朱士博 歐志英
·綜述·
與肺發(fā)育相關(guān)的microRNA
朱士博 歐志英
microRNAs(miRNAs)是指一類短鏈非編碼的RNA分子,起著負(fù)調(diào)控基因表達(dá)的作用。他們參與著重要的細(xì)胞生理生化過程,包括調(diào)控機(jī)體生長、發(fā)育、分化及代謝等。進(jìn)一步了解miRNAs的作用及其機(jī)制,對疾病的診斷及治療都可能提供一個新的方向。本文討論與肺發(fā)育相關(guān)的miRNAs,將闡明microRNA在肺發(fā)育中的作用,為臨床提供新的預(yù)防及治療思路。
microRNA;肺發(fā)育;轉(zhuǎn)錄因子;生長因子
miRNAs是一類非編碼的,進(jìn)化保守的小RNA分子,它能調(diào)控基因的表達(dá)。從1993年發(fā)現(xiàn)的第一個miRNA(lin-4)到現(xiàn)在,已有很多miRNAs相繼被發(fā)現(xiàn),數(shù)量增長十分迅速。目前已有2 019個人類miRNAs被發(fā)現(xiàn)(Sanger miRBase version 18),他們的作用包括調(diào)控重要細(xì)胞生理過程,和不同疾病的發(fā)病機(jī)制[1]。
在最近的十幾年里,通過蛋白組學(xué)和基因組學(xué)的研究,我們對肺部疾病的病理過程有了進(jìn)一步的認(rèn)識。這其中包括對病理生理,多個復(fù)雜的系統(tǒng)和眾多啟動子、轉(zhuǎn)錄因子的研究,大都進(jìn)行了調(diào)控因子的研究,研究顯示,miRNAs在肺的生長發(fā)育和肺部疾病中起著極其重要的作用[2_4]。
伴隨著技術(shù)的進(jìn)步,我們開始關(guān)注和研究肺發(fā)育中必須的關(guān)鍵“因子”。例如可以借助轉(zhuǎn)基因技術(shù),通過其過表達(dá)或敲除特定的基因,來評價肺發(fā)育的過程及其結(jié)局。
1.1轉(zhuǎn)錄因子
至少有兩組轉(zhuǎn)錄因子在肺發(fā)育過程中發(fā)揮著重要作用,它們是:Nkx同源域(Nkx homeodomain),維甲酸信號通路(retinoid signaling pathway)。
1.1.1Nkx同源域轉(zhuǎn)錄因子
Nkx2.1是肺發(fā)育中最重要的同源域轉(zhuǎn)錄因子之一,也叫做TTF-1(甲狀腺轉(zhuǎn)錄因子)。將Nkx2.1敲除的小鼠會影響氣管食管的分離,以及早期肺的發(fā)育[5]。過量表達(dá)Nkx2.1后會導(dǎo)致出生后肺形態(tài)的改變,表現(xiàn)在肺泡Ⅱ型細(xì)胞增殖,肺泡發(fā)育不全。嚴(yán)重的會出現(xiàn)肺炎、肺纖維化、以及呼吸衰竭[6]。缺乏Nkx2.1基因的肺上皮細(xì)胞,不會表達(dá)標(biāo)志蛋白,如Sp-B、Sp-C和CC10。在小鼠中Nkx2.1突變會導(dǎo)致其出生后死于肺泡畸形、肺發(fā)育不良,以及肺泡表面蛋白、血管內(nèi)皮生長因子(VEGF)的表達(dá)減少[7]。
1.1.2維甲酸信號通路
最早的證據(jù)是1941年Andersen發(fā)現(xiàn)的維甲酸信號通路被干擾后發(fā)生了膈疝,原因是給大鼠喂食了缺乏維生素A的食物。于是運(yùn)用現(xiàn)代分子遺傳學(xué)技術(shù)基因敲除維甲酸受體(RAR),發(fā)現(xiàn)可以導(dǎo)致先天性膈疝,肺動脈高壓以及肺發(fā)育不良[8]。在nitrofen誘導(dǎo)的先天性膈疝大鼠胎肺組織培養(yǎng)液中添加維甲酸,可以促進(jìn)肺的生長,并部分改善了肺發(fā)育不良。當(dāng)然有研究人員給nitrofen誘導(dǎo)的孕鼠喂食維生素A,發(fā)現(xiàn)可以促進(jìn)肺的成熟和生長[9]。另外,喂食維生素A的仔鼠有更高的存活率。通過對比喂食維生素A的孕鼠和未處理組,發(fā)現(xiàn)喂食維生素A可以降低膈疝的發(fā)生率,由之前的54%降至32%[10]。最近,STRA6被證實(shí)是血清中維生素A的膜受體,將STRA6突變后導(dǎo)致小鼠先天性膈疝、肺動脈高壓和一系列畸形[11]。
