張薈 蔣沁 姚進
血紅素加氧酶-1與角膜病、青光眼、白內(nèi)障及視網(wǎng)膜疾病的關(guān)系△
張薈 蔣沁 姚進
血紅素加氧酶-1;角膜?。磺喙庋?;白內(nèi)障;視網(wǎng)膜??;抗氧化;細胞保護
血紅素加氧酶-1(heme oxygenase-1,HO-1)是體內(nèi)最重要的內(nèi)源性抗氧化酶之一。它可以催化血紅素分解為一氧化碳、鐵離子和膽綠素,HO-1及其產(chǎn)物具有抗氧化、抗炎和抗凋亡等功能。越來越多的研究顯示,誘導HO-1表達上調(diào)可以保護角膜、小梁網(wǎng)、晶狀體及視網(wǎng)膜等眼部組織免受氧化損傷,成為治療相關(guān)眼科疾病的潛在靶點。本文就HO-1在眼科疾病中的最新研究進展作一綜述。
[眼科新進展,2014,34(4):385-388]
氧化應(yīng)激是多種眼科疾病發(fā)生發(fā)展的重要機制。機體通過本身的內(nèi)源性抗氧化系統(tǒng)抵抗氧化損傷,血紅素加氧酶-1(heme oxygenase-1,HO-1)就是其中分布最廣泛的一種抗氧化酶。HO-1與其他抗氧化酶不同,它能將血紅素分解成等摩爾的膽綠素、鐵離子和CO[1],而這些終末產(chǎn)物同時也具有抗氧化活性,發(fā)揮強大的細胞保護作用[2-3]。近年來,HO-1的抗氧化、抗炎、抗凋亡等作用引起越來越多的關(guān)注。深入了解其與眼科疾病的關(guān)系,將為調(diào)控HO-1治療眼科疾病提供理論基礎(chǔ)。本文就HO-1在眼科疾病中的最新研究進展作一綜述。
HO有三種亞型,即HO-1、HO-2和HO-3。研究最多的是HO-1同工酶。人體中HO-1相對分子質(zhì)量為32 800,由288個氨基酸組成。HO-1又稱熱休克蛋白32,能被過氧化氫、紫外線、重金屬(如鈷、鉻等)、低氧和細胞因子等多種因素誘導并顯著表達。因此,HO-1也稱誘導型HO。HO-2是在正常生理條件下起作用的結(jié)構(gòu)型HO,在體內(nèi)穩(wěn)定表達,不受外界因素干擾。HO-3降解血紅素的能力極低,其確切功能還有待進一步研究。
HO-1比任何酶都易被多種刺激所誘導,其表達主要是在轉(zhuǎn)錄水平上進行調(diào)節(jié)。HO-1啟動子上有兩個增強子區(qū),即El和E2。多個應(yīng)激反應(yīng)元件位于El和E2之間,使HO-1具有強誘導性[4]。應(yīng)激反應(yīng)元件包括核因子-E2相關(guān)因子2(nuclear factor-E2 related factor2,Nrf2)、轉(zhuǎn)錄因子活化蛋白1、核轉(zhuǎn)錄因子κB、缺氧誘導因子-1等。其中幾個重要的信號通路介導外部刺激對HO-1的誘導反應(yīng)。絲裂原活化蛋白激酶(MAPK)家族(p38、ERK和JUK)直接或間接參與HO-1的上調(diào)。PI3K/Akt、JAK-STAT、TLR、IL-10及蛋白激酶A、C、G等也參與HO-1基因的調(diào)控。人群中HO-1的表達水平是千變?nèi)f化的,這是因為HO-1基因的啟動子具有高度多態(tài)性,包含不同重復數(shù)量GT二核苷酸序列[5]。研究發(fā)現(xiàn),在GT短序列(GT≤23)的內(nèi)皮細胞中,HO-1基因轉(zhuǎn)錄和表達的水平更高,細胞保護作用更強[6]。
