李朝蘇, 湯永祿*, 吳 春, 吳曉麗, 黃 鋼
(1 四川省農(nóng)業(yè)科學(xué)院作物研究所/農(nóng)業(yè)部西南地區(qū)小麥生物學(xué)與遺傳育種重點(diǎn)實(shí)驗(yàn)室,四川成都 610066;2 南方丘陵區(qū)節(jié)水農(nóng)業(yè)研究四川省重點(diǎn)實(shí)驗(yàn)室,四川成都 610066)
氮是作物生長發(fā)育所必需的大量元素,一定范圍內(nèi),隨著施氮量增加,小麥干物質(zhì)積累量及產(chǎn)量均呈上升趨勢(shì)[1-7]。受生態(tài)條件、 土壤質(zhì)地、 耕作方式、 品種特性等因素影響,不同環(huán)境下小麥高產(chǎn)所需外源氮量及氮素利用效率存在明顯差異[4-13]。主要分布于黃淮地區(qū)的旱茬小麥的氮素營養(yǎng)生理研究較為深入,而主要分布于長江流域的稻茬麥相關(guān)研究相對(duì)較少。稻茬麥區(qū)光熱資源豐富,降雨較多,地下水位高,生長期受水資源限制作用小,是我國小麥增產(chǎn)潛力最大的區(qū)域[14-16]。
表1 試驗(yàn)地土壤基礎(chǔ)肥力Table 1 Basic soil fertility of the experimental fields
1.2.1 群體莖蘗變化 小麥出苗后每小區(qū)沿對(duì)角線方向隨機(jī)確定3點(diǎn),每點(diǎn)1.1 m2,將邊界確定,在完全出苗后、 最高分蘗期以及灌漿后期調(diào)查樣方內(nèi)的總莖數(shù)或穗數(shù),并計(jì)算單株分蘗數(shù)和成穗率,具體計(jì)算方法如下:
單株分蘗數(shù)=最高分蘗期莖蘗數(shù)/基本苗
成穗率=灌漿后期有效穗數(shù)/最高分蘗期莖蘗數(shù)×100%
1.2.2 產(chǎn)量和成熟期農(nóng)藝性狀 于成熟期在莖蘗調(diào)查點(diǎn)附近挖方測(cè)產(chǎn),同時(shí)取連續(xù)的30個(gè)有效莖調(diào)查植株農(nóng)藝性狀。挖方面積4.0 m2,將穗子曬干后脫粒稱重,用PM-8188型谷物水分測(cè)定儀測(cè)定籽粒含水率,混合均勻后隨機(jī)數(shù)出兩個(gè)500粒稱重計(jì)算千粒重,兩份樣品重量差數(shù)與平均數(shù)之比保持在5%以內(nèi),根據(jù)實(shí)際含水率計(jì)算標(biāo)準(zhǔn)水分(13%)下的產(chǎn)量和千粒重。穗部農(nóng)藝性狀調(diào)查內(nèi)容包括穗粒數(shù)、 小穗數(shù)、 結(jié)實(shí)小穗數(shù),調(diào)查結(jié)束后將籽粒和營養(yǎng)器官分開于70℃下烘干稱重計(jì)算經(jīng)濟(jì)系數(shù)。
1.2.3 成熟期植株氮素積累和分配 成熟期農(nóng)藝性狀調(diào)查結(jié)束后,同一處理的Ⅰ與Ⅱ重復(fù)、 Ⅲ與Ⅳ重復(fù)同部位樣品等量混合,采用常規(guī)方法測(cè)試氮、 磷、 鉀含量。2011年,分營養(yǎng)器官和籽粒兩部分測(cè)試;2012年,分莖鞘、 葉片、 穗軸+穎殼以及籽粒四部分測(cè)試。根據(jù)各器官干物質(zhì)積累量和氮素質(zhì)量分?jǐn)?shù)計(jì)算氮素積累量。
1.2.4 氮素利用效率 根據(jù)成熟期產(chǎn)量、 氮素積累量計(jì)算氮素利用效率相關(guān)參數(shù),具體計(jì)算方法如下[18]:
氮肥農(nóng)學(xué)利用率=(施氮區(qū)的籽粒產(chǎn)量-氮空白區(qū)籽粒產(chǎn)量)/施氮量
氮肥生產(chǎn)效率=籽粒產(chǎn)量/施氮量
氮素吸收效率=植株氮素積累量/施氮量
氮素利用效率=籽粒產(chǎn)量/植株氮素積累量
氮素收獲指數(shù)=籽粒氮素積累量/植株氮素積累量
氮素表觀回收率=(施氮區(qū)的植株氮素積累量-氮空白區(qū)植株氮素積累量)/施氮量
采用 Excel 2003 和DPS v 12.50 軟件對(duì)數(shù)據(jù)進(jìn)行整理、 統(tǒng)計(jì)分析和作圖。