1.2多肽生長因子
1.2.1FGF家族
FGFR信號通路對早期肺分支的形成及發(fā)育是必需的。在孕14.5天時阻斷FGFR信號,會導(dǎo)致產(chǎn)前氣道形成減少,并且與產(chǎn)后嚴(yán)重的肺氣腫關(guān)系密切。在孕16.5天阻斷FGFR信號會引起中度肺氣腫。缺乏FGFR3和FGFR4的小鼠無法形成正常的肺泡,表現(xiàn)在纖維細(xì)胞疏松,彈力蛋白過度表達(dá)[12]。
FGF10是肺發(fā)育中被研究最多的蛋白之一。敲除FGF10的小鼠會出現(xiàn)末梢肺發(fā)育障礙[13]。FGF10對鄰近上皮細(xì)胞有趨化作用:在間質(zhì)中上皮細(xì)胞的增殖和遷移都是朝向FGF10[14]。FGF10控制著上皮的分化,包括下調(diào)Sp-C和Bmp4的表達(dá)[15]。
1.2.2TGF-β亞家族
TGF-β配體亞家族包含3個亞型:TGF-β1、2和3?;蚯贸齌GF-β1后,小鼠在產(chǎn)后2月內(nèi)因進(jìn)行性肺炎死亡,可能是負(fù)向調(diào)節(jié)免疫系統(tǒng)的原因[16]。TGF-β2基因敲除的小鼠在孕14.5天因?yàn)榉伟l(fā)育不良和復(fù)雜心臟畸形而死亡[17]。TGF-β3敲除的小鼠出生后表現(xiàn)為肺發(fā)育遲緩,腭裂,嚴(yán)重的吞咽和呼吸困難[18]。而且阻斷TGF-β通路后會導(dǎo)致嚴(yán)重的肺部畸形[19]。
1.2.3Wnt/β-catenin通路
Wnt信號在器官生長發(fā)育過程和腫瘤生長中發(fā)揮著重要作用[20]。在胎肺中敲除β-catenin會干擾氣道上皮、間質(zhì)和血管的正常發(fā)育。Wnt5a過表達(dá)能直接調(diào)節(jié)間質(zhì)細(xì)胞中FGF10的表達(dá)[21],結(jié)合基因表達(dá)分析:β-catenin信號調(diào)節(jié)著間質(zhì)細(xì)胞的發(fā)育,并且對正常內(nèi)皮的分化是必需的[22]。Cohen等[23]證實(shí)Wnt信號對氣管平滑肌的發(fā)育起著重要的作用。
1.2.4胰島素樣生長因子(IGFs)
IGF1缺乏的小鼠會出現(xiàn)氣道縮小,Sp3,Sp-B表達(dá)下降[24]。IGF1對胎肺內(nèi)皮細(xì)胞是有益的:在人類胎肺培養(yǎng)中,將IGF1R沉默會導(dǎo)致內(nèi)皮細(xì)胞減少,氣道分支減少,增加間質(zhì)細(xì)胞的凋亡[25]。
近年來,隨著研究的不斷深入,發(fā)現(xiàn)一些microRNAs通過調(diào)控很多信號通路或生長因子來發(fā)揮重要的作用。Qi等發(fā)現(xiàn)在肺癌中miR-365通過3’-UTR來調(diào)控發(fā)育相關(guān)基因TTF-1[26]。miR-8,在果蠅中屬于miR-200家族的成員,被證實(shí)具有負(fù)向調(diào)控Wnt信號通路的作用[27]。Nodal是TGF-β家族中的一種配體,在生長發(fā)育引導(dǎo)胚層以及身體軸向的分化。在爪蟾中研究發(fā)現(xiàn)miR-15、miR-16能減弱Nodal信號通路,原因是他們能夠抑制Nodal受體激活素[28]。有學(xué)者在研究大鼠肝臟時發(fā)現(xiàn)miR-20a通過抑制TGF-β信號通路,抑制胚胎干細(xì)胞的分化,調(diào)節(jié)肝臟發(fā)育的過程[29]。Smad蛋白是一大類轉(zhuǎn)錄因子,他們能轉(zhuǎn)導(dǎo)TGF-β信號通路,同樣也受miRNAs的調(diào)控。在肝臟發(fā)育中,miR-23b這一簇被證實(shí)能夠靶向調(diào)控三個SMAD(包括Smad3,Smad4和Smad5)。因此抑制miR-23b可以促進(jìn)TGF-β信號的轉(zhuǎn)導(dǎo),使肝臟細(xì)胞增殖[30]。