HO-1抗氧化、抗炎、抗凋亡作用與其催化產(chǎn)物CO、游離鐵和膽綠素密切相關(guān)。內(nèi)源性CO主要來自HO的催化反應(yīng),是體內(nèi)重要的細胞信號分子,調(diào)節(jié)體內(nèi)多種生理和病理過程。CO以自分泌或旁分泌方式與胞漿內(nèi)可溶性鳥苷酸環(huán)化酶(sGC)結(jié)合,催化三磷酸鳥苷(GTP)生成環(huán)鳥苷酸(cGMP),刺激依賴cGMP的蛋白激酶、磷酸二酯酶或調(diào)節(jié)離子通道。大量研究表明CO介導了HO-1 的主要抗炎抗氧化功能[7-8]。游離鐵能迅速誘導鐵蛋白合成并與之結(jié)合,促進游離鐵的螯合,使細胞內(nèi)鐵含量減少,因此鐵蛋白具有抗氧化的作用。最近的研究證明,HO-1的細胞保護作用與鐵蛋白的表達升高有關(guān)[9]。膽綠素是機體重要的內(nèi)源性強效抗氧化劑。實驗證明,在各種病理生理活動中膽綠素具有很強的細胞保護作用[10-12]。
HO-1是機體重要的抗氧化酶,在眼內(nèi)廣泛分布。Abraham等[13]1987年首次在人角膜上皮細胞中發(fā)現(xiàn)HO的活性。以后的研究進一步發(fā)現(xiàn)HO也分布在眼內(nèi)其他組織。HO-2作為組成型HO,在視網(wǎng)膜上的不同分布取決于動物的物種。HO-2只在猴視網(wǎng)膜神經(jīng)節(jié)細胞(retinal ganglion cell,RGC)的胞體中分布,而不存在于內(nèi)叢狀層、內(nèi)核層和外核層[14]。HO-2分布在龜視網(wǎng)膜光感受器、無長突細胞、雙極細胞和神經(jīng)節(jié)細胞內(nèi)。在大鼠中,HO-2分布在內(nèi)層視網(wǎng)膜的神經(jīng)節(jié)細胞和無長突細胞中[15]。與HO-2不同,HO-1是誘導型HO,體內(nèi)、體外實驗證明,在誘導因素的作用下,視網(wǎng)膜色素上皮(retinal pigment epithelium,RPE)細胞[16]、RGC[17]、光感受器細胞[18]、Müller細胞[19]、晶狀體上皮細胞(human lens epithelial cells,LECs)[20]和小梁網(wǎng)細胞[21]等均有HO-1的表達。HO-3在眼內(nèi)的分布仍未知。
4.1HO-1與角膜病角膜病是我國主要的致盲性眼病之一。由于角膜的特殊解剖位置,其易于受到創(chuàng)傷和感染等外界刺激因素的影響;同時由于角膜本身沒有血管,機體循環(huán)內(nèi)的抗氧化分子難以到達角膜上皮,因此角膜自身的抗氧化防御系統(tǒng)顯得尤為重要。Braunstein等[22]用人角膜上皮細胞系(human corneal epithelial cell line, HCE-T)研究發(fā)現(xiàn),給予HO-1誘導劑(氯化鋅、氯化亞錫和血紅素)可減少眼部刺激(包括過氧化氫、異丙醇、氫氧化鈉和三氯乙酸)的細胞毒作用;相反,給予HO-1抑制劑鋅原卟啉(ZnPP)能增強刺激物對細胞活性的影響。Patil等[23]在角膜炎動物模型的研究中發(fā)現(xiàn),用氯化亞錫誘導HO-1的表達,可加快角膜炎小鼠的傷口愈合,角膜基質(zhì)細胞浸潤減輕,促炎性脂質(zhì)介質(zhì)和細胞因子的產(chǎn)生也顯著減少。Bellner等[24]用HO-2缺失的小鼠和野生型小鼠制作角膜機械損傷模型,他們發(fā)現(xiàn)HO-2缺失的小鼠角膜炎癥和新生血管更明顯,同時其角膜損傷處HO-1的誘導表達減少,用膽綠素預處理能減弱HO-2缺失小鼠的炎癥和新生血管反應(yīng)。Bellner等[25]進一步研究發(fā)現(xiàn),膽綠素還能挽救HO-2缺失小鼠角膜損傷后久治不愈的慢性炎癥。Halilovic等[26]用體外角膜損傷模型研究發(fā)現(xiàn),角膜擦傷后HO-1及其活性短暫性升高。用膽綠素或CORM-A1(CO供體)能加速傷口的愈合。這些體內(nèi)、體外的研究結(jié)果表明,HO-1在控制角膜炎癥反應(yīng)中起到至關(guān)重要的作用。