表2 施氮量對(duì)機(jī)播稻茬小麥分蘗、 成穗的影響Table 2 Effect of nitrogen fertilization rate on tillering and spike formation of mechanical sowing wheat after rice
注(Note): 同列數(shù)據(jù)后不同字母表示同一年度同一土壤質(zhì)地?cái)?shù)據(jù)間差異達(dá)5%顯著水平 Values followed by different letters in a column mean significantly different at the 5% level in the same year and the same soil texture.
2.1.2 成熟期干物質(zhì)分配 以2012年數(shù)據(jù)為例(表3),兩種土壤中,施氮處理各器官的干物質(zhì)積累量均顯著高于空白對(duì)照,但各施氮處理在營養(yǎng)器官的干物質(zhì)積累量差異不顯著。粘壤中,150 kg/hm2施氮處理的籽粒干重顯著高于空白對(duì)照和105 kg/hm2處理;砂壤中各施氮處理間籽粒干重差異不顯著。
從各器官分配比例來看,粘壤在不施氮或者施氮水平較低(105 kg/hm2)時(shí),干物質(zhì)更多的積累在葉片和莖鞘中,增加施氮量有利于提高干物質(zhì)在籽粒中的分配比例。砂壤中,氮空白處理葉片干物質(zhì)分配比例略低于施氮處理,其他器官分配比例與施氮處理差異較小。
表3 施氮量對(duì)機(jī)播稻茬小麥成熟期干物質(zhì)分配的影響(2012)Table 3 Dry matter distribution in different organs at the maturity stage for mechanical sowing wheat after rice
注(Note): 同列數(shù)據(jù)后不同字母表示同一年度同一土壤質(zhì)地?cái)?shù)據(jù)間差異達(dá)5%顯著水平 Values followed by different letters in a column mean significantly different at the 5% level in the same year and the same soil texture.
施氮量對(duì)穗粒結(jié)構(gòu)的影響因指標(biāo)不同而異。增加施氮量利于有效穗數(shù)的增加及單穗小穗數(shù)、 結(jié)實(shí)小穗數(shù)、 穗粒數(shù)的提高,但千粒重呈下降趨勢(shì),尤其是粘壤,兩年處理間千粒重差異均達(dá)顯著水平,在倒伏較早的2012年,千粒重隨施氮量增加降幅更大。粘壤中,增加施氮量利于經(jīng)濟(jì)系數(shù)的提高,砂壤中各處理間經(jīng)濟(jì)系數(shù)差異不顯著。
2.2.1氮積累分配 各器官氮素積累量隨施氮量增加呈顯著上升趨勢(shì),尤其是莖鞘、 籽粒部位,兩種土壤表現(xiàn)基本一致。氮素分配比例因器官和土壤質(zhì)地不同而異,粘壤中,莖鞘中氮素分配比例隨施氮量的增加呈上升趨勢(shì),而籽粒中呈下降趨勢(shì)。砂壤中,空白處理氮在葉片、 莖鞘中分配比例較低,籽粒中分配比例較高;而施氮各處理的氮更多積累在營養(yǎng)器官中,在籽粒中分配比例相對(duì)較低,尤其是105 kg/hm2處理(表5)。
2.2.2 氮素利用率 隨著施氮量的增加,植株氮素積累量呈上升趨勢(shì),在195 kg/hm2處理時(shí)達(dá)到最大值,處理間差異顯著,不同年際、 不同土壤質(zhì)地中表現(xiàn)一致。而氮素生產(chǎn)效率、 氮素吸收效率和氮素利用效率等參數(shù)隨著施氮量的增加呈下降趨勢(shì),處理間差異顯著。2011年,粘壤中氮素農(nóng)學(xué)利用率處理間差異不顯著;但在2012年,兩種土壤中隨著施氮量的增加也呈顯著下降趨勢(shì)。氮素收獲指數(shù)、 氮素表觀回收率等參數(shù)處理間差異相對(duì)較小(表6)。
表4 施氮量對(duì)機(jī)播稻茬小麥產(chǎn)量和穗粒結(jié)構(gòu)的影響Table 4 Yield and ear kernel component of mechanical sowing wheat after rice
