res Commun, 2013, 437(2):225-231.
[27] Peurala H, Greco D, Heikkinen T, et al. MiR-34a expression has an effect for lower risk of metastasis and associates with expression patterns predicting clinical outcome in breast cancer[J]. PLoS One, 2011, 6(11): e26122.
[28] Kong L, Zhu J, Han W, et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study[J]. Acta Diabetol ,2010, 48(1):61-69.
[29] Yun J, Frankenberger CA, Kuo WL, et al. Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer[J]. EMBO J , 2011,30(21): 4500-4514.
[30] Zhao Y, Deng C, Wang J, et al. Let-7 family miRNAs regulate estrogen receptor alpha signaling in estrogen receptor positive breast cancer[J]. Breast Cancer Res Treat, 2011,127(1): 69-80.
[31] Frost RJ, Olson EN. Control of glucose homeostasis and insulin sensitivity by theLet-7 family of microRNAs[J]. Proc Natl Acad Sci USA, 2011,108:21075-21080.
[32] Qian P, Zuo Z, Wu Z, et al. Pivotal role of reducedlet-7 g expression in breast cancer invasion and metastasis[J]. Cancer Res , 2011,71:6463-6474.
[33] Bodmer M, Meier C, Krahenbuhl S, et al. Long-term metformin use is associated with decreased risk of breast cancer[J]. Diabetes Care, 2010, 33(6): 1304-1308.
[34] Jiralerspong S, Palla SL, Giordano SH, et al. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer[J]. J Clin Oncol, 2009,27(20): 3297-3302.
[35] Dowling RJ, Zakikhani M, Fantus IG, et al. Metformin inhibitsmammalian target of rapamycin-dependent translation initiation in breast cancer cells[J]. Cancer Res , 2007, 67:10804-10812.
[36] Brown KA, Hunger NI, Docanto M, et al. Metformin inhibits aromatase expression in human breast adipose stromal cells via stimulation of AMP-activated protein kinase[J]. Breast Cancer Res Treat, 2010,123(2): 591-596.
[37] Schott S, Bierhaus A, Schuetz F, et al. Therapeutic effects of metformin in breast cancer: involvement of the immune system[J]. Cancer Immunol Immunother , 2011,60(9): 1221-1225.
[38] Iliopoulos D, Hirsch HA, Wang G, et al. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion[J]. Proc Natl Acad Sci U S A, 2011, 108(4): 1397-1402.
[39] Vazquez-Martin A, Oliveras-Ferraros C, Del-Barco S, et al. The anti-diabetic drug metformin suppresses self-renewal and proliferation of trastuzumab-resistant tumor-initiating breast cancer stem cells[J]. Breast Cancer Res Treat , 2011,126(2): 355-364.