研究人員通過熒光素酶系統(tǒng)證實(shí)miR-146a的目標(biāo)基因是Smad4,其通過TGF-β/Smad信號通路調(diào)節(jié)細(xì)胞分化[31]。Wang等將小鼠miR_126敲除,會出現(xiàn)血管瘺,大出血,不久便會死亡,原因是沒有足夠的內(nèi)皮細(xì)胞去維持血管的完整性。其可以通過VEGF和FGF通路來促進(jìn)血管再生[32]。Saito及其同事研究在A549肺腺癌細(xì)胞系中,miR-23a可以部分調(diào)節(jié)TGF-β和TNF-α通路,以此來調(diào)控上皮-間質(zhì)的轉(zhuǎn)化[33]。還有研究顯示在急性肺損傷中miR-16調(diào)節(jié)肺皮中鈉通道的表達(dá),其可以抑制TGF-β,其目標(biāo)基因是羥色胺轉(zhuǎn)運(yùn)體(SERT)[34]。Woltering等在斑馬魚中研究發(fā)現(xiàn)miR-10能抑制HoxB1和HoxB3a[35]。Naguibneva及其同事證實(shí)miR-181通過靶基因Hox-a11來調(diào)節(jié)哺乳動物中肌細(xì)胞的分化過程[36]。有研究人員在研究羅非魚時發(fā)現(xiàn)miR-206能夠調(diào)節(jié)IGF-1基因的表達(dá),以此來調(diào)控其生長發(fā)育[37]。Jia等在Hela細(xì)胞系中過表達(dá)miR-223,通過其靶基因IGF-1R能抑制細(xì)胞增殖[38]。
有許多miRNAs顯示和肺發(fā)育相關(guān),讓我們能更好的理解其肺發(fā)育不良的病理機(jī)制提供了基礎(chǔ)。Bhaskaran等發(fā)現(xiàn)在孕晚期胎鼠的胎肺中高表達(dá)miRNA-127,原位雜交顯示其在胎肺發(fā)育中,逐漸由間葉細(xì)胞轉(zhuǎn)移至上皮細(xì)胞。于是在孕早期胎肺中過表達(dá)miRNA-127(miR-127),導(dǎo)致胎肺肺芽數(shù)量下降,肺芽體積大小不等,提示miR-127可能在胎肺發(fā)育中起著重要作用[39]。Ventura等在小鼠中將miR-17-92基因簇敲除后,發(fā)現(xiàn)其生后不久便死于嚴(yán)重肺發(fā)育不良和室間隔缺損[40]。Lu等通過腺病毒載體在小鼠胎肺中過表達(dá)miR-17-92簇,導(dǎo)致其發(fā)生表型異常,表現(xiàn)為原始的肺上皮細(xì)胞高度增殖,終末氣腔缺失,這表明miR-17-92簇對肺發(fā)育至關(guān)重要,其在小鼠胎肺中表達(dá)量很高[41]。Wang等證實(shí)miR-375通過抑制Wnt信號通路調(diào)節(jié)大鼠肺泡上皮的分化[42]。miR-17,miR-20a和miR-106b直接調(diào)控Stat3和Mapk4,通過FGF10-FGFR2b的下調(diào)來調(diào)控E鈣粘蛋白的表達(dá)。因此miR-17及其同源簇是調(diào)節(jié)FGF10-FGFR2b通路的關(guān)鍵信號之一,其調(diào)節(jié)著肺芽形態(tài)發(fā)生的周期規(guī)律[43]。Gradus等研究顯示miR-125b和miR-30a/c通過FGF通路控制氣管軟骨的分化,其對氣管的正常發(fā)育至關(guān)重要[44]。
隨著大量的miRNAs被證實(shí)和發(fā)現(xiàn),每一個都有許多假定的目標(biāo)基因,現(xiàn)在的挑戰(zhàn)是去研究和驗(yàn)證他們的生物學(xué)功能,但是恰恰因?yàn)閙iRNAs和目標(biāo)基因的作用,以及相互之間的精細(xì)調(diào)節(jié)而把該問題變得更加復(fù)雜。然而,回顧microRNA和肺發(fā)育的相互關(guān)系,會使我們分辨并篩選出更有價值和線索的microRNA繼續(xù)研究。