注(Note): ES—Effective spikes; GNS—Grain numbers per spike; TGW—1000-grain weight; SS—Spikelets per spike; FSS—Fertile spikelets per spike; HI—Harvest index; LR—Lodging ratio. 同列數(shù)據(jù)后不同字母表示同一年度同一土壤質(zhì)地?cái)?shù)據(jù)間差異達(dá)5%顯著水平 Values followed by different letters in a column mean significantly different at the 5% level in the same year and the same soil texture.
表5 施氮量對(duì)機(jī)播稻茬小麥各器官氮積累和分配的影響(2012)Table 5 N distribution in different organs at the maturity stage of wheat after rice under different N fertilization rates
注(Note): 同列數(shù)據(jù)后不同字母表示相同質(zhì)地土壤上不同施氮量處理間差異達(dá)5%顯著水平 Different letters mean values in a column significantly different at the 5% level in same soil texture.
表6 施氮量對(duì)機(jī)播稻茬小麥氮素利用效率的影響Table 6 Effect of nitrogen fertilization rate on nitrogen utilization efficiency of mechanical sowing wheat after rice
注(Note): PNAA—Plant nitrogen accumulation amount; NAFUE—Nitrogen agricultural fertilizer utilization efficiency; NPE—Nitrogen productivity efficiency; NUE—Nitrogen uptake efficiency; NUtE—Nitrogen utilization efficiency; NHI—Nitrogen harvest index; ANRE—Apparent nitrogen recovery efficiency. 同列數(shù)據(jù)后不同字母表示同一年度同一土壤質(zhì)地?cái)?shù)據(jù)間差異達(dá)5%顯著水平 Values followed by different letters in a column mean significantly different at the 5% level in the same year and the same soil texture.
氮素對(duì)穗粒結(jié)構(gòu)的影響程度因指標(biāo)不同而異,增施氮素對(duì)穗數(shù)和穗粒數(shù)普遍具有正向作用[2, 7,10]。本研究中,增加施氮量也能促進(jìn)小穗和小花分化,單穗小穗數(shù)、 結(jié)實(shí)小穗數(shù)以及穗粒數(shù)均有不同程度增多。郭文善等人研究表明,適當(dāng)增加施氮量,并擴(kuò)大后期施肥比例等能顯著促進(jìn)胚乳細(xì)胞分裂增殖,提高胚乳細(xì)胞充實(shí)度,增加粒重[38]。而本研究中,隨著施氮量的增加,千粒重呈顯著下降趨勢(shì),在一定程度上抵消了穗粒數(shù)增加的正向作用。一方面可能因?yàn)樗霐?shù)和穗粒數(shù)增加,每一籽粒獲得的營養(yǎng)供給量減少;另一方面,籽粒灌漿充實(shí)質(zhì)量與花前物質(zhì)儲(chǔ)藏量和轉(zhuǎn)運(yùn)效率密切相關(guān)[39],本研究中各施氮處理花前干物質(zhì)積累量差異較小,且由于莖鞘干物質(zhì)積累量減少和機(jī)械強(qiáng)度下降造成大面積倒伏,導(dǎo)致營養(yǎng)物質(zhì)轉(zhuǎn)運(yùn)受阻,粒重下降,在倒伏時(shí)間較早的2012年千粒重降幅尤其明顯。