4.2HO-1與青光眼青光眼是一種進行性視神經(jīng)病變,是以特征性的視野缺損為特點的眼科疾病。目前認為,氧化應(yīng)激在青光眼的發(fā)生發(fā)展中起重要作用,RGC及其軸突進行性死亡是視野缺損的最終原因。由此,保護RGC在青光眼治療中尤為重要。最近有實驗證明,鈷原卟啉(CoPP)誘導大鼠RGC高表達HO-1,通過減少p53、 caspase-3、核轉(zhuǎn)錄因子-κB、iNOS和MCP-1介導的巨噬細胞浸潤,從而對急性青光眼導致的視網(wǎng)膜缺血再灌注損傷起保護作用[27]。Koriyama等[28]研究發(fā)現(xiàn),α-硫辛酸通過Keap1/Nrf2信號通路誘導HO-1的表達,保護RGC免受氧化應(yīng)激損傷。病理性眼壓升高是青光眼的主要危險因素之一。Privitera等[29]發(fā)現(xiàn)應(yīng)用HO-1的誘導劑——氯高鐵血紅素可以降低兔眼壓,從而減少高眼壓對RGC的損傷。此外,CO作為HO-1的主要產(chǎn)物之一,大量研究證明CO也是眼壓的重要調(diào)節(jié)分子[30]。這些研究結(jié)果表明,HO-1/CO作為眼壓的調(diào)節(jié)因子,為青光眼的治療提供了新的靶點。
4.3HO-1與白內(nèi)障白內(nèi)障是晶狀體部分或完全的混濁,它是世界上可逆性致盲性眼病的主要病因。年齡相關(guān)性白內(nèi)障的發(fā)病機制是復雜的,尚未得到充分的闡明。一般認為,氧化應(yīng)激在白內(nèi)障的發(fā)生和發(fā)展中起十分重要的作用[31-32]。HO-1是反映細胞氧化應(yīng)激水平的敏感可靠的指標,且具有抗氧化損傷的作用。Abraham等[33]發(fā)現(xiàn),將人HO-1基因轉(zhuǎn)染到兔玻璃體內(nèi),在晶狀體內(nèi)檢測到HO-1 mRNA的表達。最近有研究證明,白藜蘆醇通過增加HO-1、超氧化物歧化酶-1和過氧化物酶對人LECs氧化損傷起保護作用[20],褪黑激素通過PI3K/Akt信號通路誘導HO-1、Nrf2、過氧化氫酶和丙二醛的表達,保護LECs免受過氧化氫導致的細胞凋亡[34]。但HO-1與白內(nèi)障的關(guān)系還需進一步研究。
4.4HO-1與年齡相關(guān)性黃斑變性年齡相關(guān)性黃斑變性(age-related macular degeneration,AMD)是發(fā)達國家老齡人中視力喪失的首要病因。隨著我國人口老齡化趨勢的加劇,AMD的患病率有不斷增高的趨勢。AMD的發(fā)病機制雖然不完全清楚,但氧化應(yīng)激在AMD的發(fā)生發(fā)展中起重要作用。HO-1被認為是一種抗氧化損傷的細胞防御因子。Frank等[35]研究發(fā)現(xiàn),人RPE中HO-1和HO-2抗原水平隨年齡增加而降低,其中新生血管性AMD患者相對于正常對照組降低更明顯。Miyamura等[36]也觀察到在正常人RPE中,HO-1 mRNA和HO-1蛋白的表達隨年齡增長而下降。HO-1在人RPE中的表達隨著年齡的增加而減少。提示HO-1的表達減少可能參與了AMD的發(fā)生發(fā)展過程。最近體外實驗證明,姜黃素誘導人RPE中HO-1的表達,減少ROS的產(chǎn)生,從而緩解人RPE氧化應(yīng)激損傷[37]。再者,有研究指出黃酮類化合物通過Nrf2通路上調(diào)HO-1的表達,阻斷細胞內(nèi)活性氧的累積,保護RPE和RGC氧化應(yīng)激誘導的損傷[16,38]。最新研究發(fā)現(xiàn),蝦青素激活PI3K/Akt通路,上調(diào)Nrf2介導的HO-1、苯醌氧化還原酶1等的表達,可減輕RPE氧化應(yīng)激損傷[39]。
