王麗霞, 湯舉紅, 肖 斌, 楊亞軍, 柳 潔
(1 西北農(nóng)林科技大學(xué)園藝學(xué)院,陜西楊凌 712100; 2 長(zhǎng)江師范學(xué)院生命科學(xué)與技術(shù)學(xué)院,重慶涪陵 408000;3 中國(guó)農(nóng)業(yè)科學(xué)院茶葉研究所,浙江杭州 310013)
氟并不是植物的必需元素,植物吸氟后,會(huì)產(chǎn)生抑制光合[8],引起細(xì)質(zhì)滲漏[9],改變糖類和脂類的代謝,抑制酶活性[10]等生理作用。茶葉中的兒茶素類物質(zhì)如 EGCG、 EGC、 EC、 ECG是構(gòu)成茶葉品質(zhì)與風(fēng)味的主要成分,具有抗氧化活性[11]。茶氨酸和咖啡堿也是茶葉中天然存在的化合物,是兒茶素的合成前體[12],可以刺激人體中樞神經(jīng)系統(tǒng),提高人體的免疫能力[13]。茶葉的香氣主要由易揮發(fā)的芳香物質(zhì)構(gòu)成,是評(píng)價(jià)茶葉品質(zhì)優(yōu)良與否的重要指標(biāo)。茶葉的香氣成分受多種因素的影響,包括品種、 栽培條件、 環(huán)境因素和加工條件等。Yang等證明遮陰條件顯著影響茶葉的香氣成分[14],張靈枝等證明不同的干燥方式也會(huì)對(duì)茶葉的香氣成分產(chǎn)生影響[15]。金屬元素鉀、 鈣、 鎂、 鐵和鋅既是植物生長(zhǎng)的必需元素,也是人體所需的營(yíng)養(yǎng)元素。研究葉片中這些營(yíng)養(yǎng)物質(zhì)在氟處理?xiàng)l件下含量的變化,有助于揭示氟對(duì)茶樹茶葉品質(zhì)的影響。因而,本試驗(yàn)擬通過茶苗的水培試驗(yàn),研究營(yíng)養(yǎng)液中不同濃度氟對(duì)茶樹干物質(zhì)積累,相對(duì)生長(zhǎng)率,營(yíng)養(yǎng)元素吸收,葉片兒茶素類物質(zhì)和香氣組分的影響,初步探究氟影響茶葉生長(zhǎng)、 品質(zhì)及生理代謝的機(jī)理。
不同氟水平處理5周后收獲整株茶苗,先用自來水清洗3次后,再用去離子水沖洗一次。用濾紙吸干水分后,記錄植株鮮重及干重,計(jì)算相對(duì)生長(zhǎng)率(R),R= (lnW2- lnW1)/(T2- T1),其中W1和W2分別為時(shí)間T1和T2的整株干重,T2- T1為處理時(shí)間, 單位為g/(g·d),DW。選取新長(zhǎng)出的頂部嫩葉、 嫩莖和根,洗凈后立刻用液氮超低溫保存或干燥后儲(chǔ)存在真空干燥器中,用于后續(xù)試驗(yàn)指標(biāo)的測(cè)定。
用Excel進(jìn)行試驗(yàn)數(shù)據(jù)的基本計(jì)算,OriginPro 8.5.1軟件進(jìn)行統(tǒng)計(jì)分析,顯著水平分別為0.01和0.05(Fisher LSD方法)。
與對(duì)照相比,不同氟水平對(duì)茶苗根、 莖和葉干重的影響不同(表1)。0.1 mmol/L 氟水平下茶苗干重增加了3%,而0.2和0.3 mmol/L氟水平下茶苗干重降低了2.1% 和 6.4%;0.1 mmol/L 氟水平下茶苗相對(duì)生長(zhǎng)率增加,比對(duì)照增加了8.8%,而0.2和0.3 mmol/L氟水平下茶苗相對(duì)生長(zhǎng)率分別降低了8.1%和15.5%。
表1 不同濃度氟對(duì)茶苗不同部位干物質(zhì)量和相對(duì)生長(zhǎng)率的影響Table 1 Effect of different fluoride contents on dry weight and relative growth rate of tea seedlings
注(Note): 同列數(shù)值后不同小寫字母表示處理間差異達(dá)5%顯著水平 Different lower letters at the same column mean significantly different at the 5% level.