氮素的吸收、 運(yùn)輸和再分配效率是決定其利用效率高低的幾個(gè)關(guān)鍵環(huán)節(jié),增加氮素吸收,促進(jìn)氮素向小麥籽粒中運(yùn)輸和積累是提高氮素利用效率的重要途徑[40]。在較低肥力水平下,隨著施氮量的增加,氮肥利用效率呈先升后降趨勢(shì)[24]。本研究的土壤肥力較高,雖然隨著施氮量的增加各器官氮素積累量呈顯著上升趨勢(shì),尤其是莖鞘、 籽粒部位,但氮空白處理也有較高的籽粒產(chǎn)量,氮素農(nóng)學(xué)利用率、 氮素生產(chǎn)效率、 氮素吸收效率和氮素利用效率等參數(shù)呈顯著下降趨勢(shì),產(chǎn)量增加的比例不及施氮量增加的比例。而氮素收獲指數(shù)和表觀回收率的變幅不及其他指標(biāo),這表明在本研究施氮范圍內(nèi),小麥源庫基本平衡,隨著施氮量的增加,氮素吸收量同步增加,籽粒和植株氮素含量并可協(xié)同增加,但氮素吸收量增加并沒有進(jìn)一步轉(zhuǎn)化為更高的經(jīng)濟(jì)產(chǎn)量。
增加施氮量利于四川盆地機(jī)播稻茬麥分蘗成穗及穗粒數(shù)的提高,在目前生產(chǎn)水平下150 kg/hm2施氮水平可以獲得較高的產(chǎn)量和經(jīng)濟(jì)效益,繼續(xù)增加氮素用量,產(chǎn)量和氮素利用效率下降。
參考文獻(xiàn):
[1] Wang Q, Li F R, Zhao Letal. Effects of irrigation and nitrogen application rates on nitrate nitrogen distribution and fertilizer nitrogen loss, wheat yield and nitrogen uptake on a recently reclaimed sandy farmland[J]. Plant Soil, 2010, 337: 325-339.
[2] 楊晴, 李雁鳴, 肖凱, 等. 不同施氮量對(duì)小麥旗葉衰老特性和產(chǎn)量性狀的影響[J]. 河北農(nóng)業(yè)大學(xué)學(xué)報(bào), 2002, 25(4): 20-24.
Yang Q, Li Y M, Xiao Ketal. Effect of different amount of nitrogen on flag leaf senescence and yield components of wheat[J]. J. Agric. Univ. Hebei, 2002, 25(4): 20-24.
[3] 王月福, 姜東, 于振文, 等. 氮素水平對(duì)小麥籽粒產(chǎn)量和蛋白質(zhì)含量的影響及其生理基礎(chǔ)[J]. 中國農(nóng)業(yè)科學(xué), 2003, 36(5): 513-520.
Wang Y F, Jiang D, Yu Z Wetal. Effects of nitrogen rates on grain yield and protein content of wheat and its physiological basis[J]. Sci. Agric. Sin., 2003, 36(5): 513-520.
[4] 石玉, 于振文, 王東, 等. 施氮量和底追比例對(duì)小麥氮素吸收轉(zhuǎn)運(yùn)及產(chǎn)量的影響[J]. 作物學(xué)報(bào), 2006, 32(12): 1860-1866.
Shi Y, Yu Z W, Wang Detal. Effects of nitrogen rate and ratio of base fertilizer and topdressing on uptake, translocation of nitrogen and yield in wheat[J]. Acta Agron. Sin., 2006, 32(12): 1860-1866.
[5] 馬興華, 于振文, 梁曉芳, 等. 施氮量和底追比例對(duì)小麥氮素吸收利用及子粒產(chǎn)量和蛋白質(zhì)含量的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2006, 12(2): 150-155.