4.5HO-1與糖尿病視網(wǎng)膜病變糖尿病視網(wǎng)膜病變(diabetic retinopathy,DR)是最常見的糖尿病微血管并發(fā)癥之一,是成年人群致盲的主要原因之一。大量研究證明,氧化應(yīng)激是DR發(fā)生發(fā)展中的關(guān)鍵因素。流行病學研究發(fā)現(xiàn),血糖控制不佳、抗氧化酶mRNA的低表達與DR的發(fā)生發(fā)展密切相關(guān)[40]。Castilho等[41]研究發(fā)現(xiàn),采用電穿孔基因轉(zhuǎn)染技術(shù)將pcDNA3-HO-1質(zhì)粒轉(zhuǎn)入視網(wǎng)膜血管內(nèi)皮細胞,HO-1的表達和活性增加,HO-1在氧化或氧化應(yīng)激條件下對血管內(nèi)皮細胞起保護作用。da Silva等[42]發(fā)現(xiàn)糖尿病患者視網(wǎng)膜中的HO-1 mRNA表達是降低的。與糖尿病患者結(jié)果不同,鏈脲佐菌素(streptozotoein,STZ)誘導的糖尿病大鼠6周后視網(wǎng)膜HO-1表達增加[43]。提示糖尿病大鼠早期,視網(wǎng)膜HO-1的表達增加可能是應(yīng)激性增加,在病程的進展中HO-1可能會有一個時間依賴性的變化。這與細胞實驗研究相一致,在血管內(nèi)皮細胞中葡萄糖對HO-1的誘導依賴于葡萄糖的自身水平,葡萄糖輕度增高,HO-1的表達和活性增加,以抗氧化應(yīng)激和細胞凋亡,而葡萄糖增加過多,活性氧大量生成,阻斷HO-1的上調(diào),最終導致細胞的高死亡率[44]。進一步研究發(fā)現(xiàn),氯高鐵血紅素誘導HO-1表達上調(diào)可減輕糖尿病大鼠RGC的病理損害[45]。以上結(jié)果均顯示了HO-1治療DR的可喜前景。
綜上所述,HO-1在眼部組織氧化應(yīng)激及其他因素誘導下發(fā)揮強效的細胞保護作用。因此,HO-1是治療AMD、DR等眼科疾病的一個潛在靶點,具有重要的臨床意義。
近年來大量實驗證明,HO-1誘導劑通過HO-1表達上調(diào)參與眼組織的細胞防御,但其是否有不利作用尚需進一步證明。如何以恰當?shù)姆绞秸T導HO-1在眼內(nèi)適時、適度、安全地表達是目前研究的方向。另外,目前對HO-1的研究大多集中在動物和細胞實驗上,在臨床應(yīng)用方面缺乏相應(yīng)的例證。隨著研究方法的推進和臨床試驗的開展,HO-1在眼科疾病的應(yīng)用將成為可能,研發(fā)的HO-1誘導劑相關(guān)藥物或HO-1基因療法有望成為最具潛能的眼科疾病治療方法。
1 Maines MD.The heme oxygenase system:past,present,and future[J].AntioxidRedoxSignal,2004,6(5):797-801.
2 Durante W.Heme oxygenase-1 in growth control and its clinical application to vascular disease[J].JCellPhysiol,2003,195(3):373-382.
3 Li Volti G,Zappala A,Leggio GM,Mazzola C,Drago F,La Delia F,etal.Tin chloride enhances parvalbumin-positive interneuron survival by modulating heme metabolism in a model of cerebral ischemia[J].NeurosciLett,2011,492(1):33-38.