不同氟水平處理對(duì)茶苗葉片不同營(yíng)養(yǎng)元素含量的影響不同(表2)。隨著氟處理濃度的增大,茶苗葉片氮、 鉀、 鎂、 鐵、 鋅與碳酸氫根的含量顯著降低,而磷、 鈣和氟的含量顯著增加,其中葉片氟的含量達(dá)到極顯著水平。氟處理對(duì)茶苗葉片中氯離子含量的影響不明顯。
隨著氟處理濃度的增大,葉片茶素類物質(zhì)的含量呈下降趨勢(shì),除EGC的變化不明顯外,EC、 EGCG、 ECG的含量均顯著地下降了約20.7%、 23.5%、 50.4%(在0.3 mmol/L 氟處理下)。 此外,氟處理也顯著地降低了葉片茶氨酸和咖啡堿的含量,在0.2 mmol/L 氟處理下,茶氨酸降低了19.4%,咖啡堿降低了15.5%(表3)。
表2 氟處理對(duì)茶苗葉片營(yíng)養(yǎng)元素含量的影響Table 2 Effect of F treatments on nutrient element contents in tea leaves
注(Note): 同行數(shù)值后不同小寫字母表示處理間差異達(dá)5%顯著水平,大寫字母表示1%顯著水平 Different small letters at the same row mean significantly different at the 5% level and capital letters mean significantly different at the 1% level.
通過測(cè)定茶苗葉片香氣含量,共發(fā)現(xiàn)68種香氣成分(表4)。由于各種香氣成分的含量很低,本試驗(yàn)對(duì)葉片的香氣成分進(jìn)行了歸類,共分成烷類、 醛類、 醇類、 酯類、 酸類、 芳香、 酮類、 雜環(huán)、 胺類等9種;其中醛、 醇、 酯和芳香類是茶葉香氣物質(zhì)的主要成分。氟處理對(duì)這幾類物質(zhì)含量的影響不同(圖1)。對(duì)烷類、 酸類、 雜環(huán)類、 胺類和酮類物質(zhì)含量的影響不大,但對(duì)醛、 醇、 酯和芳香類物質(zhì)的影響較大,0.2 mmol/L F處理降低了葉片醛、 醇、 酯和芳香類物質(zhì)的含量,而0.3 mmol/L F處理增加了醛、 醇、 酯和芳香類物質(zhì)的含量。
表3 氟處理對(duì)葉片茶氨酸、 兒茶素和咖啡堿含量的影響(mg/g, DW)Table 3 Effect of F on the contents of catechins, theanine and caffeine in tea leaves
注(Note): THE—茶氨酸 Theanine; EGC—表沒食子兒茶素 Epigallocatechin; CAF—咖啡堿 Caffeine; EC—表兒茶素 Epicatechin; EGCG—表沒食子兒茶素沒食子酸酯 Epigallocatechin gallate; ECG—表兒茶素沒食子酸酯 Epicatechin gallate; 同列數(shù)值后不同小寫字母表示處理間差異達(dá)5%顯著水平 Different lower letters at the same column mean significantly different at the 5% level.
表4 不同濃度氟處理對(duì)茶苗葉片香氣成分含量的影響(mg/kg)Table 4 Effect of different fluoride concentrations on the leaf volatiles contents
續(xù)表4Table4continuos
香氣成分 The aroma compountsCK0.1 mmol/L F0.2 mmol/L F0.3 mmol/L F6-甲基-5-庚烯-2-酮 5-Hepten-2-one, 6-methyl-——0.0120.0162-正戊基呋喃 Furan, 2-pentyl-0.0190.0190.0220.0272-甲基-6-庚烯醇 6-Hepten-1-ol, 2-methyl-0.1090.1080.1420.152cis-2-(2-戊烯基)呋喃 Cis-2-(2-Pentenyl)furan0.019———3-己酸乙酯 3-Hexenoic acid, ethyl ester—0.0200.0260.0533-甲基-3-庚醇 3-Heptanol, 3-methyl-0.0150.0110.0140.030(E,E)-2,4-庚二烯醛 2,4-Heptadienal, (E,E)-0.0200.0220.0260.0392-乙基-4甲基-戊醇 1-Pentanol, 2-ethyl-4-methyl-0.0270.0170.0290.024苯甲醇 Benzyl alcohol0.3300.4000.4090.709苯乙醛 Benzeneacetaldehyde0.0110.0120.0150.0283-己酸乙酯 2-Hexenoic acid, ethyl ester———0.041(E)-2-辛烯醛 2-Octenal, (E)-———0.013環(huán)辛醇 Cyclooctyl alcohol 