Ma X H, Yu Z W, Liang X Fetal. Effects of nitrogen application rate and ratio of base and topdressing on nitrogen absorption, utilization, grain yield, and grain protein content in winter wheat[J]. Plant Nutr. Fert. Sci., 2006, 12(2): 150-155.
[6] 孫旭生, 林琪, 李玲燕, 等. 氮素對(duì)超高產(chǎn)小麥生育后期光合特性及產(chǎn)量的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2008, 14(5): 840-844.
Sun X S, Lin Q, Li L Yetal. Effects of nitrogen supply on photosynthetic characteristics at later developing stages and yield in super high-yield winter wheat[J]. Plant Nutr. Fert. Sci., 2008, 14(5): 840-844.
[7] 葉優(yōu)良, 王桂良, 朱云集, 等. 施氮對(duì)高產(chǎn)小麥群體動(dòng)態(tài)、 產(chǎn)量和土壤氮素變化的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2010, 21(2): 351-358.
Ye Y L, Wang G L, Zhu Y Jetal. Effects of nitrogen fertilization on population dynamics and yield of high-yielding wheat and on alteration of soil nitrogen[J]. Chin. J. Appl. Ecol., 2010, 21(2): 351-358.
[8] Rafael J, López-Bellido, Juan Eetal. Comparative response of bread and durum wheat cultivars to nitrogen fertilizer in a rainfed Mediterranean environment: soil nitrate and N uptake and efficiency[J]. Nutr. Cycl. Agroecosys., 2008, 80: 121-130.
[9] Yadvinder-Singh, Gupta R K, Gurpreet-Singhetal. Nitrogen and residue management effects on agronomic productivity and nitrogen use efficiency in rice-wheat system in Indian Punjab[J]. Nutr. Cycl. Agroecosys., 2009, 84: 141-154
[10] 曹承富, 孔令聰, 汪建來, 等. 施氮量對(duì)強(qiáng)筋和中筋小麥產(chǎn)量和品質(zhì)及養(yǎng)分吸收的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2005, 11(1): 46-50.
Cao C F, Kong L C, Wang J Letal. Effects of nitrogen on yield, quality and nutritive absorption of middle and strong gluten wheat[J]. Plant Nutr. Fert. Sci., 2005, 11(1): 46-50.
[11] 韓勝芳, 李淑文, 吳立強(qiáng), 等. 不同小麥品種氮效率與氮吸收對(duì)氮素供應(yīng)的響應(yīng)及生理機(jī)制[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2007, 18(4): 807-812.
Han S F, Li S W, Wu L Qetal. Responses and corresponding physiological mechanisms of different wheat varieties in their nitrogen efficiency and nitrogen uptake to nitrogen supply[J]. Chin. J. Appl. Ecol., 2007, 18(4): 807-812.
[12] 郭勝利, 高會(huì)議, 黨廷輝. 施氮水平對(duì)黃土旱塬區(qū)小麥產(chǎn)量和土壤有機(jī)碳、 氮的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2009, 15(4): 808-814.
Guo S L, Gao H Y, Dang T H. Effects of nitrogen application rates on grain yield, soil organic carbon and nitrogen under a rainfed cropping system in the loess tablelands of China[J]. Plant Nutr. Fert. Sci., 2009, 15(4): 808-814.
[13] 趙廣才, 常旭虹, 楊玉雙, 等. 追氮量對(duì)不同品質(zhì)類型小麥產(chǎn)量和品質(zhì)的調(diào)節(jié)效應(yīng)[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2010, 16(4): 859-865.
Zhao G C, Chang X H, Yang Y Setal. Grain yield and quality responding to the nitrogen fertilizer operation in different quality type wheat[J]. Plant Nutr. Fert. Sci., 2010, 16(4): 859-865.
[14] 趙俊曄, 于振文. 我國小麥生產(chǎn)現(xiàn)狀與發(fā)展小麥生產(chǎn)能力的思考[J]. 農(nóng)業(yè)現(xiàn)代化研究, 2005, 26(5): 344-348.