4 Paine A,Eiz-Vesper B,Blasczyk R,Immenschuh S.Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential[J].BiochemPharmacol,2010,80(12):1895-1903.
5 Exner M,Minar E,Wagner O,Schillinger M.The role of heme oxygenase-1 promoter polymorphisms in human disease[J].FreeRadicBiolMed,2004,37(8):1097-1104.
6 Taha H,Skrzypek K,Guevara I,Nigisch A,Mustafa S,Grochot-Przeczek A,etal.Role of heme oxygenase-1 in human endothelial cells lesson from the promoter allelic variants[J].ArteriosclerThrombVascBiol,2010,30(8):1634-1641.
7 Bijjem KRV,Padi SSV,lal Sharma P.Pharmacological activation of heme oxygenase (HO)-1/carbon monoxide pathway prevents the development of peripheral neuropathic pain in Wistar rats[J].NaunynSchmiedebergsArchPharmacol,2013,386(1):79-90.
8 Li L,Li CM,Wu J,Huang S,Wang GL.Heat shock protein 32/heme oxygenase-1 protects mouse Sertoli cells from hyperthermia-induced apoptosis by CO activation of sGC signalling pathways[J].CellBiolInt,2014,38(1):64-71.
9 Lanceta L,Li C,Choi AM,Eaton JW.Haem oxygenase-1 overexpression alters intracellular iron distribution[J].BiochemJ,2013,449(1):189-194.
10 Jie Q,Tang Y,Deng Y,Li Y,Shi Y,Gao C,etal.Bilirubin participates in protecting of heme oxygenase-1 induction by quercetin against ethanol hepatotoxicity in cultured rat hepatocytes[J].Alcohol,2013,47(2):141-148.
11 Song S,Wang S,Ma J,Yao L,Xing H,Zhang L,etal.Biliverdin reductase/bilirubin mediates the anti-apoptotic effect of hypoxia in pulmonary arterial smooth muscle cells through ERK1/2 pathway[J].ExpCellRes,2013,319(13):1973-1987.
12 Sugimoto R,Tanaka Y,Noda K,Kawamura T,Toyoda Y,Billiar TR,etal.Preservation solution supplemented with biliverdin prevents lung cold ischaemia/reperfusion injury[J].EurJCardiothoracSurg,2012,42(6):1035-1041.
13 Abraham NG,Lin JH,Dunn MW,Schwartzman ML.Presence of heme oxygenase and NADPH cytochrome P-450 (c)reductase in human corneal epithelium[J].InvestOphthalmolVisSci,1987,28(9):1464-1472.
14 Ma N,Ding X,Doi M,Izumi N,Semba R.Cellular and subcellular localization of heme oxygenase-2 in monkey retina[J].JNeurocytol,2004,33(4):407-415.
15 Cao L,Blute TA,Eldred WD.Localization of heme oxygenase-2 and modulation of cGMP levels by carbon monoxide and/or nitric oxide in the retina[J].VisNeurosci,2000,17(3):319-329.
16 Hanneken A,Lin FF,Johnson J,Maher P.Flavonoids protect human retinal pigment epithelial cells from oxidative-stress-induced death[J].InvestOphthalmolVisSci,2006,47(7):3164-3177.
17 Liu Q,Ju WK,Crowston JG,Xie F,Perry G,Smith MA,etal.Oxidative stress is an early event in hydrostatic pressure-induced retinal ganglion cell damage[J].InvestOphthalmolVisSci,2007,48(10):4580-4589.
18 Shyong MP,Lee FL,Hen WH,Kuo PC,Wu AC,Cheng HC,etal.Viral delivery of heme oxygenase-1 attenuates photoreceptor apoptosis in an experimental model of retinal detachment[J].VisionRes,2008,48(22):2394-2402.
19 Yong PH,Zong H,Medina RJ,Limb GA,Uchida K,Stitt AW,etal.Evidence supporting a role for Nε-(3-formyl-3,4-dehydropiperidino)lysine accumulation in Müller glia dysfunction and death in diabetic retinopathy[J].MolVis,2010,16:2524-2527.