0.0100.0110.0150.018反-氧化芳樟醇 Trans-Linalool oxide 0.2040.1160.2250.185戊基環(huán)丙烷 Cyclopropane, pentyl-0.0340.0420.0520.0472-(5-甲基-5-乙烯四氫呋喃-2-yl)丙烷-2-ly-碳酸乙酯 Ethyl-2-(5-methyl-5-vinyltetrahydrofuran-2-yl)propan-2-yl carbonate0.2620.1750.1990.2703,3-二甲基-庚烷 Heptane, 3,3-dimethyl-———0.010芳樟醇 1, 6-Octadien-3-ol, 3,7-dimethyl-1.4981.6222.2142.618壬醛 Nonanal0.0400.0340.0420.048苯乙醇 Phenylethyl Alcohol0.1670.1160.2240.3202-硝基苯酚 Phenol, 2-nitro-0.0200.0150.0270.0294-甲基-癸烷 Decane, 4-methyl-0.0110.0120.0180.0191,1-雙(十二烷氧基)-十六烷 Hexadecane, 1,1-bis(dodecyloxy)-0.0150.0130.0230.0212,3-二甲基癸烷 2,3-Dimethyldecane0.0220.0240.0260.0271-乙基-2(1H)吡啶 2(1H)-Pyridinone, 1-ethyl-0.0110.0100.0140.0241-癸醇 1-Decanol0.0310.0300.0520.048異亮氨酰絲氨酸 Ile-Ser0.0140.0090.0140.016水楊酸甲酯 Methyl salicylate3.3831.6111.7141.581alpha-松油醇 α-Terpineol0.0130.0160.0200.0221-甲基馬鞭草烯醇 1-Methylverbenoll0.0150.0140.010—辛酸乙酯 Octanoic acid, ethyl ester———0.0255-乙基癸烷 5-Ethyldecane—0.0130.0170.021癸醛 Decanal 0.0130.0150.0220.0277-甲基-3-亞甲基-6辛烯醇 6-Octen-1-ol, 7-methyl-3-methylene-0.0260.0230.0260.038
續(xù)表4Table4continuos
香氣成分 The aroma compountsCK0.1 mmol/L F0.2 mmol/L F0.3 mmol/L F橙花醇 2,6-Octadien-1-ol, 3,7-dimethyl-, (Z)-0.0610.0590.0690.082(Z)-3,7-二甲基-3,6-辛二烯醇3,6-Octadien-1-ol, 3,7-dimethyl-, (Z)-0.0370.0330.0400.0432-硝基-4-甲苯酚 Phenol, 4-methyl-2-nitro-0.0100.0090.0200.014香葉醇 Geraniol 0.1260.1130.1110.109(Z)-2-癸烯醛 2-Decenal, (Z)-0.0220.0170.0170.030水楊酸乙酯 Benzoic acid, 2-hydroxy-, ethyl ester0.3810.9240.7802.0902-1-亞乙基-1H-茚 1H-Indene, 1-ethylidene-0.0260.0120.0180.02111-氧雜四環(huán)十二烷-9-酮 11-Oxatetracyclo-dodecan-9-one0.0440.0230.0280.032(1-烯丙基環(huán)丙烷)甲醇 (1-Allylcyclopropyl)methanol0.0210.0240.0160.0226a-甲基-1,6-二環(huán)戊雙酮 6a-Methyl-hexahydropentalene-1,6-dione0.0150.0120.0100.019正十四烷 Tetradecane0.0100.0180.0140.0181,5-二甲基-萘 Naphthalene, 1,5-dimethyl-0.009———(E)-6,10-二甲基-5,9-十一雙烯-2-酮 5,9-Undecadien-2-one, 6,10-dimethyl-, (E)-——0.0090.0134甲基-1-(1-異丙基)-環(huán)己醇 Cyclohexanol, 4-methyl-1-(1-methylethyl)-0.0180.0190.0190.032反-α-紫羅酮 Trans-α-Ionone0.015———正十五烷 Pentadecane——0.0090.013石竹素 Caryophyllene oxide0.0180.0190.0190.0323,7,11-三甲基-1,6,10-十二烷三烯-3-醇 1,6,10-Dodecatrien-3-ol, 3,7,11-trimethyl-0.0200.0230.0270.030十六烷 Hexadecane0.0210.0260.0340.040
注(Note): “—”表示未檢測(cè)出 Means no detected.