未來的挑戰(zhàn)將是系統(tǒng)地研究所有microRNA的功能,以及和細(xì)胞信號通路之間的關(guān)系,并從中挑選出與肺發(fā)育相關(guān)的miRNAs。對于miRNAs上游及下游的反饋調(diào)節(jié),是否能有理想的方法來幫助我們觀察這些信號通路的表達(dá)?很多時候不能只靠直覺和預(yù)測,而是需要科學(xué)的實(shí)驗(yàn)論證。這樣將闡明microRNA在肺發(fā)育中的作用,為臨床提供新的預(yù)防及治療思路。
[1]Kozomara A,Griffiths-Jones S.miRBase:integrating microRNA annotation and deep-sequencing data[J].Nucleic Acids Res,2011,39:D152_157.
[2]Nana-Sinkam S P,Hunter M G,Nuovo G J,et al.Integrating the MicroRNome into the study of lung disease[J].Am J Reapir Crit Care Med,2009,179:4_ 10.
[3]Tomankova T,Petrek M,Kriegova E.Involvement of microRNAs in physiological and pathological processes in the lung[J].Respir Resv,2010,11:159.
[4]Pagdin T,Lavender P.MicroRNAs in lung diseases.Thorax,2012,67:183_184.
[5]Minoo P,Su G,Drum H,et al.Defects in tracheoesophageal and lung morphogenesis in Nkx2.1(_/_)mouse embryos[J].Dev Biol,1999,209:60_71.
[6]Wert S E,Dey C R,Blair P A,et al.Increased expression of thyroid transcription factor-1(TTF-1)in respiratory epithelial cells inhibits alveolarization and causes pulmonary inflammation[J].Dev Biol,2002,242: 75_87.
[7]De Felice M,Silberschmidt D,DiLauro R,et al.TTF-1phosphorylationisrequiredforperipheral lung morphogenesis,perinatal survival,and tissuespecific gene expression[J].J Biol Chem,2003,278: 35574_35583.
[8]Mendelsohn C,Lohnes D,Decimo D,et al.Function of the R-A receptors(RARs)during development(II).Multiple abnormalities at various stage of organogenesis in RAR double mutants[J].Development,1994,120: 2749_2771.
[9]Thebaud B,Barlier-Mur A M,Chailley-Heu B,et al.Restoringeffects of vitamin A on surfactant synthesis in nitrofen-induced congenitaldiaphragmatic hernia in rats [J].Am J Respir Crit Care Med,2001,164:1083_1089.
[10]Babiuk R P,Thebaud B,Greer J J.Reductions in the incidence of nitrofen-induced diaphragmatic hernia by vitamin A and retinoic acid[J].Am J Physiol Lung Cell Mol Physiol,2004,286:L970_L973.