Zhao J Y, Yu Z W. Production status and development of productive capacity of wheat in China[J]. Reas. Agric Modern, 2005, 26(5): 344-348.
[15] 盧布,丁斌,呂修濤,等. 中國小麥優(yōu)勢(shì)區(qū)域布局規(guī)劃研究[J]. 中國農(nóng)業(yè)資源與區(qū)劃,2010, 31(2): 6-12.
Lu B, Ding B, Lü X Tetal. Arrangement planning of Chinese wheat ascendant regions[J]. Chin. J. Agric. Resourc. Regin. Plann., 2010, 31(2): 6-12.
[16] 鐘永玲, 曹慧. 中國小麥產(chǎn)業(yè)發(fā)展現(xiàn)狀、 調(diào)控政策及建議[J]. 農(nóng)學(xué)學(xué)報(bào),2011, 1(10): 49-54.
Zhong Y L, Cao H. Developmental status, regulation policy and suggestion of Chinese wheat industry[J]. J. Agric., 2011, 1(10): 49-54.
[17] 李朝蘇, 湯永祿, 解立勝, 等. 2BMFDC-6型稻茬麥半旋播種機(jī)設(shè)計(jì)與性能試驗(yàn)[J]. 西南農(nóng)業(yè)學(xué)報(bào), 2011, 24(2): 789-793.
Li C S, Tang Y L, Xie L Setal. Design and experiment of 2BMFDC-6 half-tillage seeder of wheat after rice[J]. Southwest China J. Agric. Sci., 2011, 24(2): 789-793.
[18] 于振文. 小麥產(chǎn)量與品質(zhì)生理及栽培技術(shù)[M]. 北京: 中國農(nóng)業(yè)出版社, 2006. 92.
Yu Z W. Wheat yield, quality physiology and cultivation technology[M]. Beijing: China Agriculture Press, 2006. 92.
[19] 吳金水, 郭勝利, 黨廷輝. 半干旱區(qū)農(nóng)田土壤無機(jī)氮積累與遷移機(jī)理[J]. 生態(tài)學(xué)報(bào), 2003, 23(10): 2041-2049.
Wu J S, Guo S L, Dang T H. Mechanisms in the accumulation and movement of mineral N in soil profiles of farming land in a semi-arid region[J]. Acta Ecol. Sin., 2003, 23(10): 2041-2049.
[20] 趙俊曄, 于振文. 不同土壤肥力條件下施氮量對(duì)小麥氮肥利用和土壤硝態(tài)氮含量的影響[J]. 生態(tài)學(xué)報(bào), 2006, 26(3): 815-822.
Zhao J Y, Yu Z W. Effects of nitrogen rate on nitrogen fertilizer use of winter wheat and content of soil nitrate-N under different fertility condition[J]. Acta Ecol. Sin., 2006, 26(3): 815-822.
[21] 于振文, 田奇卓, 潘慶民, 等. 黃淮麥區(qū)冬小麥超高產(chǎn)栽培的理論與實(shí)踐[J]. 作物學(xué)報(bào), 2002, 28(5): 577-585.
Yu Z W, Tian Q Z, Pan Q Metal. Theory and practice on cultivation of super high yield of winter wheat in the wheat fields of Yellow River and Huaihe River districts[J]. Acta Agron. Sin., 2002, 28(5): 577-585.
[22] 曹倩, 賀明榮, 代興龍, 等. 密度、 氮肥互作對(duì)小麥產(chǎn)量及氮素利用效率的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2011, 17(4): 815-822.
Cao Q, He M R, Dai X Letal. Effects of interaction between density and nitrogen on grain yield and nitrogen use efficiency of winter wheat[J]. Plant Nutr. Fert. Sci., 2011, 17(4): 815-822.
[23] 徐鳳嬌, 趙廣才, 田奇卓, 等. 施氮量對(duì)不同品質(zhì)類型小麥產(chǎn)量和加工品質(zhì)的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2012, 18(2): 300-306.