20 Zheng Y,Liu Y,Ge J,Wang X,Liu L,Bu Z,etal.Resveratrol protects human lens epithelial cells against H2O2-induced oxidative stress by increasing catalase,SOD-1,and HO-1 expression[J].MolVis,2010,16:1467-1469.
21 Tao L,Hong Z,Feng L.Existence of heme oxygenase-carbon monoxide-cyclic guanosine monophosphate pathway in human trabecular meshwork cellsinvitro[J].JHuazhongUnivSciTechnolMedSci,2004,24(2):173-177.
22 Braunstein SG,Deramaudt TG,Rosenblum DG,Dunn MG,Abraham NG.Heme oxygenase-1 gene expression as a stress index to ocular irritation[J].CurrEyeRes,1999,19(2):115-122.
23 Patil K,Bellner L,Cullaro G,Gotlinger KH,Dunn MW,Schwartzman ML.Heme oxygenase-1 induction attenuates corneal inflammation and accelerates wound healing after epithelial injury[J].InvestOphthalmolVisSci,2008,49(8):3379-3386.
24 Bellner L,Vitto M,Patil KA,Dunn MW,Regan R,Laniado-Schwartzman M.Exacerbated corneal inflammation and neovascularization in the HO-2 null mice is ameliorated by biliverdin[J].ExpEyeRes,2008,87(3):268-278.
25 Bellner L,Wolstein J,Patil KA,Dunn MW,Laniado-Schwartzman M.Biliverdin rescues the HO-2 null mouse phenotype of unresolved chronic inflammation following corneal epithelial injury[J].InvestOphthalmolVisSci,2011,52(6):3246-3253.
26 Halilovic A,Patil KA,Bellner L,Marrazzo G,Castellano K,Cullaro G,etal.Knockdown of heme oxygenase-2 impairs corneal epithelial cell wound healing[J].JCellPhysiol,2011,226(7):1732-1740.
27 Sun MH,Pang JH,Chen SL,Han WH,Ho TC,Chen KJ,etal.Retinal protection from acute glaucoma-induced ischemia-reperfusion injury through pharmacologic induction of heme oxygenase-1[J].InvestOphthalmolVisSci,2010,51(9):4798-4808.
28 Koriyama Y,Nakayama Y,Matsugo S,Kato S.Protective effect of lipoic acid against oxidative stress is mediated by Keap1/Nrf2-dependent heme oxygenase-1 induction in the RGC-5 cell line[J].BrainRes,2013,149(1):145-157.
29 Privitera MG,Potenza M,Bucolo C,Leggio GM,Drago F.Hemin,an inducer of heme oxygenase-1,lowers intraocular pressure in rabbits[J].JOculPharmacolTher,2007,23(3):232-239.
30 Bucolo C,Drago F.Carbon monoxide and the eye:Implications for glaucoma therapy[J].PharmacolTherapeut,2011,130(2):191-201.
32 Kaur J,Kukreja S,Kaur A,Malhotra N,Kaur R.The oxidative stress in cataract patients[J].JClinDiagnRes,2012,6(10):1629-1631.
33 Abraham NG,da Silva JL,Lavrovsky Y,Stoltz RA,Kappas A,Dunn MW,etal.Adenovirus-mediated heme oxygenase-1 gene transfer into rabbit ocular tissues[J].InvestOphthalmolVisSci,1995,36(11):2202-2210.
34 Bai J,Dong L,Song Z,Ge H,Cai X,Wang G,etal.The role of melatonin as an antioxidant in human lens epithelial cells[J].FreeRadicalRes,2013,13(1):1-21.
35 Frank RN,Amin RH,Puklin JE.Antioxidant enzymes in the macular retinal pigment epithelium of eyes with neovascular age-related macular degeneration[J].AmJOphthalmol,1999,127(6):694-709.
36 Miyamura N,Ogawa T,Boylan S,Morse LS,Handa JT,Hjelmeland LM.Topographic and age-dependent expression of heme oxygenase-1 and catalase in the human retinal pigment epithelium[J].InvestOphthalmolVisSci,2004,45(5):1562-1565.