[11]Golzio C,Martinovic-Bouriel J,Thomas S,et al.Matthew-Woodsyndromeiscausedbytruncating mutations in the retinol-binding protein receptor gene STRA6[J].Am J Hum Genet,2007,80:1179_1187.
[12]Hokuto I,Perl A K,Whitsett J A.Prenatal,but not postnatal,inhibition of fibroblast growth factor receptor signaling causes emphysema[J].J Biol Chem,2003, 278:415_421.
[13]Min H,Danilenko D M,Scully S A,et al.Fgf-10 is required for both limb and lung development and exhibitsstrikingfunctionalsimilaritytoDrosophila branchless[J].Genes Dev,1998,12:3156_3161.
[14]Weaver M,Dunn N R,Hogan B L.Bmp4 and Fgf10 play opposing roles during lung bud morphogenesis[J].Development,2000,127:2695_2704.
[15]Hyatt B A,Shangguan X,Shannon J M.BMP4 modulates fibroblast growth factor-mediated induction of proximal and distal lung differentiation in mouse embryonictrachealepitheliuminmesenchyme-free culture[J].Dev Dyn,2002,225:153_165.
[16]McLennan I S,Poussart Y,Koishi K.Development of skeletal muscles in transforming growth factor-beta 1 (TGF-beta1)null-mutant mice[J].Dev Dyn,2000,217: 250_256.
[17]Bartram U,Molin D G,Wisse L J,et al.Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping,myocardialization,endocardial cushion differentiation,and apoptosis in TGF-beta(2)-knockout mice[J].Circulation,2001,103:2745_2752.
[18]Shi W,Heisterkamp N,Groffen J,et al.TGF-beta3-null mutation does not abrogate fetal lung maturation in vivo by glucocorticoids[J].Am J Physiol,1999,277: L1205_L13.
[19]Komatsu Y,Shibuya H,Takeda N,et al.Targeted disruption of the tab1 gene causes embryonic lethality and defects in cardiovascular and lung morphogenesis [J].Mech Dev,2002,119:239_249.
[20]Mucenski M L,Wert S E,Nation J M,Loudy DE,et al.Beta-cateninisrequiredforspecificationof proximal/distal cell fate during lung morphogenesis[J].J Biol Chem,2003,278(41):40231_40238.
[21]Li C,Hu L,Xiao J,et al.Wnt5a regulates Shh and Fgf10 signaling during lung development[J].Dev Biol, 2005,287(1):86_97.
[22]De Langhe S P,Carraro G,Tefft D,et al.Formation and differentiation of multiple mesenchymal lineages during lung development is regulated by beta-catenin signaling[J].PLoS One,2008,3(1):e1516.
[23]Cohen E D,Ihida-Stansbury K,Lu M M,et al.Wnt signaling regulates smooth muscle precursor development in the mouse lung via a tenascin C/PDGFR pathway[J].J Clin Invest,2009,119(9):2538_2549.
[24]Pichel J G,Fernandez-Moreno C,Vicario-Abejon C,et al.Developmental cooperation of leukemia inhibitory factor and insulin-like growth factor I in mice is tissuespecific and essential for lung maturation involving the transcription factors Sp3 and TTF-1[J].Mech Dev, 2003,120:349_361.
[25]Han R N,Post M,Tanswell A K,et al.Insulin-like growthfactor-Ireceptor-mediatedvasculogenesis/ angiogenesis in human lung development[J].Am J Respir Cell Mol Biol,2003,28:159_169.
[26]Qi J,Rice S J,Salzberg A C,et al.MIR-365 regulates lung cancer and developmental gene thyroid transcription factor 1[J].Cell Cycle,2012,11(1):177_186.
[27]Kennell J A,Gerin I,MacDougald O A,et al.The microRNA miR-8 is a conserved negative regulator of Wnt signaling[J].Proc Natl Acad Sci,2008,105: 15417_15422.
[28]Martello G,Zacchigna L,Inui M,et al.MicroRNA control of Nodal signalling[J].Nature,2007,449:183_ 188.