Xu F J, Zhao G C, Tian Q Zetal. Effects of nitrogen fertilization on grain yield and processing quality of different wheat genotypes[J]. Plant Nutr. Fert. Sci., 2012, 18(2): 300-306.
[24] 張銘, 蔣達(dá), 繆瑞林, 等. 不同土壤肥力條件下施氮量對(duì)稻茬小麥氮素吸收利用及產(chǎn)量的影響[J]. 麥類作物學(xué)報(bào), 2010, 30(1): 135-140.
Zhang M, Jiang D, Miao R Letal. Effects of N application rate on nitrogen absorption, utilization and yield of wheat under different soil fertility after rice[J]. J. Triticeae Crops, 2010, 30(1): 135-140.
[25] 張銘, 蔣達(dá), 繆瑞林, 等. 稻茬田肥力水平與施氮量對(duì)小麥籽粒產(chǎn)量和物質(zhì)生產(chǎn)的影響[J]. 麥類作物學(xué)報(bào), 2010, 30(2): 330-336.
Zhang M, Jiang D, Miao R Letal. Effects of different soil fertility levels and N application rate on wheat yield and matter production after rice. J. Triticeae Crops, 2010, 30(2): 330-336.
[26] 石祖梁, 顧克軍, 楊四軍. 氮肥運(yùn)籌對(duì)稻茬小麥干物質(zhì)、 氮素轉(zhuǎn)運(yùn)及氮素平衡的影響[J]. 麥類作物學(xué)報(bào), 2012, 32(6): 1128-1133.
Shi Z L, Gu K J, Yang S J. Effect of nitrogen application on translocation of dry matter and nitrogen and nitrogen balance in winter wheat under rice-wheat rotation[J]. J. Triticeae Crops, 2012, 32(6): 1128-1133.
[27] 農(nóng)業(yè)部小麥專家指導(dǎo)組. 小麥高產(chǎn)創(chuàng)建示范技術(shù)[M]. 北京: 中國農(nóng)業(yè)出版社, 2008. 255-256.
Wheat Expert Steering Group of the Ministry of Agriculture. Wheat high-yield demonstration technology[M].Beijing: China Agriculture Press, 2008. 255-256.
[28] 葉優(yōu)良, 韓燕來, 譚金芳, 等. 中國小麥生產(chǎn)與化肥施用狀況研究[J]. 麥類作物學(xué)報(bào), 2007, 27(1): 127-133.
Ye Y L, Han Y L, Tan J Fetal. Wheat production and fertilizer application in China[J]. J. Triticeae Crops, 2007, 27(1): 127-133.
[29] 俞海, 黃季, Scott Rozelle, 等. 中國東部地區(qū)耕地土壤肥力變化趨勢(shì)研究[J]. 地理研究, 2003, 22(3): 380-388.
Yu H, Huang J, Scott Retal. Soil fertility changes of cultivated land in Eastern China[J]. Geogr. Res., 2003, 22(3): 380-388.
[30] 李向東, 陳源泉, 湯永祿, 等. 集約多熟稻田長期保護(hù)性耕作條件下土壤養(yǎng)分變化分析[A]. 高旺盛, 孫占樣. 中國農(nóng)作制度研究進(jìn)展2008[C]. 沈陽: 遼寧科學(xué)技術(shù)出版社, 2008. 392-398.
Li X D, Chen Y Q, Tang Y Letal. Soil fertility change analysis of intensive multiple-cropping paddy fields with conservation farming system [A]. Gao W S, Sun Z X. Chinese Farming System Research Progress in 2008[C]. Shenyang: Liaoning Science and Technology Press, 2008. 392-398.
[31] 王小燕, 于振文. 不同施氮量條件下灌溉量對(duì)小麥氮素吸收轉(zhuǎn)運(yùn)和分配的影響[J]. 中國農(nóng)業(yè)科學(xué), 2008, 41(10): 3015-3024.
Wang X Y, Yu Z W. Effect of irrigation rate on absorption and translocation of nitrogen under different nitrogen fertilizer rate in wheat[J]. Sci. Agric. Sin., 2008, 41(10): 3015-3024.