圖1 不同濃度氟對(duì)茶苗葉片香氣成分不同種類總量的影響 Fig.1 Effect of different fluoride contents on leaf volatile components in tea seedlings
本試驗(yàn)中氟的短期處理(5周)降低了茶苗干物質(zhì)積累量和相對(duì)生長(zhǎng)率,但是與對(duì)照相比,未達(dá)到顯著效果,而在唐茜等[17]試驗(yàn)中,氟處理(19月)顯著降低了茶苗地上部干物質(zhì)量,這可能與氟處理時(shí)間有關(guān)。此外,也表明外源氟處理能抑制茶苗的生長(zhǎng),這可能與氟抑制葉片正常的光合作用有關(guān), Zwiazek and Shay[23]證明氟能夠破壞植物葉肉細(xì)胞的膜結(jié)構(gòu),引起脂質(zhì)和葉綠體淀粉顆粒的滲漏,導(dǎo)致氣孔的非正常關(guān)閉,降低了葉片的光合性能,從而降低了植株的生長(zhǎng)和代謝能力。
參考文獻(xiàn):
[1] Sofuoglu S C, Kavcar P. An exposure and risk assessment for fluoride and trace metals in black tea[J]. J.Hazard. Mater., 2008, 158: 392-400.
[2] 馬立鋒, 石元值, 阮建云, 等. 湘、 鄂磚茶主產(chǎn)區(qū)茶園土壤氟含量狀況及影響因素[J]. 茶葉科學(xué), 2002, 22(1): 34-37.
Ma L F, Shi Y Z, Ruan J Yetal. Status of fluorine in the soils of tea gardens in brick tea areas of Hunan, Hubei Provinces and its affecting factors[J]. Tea Sci., 2002, 22(1): 34-37.
[3] Xie Z, Chen Z, Sun Wetal. Distribution of aluminum and fluoride in tea plant and soil of tea garden in central and Southwest China[J]. Chin. Geogr. Sci., 2007, 17: 376-382
[4] Fung K F, Zhang Z Q, Wong J W Cetal. Fluoride contents in tea and soil from tea plantations and the release of fluoride into tea liquor during infusion[J]. Environ. Pollut.,1999, 104: 197-205.
[5] Messaitfa A. Fluoride contents in groundwaters and the main consumed foods (dates and tea) in Southern Algeria region[J]. Environ. Geol., 2008, 55: 377-383.
[6] Li H, Liu Q, Wang Wetal. Fluoride in drinking water, brick tea infusion and human urine in two counties in Inner Mongolia, China[J]. J. Hazard. Mater., 2009, 167: 892-895.
[7] Malinowska E, Inkielewicz I, Czarnowski Wetal. Assessment of fluoride concentration and daily intake by human from tea and herbal infusions[J]. Food Chem. Toxicol. 2008, 46: 1055-1061.
[8] Choi D S, Kayama M, Jin H Oetal. Growth and photosynthetic responses of two pine species (PinuskoraiensisandPinusrigida) in a polluted industrial region in Korea[J]. Environ. Pollut., 2006, 139: 421-432.
[9] Zwiazek J J, Shay J M. The effects of sodium fluoride on cytoplasmic leakage and the lipid and fatty acid composition of jack pine (Pinusbanksiana) seedlings[J]. Can. J. Bot., 1988, 66: 535-541.
[10] Facanha A R, Meis L D. Inhibition of maize root H+-ATPase by fluoride and fluoroaluminate complexes[J]. Plant Physiol., 1995, 108: 241-245.
[11] Gradisar H, Pristovsek P, Plaper Aetal. Green tea catechins inhibit bacterial DNA gyrase by interaction with its ATP binding site[J]. J. Med. Chem., 2007, 50: 264-271.
[12] Song R, Kelman D, Johns K Letal. Correlation between leaf age, shade levels, and characteristic beneficial natural constituents of tea (Camelliasinensis) grown in Hawaii[J]. Food Chem., 2012, 133: 707-714.
[13] Kimura K, Ozeki M, Juneja Letal. L -Theanine reduces psychological and physiological stress responses[J]. Biol. Psychol., 2007, 74: 39-45.
[14] Yang Z Y, Kobayashi E, Katsuno Tetal. Characterisation of volatile and non-volatile metabolites in etiolated leaves of tea (Camelliasinensi) plants in the dark[J]. Food Chem., 2012, 135: 2268-2276.
[15] 張靈枝, 陳維信, 王登良,等. 不同干燥方式對(duì)普洱茶香氣的影響研究[J]. 茶葉科學(xué), 2007, 27(1): 71-75.
Zhang L Z, Chen W X, Wang D Letal. Effect of drying methods on the aromatic character of Pu-erh tea[J]. Tea Sci., 2007, 27(1): 71-75.
[16] Konishi S, Miyamoto S, Taki T. Stimulatory effects of aluminum on tea plants grown under low and high phosporus supply[J]. Soil Sci. Plant Nutr., 1985, 31: 361-368.