[29]Wei W,Hou J,Alder O,et al.Genome-wide microRNAandmRNAprofilinginmouseliver developmentimplicatesmir302bandmir20ain repressing TGF-β signaling[J].Hepatology,2013,12.doi:10.1002/hep.26252.[Epub ahead of print]
[30]Rogler C E,Levoci L,Ader T,et al.MicroRNA-23b cluster microRNAs regulate transforming growth factorβ/bone morphogenetic protein signaling and liver stem cell differentiation by targeting Smads[J].Hepatology, 2009,50:575_584.
[31]Zhong H,Wang H R,Yang S,et al.Targeting Smad4 links microRNA-146a to the TGF-beta pathway during retinoid acid induction in acute promyelocytic leukemia cell line[J].Int J Hematol,2010,92(1):129_135.
[32]Wang S,Aurora A B,Johnson B A,et al.The endothelial-specificmicroRNAmiR-126governs vascular integrity and angiogenesis[J].Dev Cell,2008, 15(2):261_271.
[33]Saito A,Suzuki H I,Horie M,et al.An integrated expression profiling reveals target genes of TGF-βand TNF_αpossibly mediated by microRNAs in lung cells [J].PLoS ONE,2013,8(2):e56587.
[34]Tamarapu P P,Galam L,Huynh B,et al.MicroRNA 16modulatesepithelialsodiumchannelinhuman alveolar epithelial cells[J].Biochem Biophys Res Commun,2012,426(2):203_208.
[35]Oltering J M,Durston A J.MIR-10 represses HoxB1a and HoxB3a in zebrafish[J].PLoS One,2008,3(1): e1396.
[36]Naguibneva I,Ameyar Z M,Polesskaya A,et al.The microRNA miR-181 targets the homeobox protein Hox-A11 during manmalian myoblast differentiation[J].Nat Cell Biol,2006,8(3):278_284.
[37]Yan B,Zhu C D,Guo J T,et al.miR-206 regulates the growth of the teleost tilapia through the modulation of IGF-1 gene expression[J].J Exp Biol,2013,216: 1265_1269.
[38]Jia C Y,Li H H,Zhu X C,et al.MIR-223 suppresses cell proliferation by targeting IGF-1R[J].PLoS One, 2011,6(11):e27008.
[39]Bhaskaran M,Wang Y,Zhang H,et al.MicroRNA-127 modulates fetal lung development[J].Physiol Genomics,2009,37(3):268_278.
[40]Ventura A,Young A G,Winslow M M,et al.Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters[J].Cell,2008,132(5):875_886.
[41]Lu Y,Thomson J M,Wong H Y,et al.Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells[J].Dev Biol,2007,310 (2):442_453.
[42]Wang Y,Huang C,Reddy C N,et al.miR-375 regulates rat alveolar epithelial cell trans-differentiation by inhibiting Wnt/β-catenin pathway[J].Nucleic Acids Res,2013,41(6):3833_3844.
[43]Carraro G,El-Hashash A,Guidolin D,et al.MiR?17 familyofmicroRNAscontrolsFGF10-mediated embryoniclungepithelialbranchingmorphogenesis through MAPK14 and STAT3 regulation of E-cadherin distribution[J].Dev Biol,2009,333(2):238_250.
[44]Gradus B,Alon I,Hornstein E.miRNAs control tracheal chondrocyte differentiation[J].Dev Biol,2010, 360(1):58_65.
MicroRNAs and lung development
ZHU Shibo,OU Zhiying
(Guangzhou Women and Children’s medical center,Guangdong,Guangzhou 510623,China)
MicroRNA(miRNAs)are a kind of small non-coding RNA molecules that negatively regulate gene expression.They participate in the modulation of important cell physiological and biochemical processes such as the regulation of body growth,development,differentiation and metabolism.Studying more about the role of miRNAs and their mechanisms could lead us to realize the development of new diagnosis and treatment.This article discusses with lung development-related miRNAs and the possible future of these discoveries in clinical applications.
microRNA;Lung development;Transcript factor;Growth factor
廣東省自然科學(xué)基金(S2012010009538)
廣州市婦女兒童醫(yī)療中心,廣東,廣州510623
歐志英,E-mail:ou_zhiying@qq.com