[32] 朱兆良. 農(nóng)田中氮肥的損失與對(duì)策[J]. 土壤與環(huán)境, 2000, 9 (1): 1-6.
Zhu Z L. Loss of fertilizer N from plants-soil system and the strategies and techniques for its reduction[J]. Soil. Environ. Sci., 2000, 9(1): 1-6.
[33] 串麗敏, 趙同科, 安志裝, 等. 土壤硝態(tài)氮淋溶及氮素利用研究進(jìn)展[J]. 中國農(nóng)學(xué)通報(bào), 2010, 26(11): 200-205.
Chuan L M, Zhao T K, An Z Zetal. Research advancement in nitrate leaching and nitrogen use in soils[J]. Chin. Agric. Sci. Bull., 2010, 26(11): 200-205.
[34] 湯永祿, 黃鋼, 袁立勛. 稻茬麥精量露播稻草覆蓋高效栽培技術(shù)[J]. 作物雜志, 2000, (3): 22-24.
Tang Y L, Huang G, Yuan L X. High-benefit cultivation technique of surface seeding and mulching rice straw for wheat after rice[J]. Crops, 2000, (3): 22-24.
[35] 李朝蘇, 湯永祿, 吳春, 等. 播種方式對(duì)稻茬小麥生長發(fā)育及產(chǎn)量建成的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2012, 28(18): 36-43.
Li C S, Tang Y L, Wu Cetal. Effect of different sowing patterns on growth, development and yield formation of wheat after rice[J]. Trans. Chin. Soc. Agric. Eng., 2012, 28(18): 36-43.
[36] 張均華, 劉建立, 呂菲, 等. 施氮對(duì)稻麥輪作區(qū)小麥地上器官干物質(zhì)及氮素累積運(yùn)轉(zhuǎn)的影響[J]. 麥類作物學(xué)報(bào), 2009, 29(5): 892-896.
Zhang J H, Liu J L, Lü Fetal. Effect of nitrogen application on accumulation and transportation of matter and nitrogen in above-ground organs of wheat in rice-wheat rotation area[J]. J. Triticeae Crops, 2009, 29(5): 892-896.
[37] 劉芳, 亓新華. 氮肥對(duì)冬小麥碳氮營養(yǎng)代謝的影響[J]. 山東農(nóng)業(yè)科學(xué), 1989(5): 5-8.
Liu F, Qi X H. Effect of nitrogenous fertilizer on catabolism of carbon and nitrogen in winter wheat[J]. Shandong Agric. Sci., 1989(5): 5-8.
[38] 郭文善, 方明奎, 王蔚華, 等. 氮素對(duì)小麥莖鞘物質(zhì)貯運(yùn)和籽粒發(fā)育的調(diào)節(jié)效應(yīng)[J]. 江蘇農(nóng)業(yè)研究, 2001, 22(4): 1-4.
Guo W S, Fang M K, Wang W Hetal. Effects of nitrogen on accumulation and translocation of temporary reserves in stem and leaf sheath and grain development in wheat[J]. Jiangsu Agric. Res., 2001, 22(4): 1-4.
[39] 王高武, 唐建華, 吳維中. 小麥抽穗前后干物質(zhì)生產(chǎn)特點(diǎn)及其對(duì)穗重的影響[J]. 江蘇農(nóng)業(yè)學(xué)報(bào), 1988, 4(2): 23-29.
Wang G W, Tang J H, Wu W Z. Characters of biomass production before and after heading and its relation to spike weight in wheat[J]. Jiangsu J. Agric.Sci., 1988, 4(2): 23-29.
[40] 趙滿興, 周建斌, 楊絨, 等. 不同施氮量對(duì)旱地不同品種冬小麥氮素累積、 運(yùn)輸和分配的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2006, 12(2): 143-149.
Zhao M X, Zhou J B, Yang Retal. Characteristics of nitrogen accumulation, distribution and translocation in winter wheat on dry land[J]. Plant Nutr. Fert. Sci., 2006, 12(2): 143-149.