[17] 唐茜, 趙先明, 杜曉,等. 氟對(duì)茶樹生長(zhǎng)、 葉片生理生化指標(biāo)與茶葉品質(zhì)的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2011, 17(1): 186-194.
Tang Q, Zhao X M, Du Xetal. Effects of fluorine stress on growth, physiological-biochemical characteristics and quality of tea leaves[J]. Plant Nutr. Fert. Sci., 2011, 17(1): 186-194.
[18] Behrendt A, Oberste V, Wetzel W E. Fluoride concentration and pH of iced tea products[J]. Caries Res., 2002, 36: 405-410.
[19] 范寶磊, 張健, 索有瑞. 原子吸收光譜和原子熒光光譜法測(cè)定藤茶中微量元素含量[J]. 分析科學(xué)學(xué)報(bào), 2010, 26(5): 611-613.
Fan B L, Zhang J, Suo Y R. Determination of trace elements in Tengcha by atomic absorption spectrometry and atomic fluorescence spectrometry[J]. J. Anal. Sci., 2010, 26(5): 611-613.
[20] 勞家檉.土壤農(nóng)化分析手冊(cè)[M]. 北京: 中國(guó)農(nóng)業(yè)出版社,1988. 368-372.
Lao J S. Soil chemical analysis manual[M]. Beijing: China Agriculture Press, 1988. 368-372.
[21] 施倩, 陳林, 張正竹,等. 茶葉中L-茶氨酸HPLC-PDAD分析方法的建立[J]. 安徽農(nóng)業(yè)大學(xué)學(xué)報(bào), 2006, 33(3): 347-350.
Shi Q, Chen L, Zhang Z Zetal. A method for determination of L-theanine with HPLC-PDAD in tea[J]. J. Anhui Agric. Univ., 2006, 33(3): 347-350.
[22] 葉乃興, 楊廣, 鄭乃輝, 等. 烘青茶坯香氣成分的SPME/GC-MS分析[J]. 福建農(nóng)林大學(xué)學(xué)報(bào)(自然科學(xué)版), 2006, 36(2): 165-168.
Ye N X, Yang G, Zhen N Hetal. Analysis of the aroma of refined baked green tea using SPME/GC-MS[J]. J. Fujing Agric. For. Univ.(Nat. Sci. Ed.), 2006, 36(2): 165-168.
[23] Zwiazek J J, Shay J M. Fluoride and drought-induced structural alterations of mesophyll and guard cells in cotyledons of jack pine (Pinusbanksiana)[J]. Can. J. Bot. 1987, 65: 2310-2317.
[24] 李麗霞,杜曉,何春雷.水培茶苗對(duì)氟的吸收累積特性[J], 四川農(nóng)業(yè)大學(xué)學(xué)報(bào), 2008,26(1): 59-63.
Li L X, Du X, He C L. Absorptionand accumulation characteristics of fluorine in nutrient liquid cultured tea plant[J]. J. Sichuan Agric. Univ., 2008, 26(1): 59-63.
[25] Linkohr B I, Williamson L C, Fitter A Hetal. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis[J]. Plant J., 2002, 29: 751-760.
[26] Shevela D, Eaton-Rye J J, Shen J Retal. Photosystem II and the unique role of bicarbonate: A historical perspective[J]. Biochim. Biophys. Acta, 2012, 1817: 1134-1151.
[27] Kamaluddin M, Zwiazek J J. Fluoride inhibits root water transport and affects leaf expansion and gas exchange in aspen(Populustremuloides) seedlings. Physiologia Plantarum, 2003,117: 368-375.
[28] Cramer G R, Lauchli A, Polito V S. Displacement of Ca2+by Na+from the plasmalemma of root cells[J]. Plant Physiol., 1985, 79: 207-211
[29] Franklina J A, Zwiazek J J. Ion uptake in Pinus banksiana treated with sodium chloride and sodium sulphate[J]. Physiol. Plant., 2004, 120: 482-490.
[30] Reddy M P, Kaur M. Sodium fluoride induced growth and metabolic changes inSalicorniabrachiataRoxb[J]. Water Air Soil Pollut., 2008, 188: 171-179.
[31] 李瓊, 阮建云. 氟對(duì)茶葉品質(zhì)成分代謝的影響[J], 茶葉科學(xué), 2009, 29: 207-211.
Li Q, Yuan J Y. Effects of fluoride on the metabolism of tea quality components[J]. Tea Sci., 2009, 29: 207-211.
[32] Li C L. Effect of fluoride on chemical consitituents of tea leaves[J]. Fluoride, 2009, 42: 237-243.
植物營(yíng)養(yǎng)與肥料學(xué)報(bào)2014年2期