37 Woo JM,Shin DY,Lee SJ,Joe Y,Zheng M,Yim JH,etal.Curcumin protects retinal pigment epithelial cells against oxidative stressviainduction of heme oxygenase-1 expression and reduction of reactive oxygen[J].MolVis,2012,18:901-907.
38 Maher P,Hanneken A.Flavonoids protect retinal ganglion cells from oxidative stress-induced death[J].InvestOphthalmolVisSci,2005,46(12):4796-4803.
39 Li Z,Dong X,Liu H,Chen X,Shi H,Fan Y,etal.Astaxanthin protects ARPE-19 cells from oxidative stressviaupregulation of Nrf2-regulated phase II enzymes through activation of PI3K/Akt[J].MolVis,2013,19:1656-1666.
40 El-Bab MF,Zaki NS,Mojaddidi MA,Al-Barry M,El-Beshbishy HA.Diabetic retinopathy is associated with oxidative stress and mitigation of gene expression of antioxidant enzymes[J].IntJGenMed,2013,6(6):799-806.
42 da Silva JL,Stoltz RA,Dunn MW,Abraham NG,Shibahara S.Diminished heme oxygenase-1 mRNA expression in RPE cells from diabetic donors as quantitated by competitive RT/PCR[J].CurrEyeRes,1997,16(4):380-386.
43 Cukiernik M,Mukherjee S,Downey D,Chakabarti S.Heme oxygenase in the retina in diabetes[J].CurrEyeRes,2003,27(5):301-308.
44 Iori E,Pagnin E,Gallo A,Calò L,Murphy E,Ostuni F,etal.Heme oxygenase-1 is an important modulator in limiting glucose-induced apoptosis in human umbilical vein endothelial cells[J].LifeSci,2008,82(7):383-392.
45 Fan J,Xu G,Jiang T,Qin Y.Pharmacologic induction of heme oxygenase-1 plays a protective role in diabetic retinopathy in rats[J].InvestOphthalmolVisSci,2012,53(10):6541-6556.
date:Nov 6,2013
National Natural Science Foundation of China (No:81271028); Medical Science and Technology Development Program of Nanjing (No:ZKX12047)From theAffiliatedEyeHospitalofNanjingMedicalUniversity,Nanjing210029,JiangsuProvince,China
Research advances in relationship between HO-1 and corneal diseases, glaucoma, cataract,retinal diseases
ZHANG Hui,JIANG Qin,YAO Jin
heme oxygenase-1; corneal diseases; glaucoma; cataract; retinal diseases; antioxidant; cytoprotection
Heme oxygenase -1 (HO-1)is one of the most important endogenous antioxidant enzymes in body. It can catalyze the degradation of heme to carbon monoxide, free iron and biliverdin. HO-1 and its products have antioxidant, anti-inflammatory and anti-apoptosis effects. More and more researches have shown that induction of HO-1 expression can protect cells in cornea, trabecular, lens and retina from oxidative damage, therefore HO-1 has become the potential target for curing disease in such areas. This article reviews the relationship between HO-1 and eye diseases.
張薈,女,1988年3月出生,江蘇淮安人,碩士研究生。聯(lián)系電話:18915160868;E-mail:zhanghui9695@163.com
AboutZHANGHui:Female,born in March,1988.Master degree.Tel:18915160868; E-mail:zhanghui9695@163.com
2013-11-06
國家自然科學基金資助(編號:81271028); 南京市醫(yī)學科技發(fā)展項目(編號:ZKX12047)
210029 江蘇省南京市,南京醫(yī)科大學附屬眼科醫(yī)院
姚進,E-mail:dryaojin@vip.sina.com
張薈,蔣沁,姚進.血紅素加氧酶-1與角膜病、青光眼、白內(nèi)障及視網(wǎng)膜疾病的關(guān)系[J].眼科新進展,2014,34(4):385-388.
??
10.13389/j.cnki.rao.2014.0107
修回日期:2014-02-12
本文編輯:盛麗娜
Accepteddate:Feb 12,2014
Responsibleauthor:YAO Jin,E-mail:dryaojin@vip.sina.com
[RecAdvOphthalmol,2014,34(4):385-388]