葉自成
所謂數(shù)學(xué)思想,就是對(duì)數(shù)學(xué)知識(shí)的本質(zhì)的認(rèn)識(shí)。是從某些具體的數(shù)學(xué)內(nèi)容和對(duì)數(shù)學(xué)的認(rèn)識(shí)過程中提練上升數(shù)學(xué)觀點(diǎn),它在認(rèn)識(shí)活動(dòng)中被反復(fù)運(yùn)用,帶有普遍的指導(dǎo)意義,是建立數(shù)學(xué)和用數(shù)學(xué)解決問題的指導(dǎo)思想,如建模思想、統(tǒng)計(jì)思想、最優(yōu)化思想、化歸思想、分類思想、整體思想、數(shù)形結(jié)合思想、轉(zhuǎn)化思想、方程思想、函數(shù)思想。
所謂數(shù)學(xué)方法指在數(shù)學(xué)中提出問題、解決問題(包括數(shù)學(xué)內(nèi)部問題和實(shí)際問題)過程中,所采用的各種方式、手段、途徑等。初中學(xué)生應(yīng)掌握的數(shù)學(xué)方法有配方法、換元法、待定系數(shù)法、參數(shù)法、構(gòu)造法、特殊值法等。
數(shù)學(xué)思想和數(shù)學(xué)方法是緊密聯(lián)系的,強(qiáng)調(diào)指導(dǎo)思想時(shí),稱數(shù)學(xué)思想,強(qiáng)調(diào)操作過程時(shí),稱數(shù)學(xué)方法。
一、初中生數(shù)學(xué)思想方法培養(yǎng)的重要性
從課程標(biāo)準(zhǔn)來看,九年制義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)已明確地把數(shù)學(xué)思想方法納入了基礎(chǔ)知識(shí)的范疇。數(shù)學(xué)基礎(chǔ)知識(shí)是指:數(shù)學(xué)中的概念、性質(zhì)、法則、公式、公理以及由其內(nèi)容反映出來的數(shù)學(xué)思想方法。中學(xué)生數(shù)學(xué)內(nèi)容包括數(shù)學(xué)知識(shí)與數(shù)學(xué)思想方法。數(shù)學(xué)思想方法產(chǎn)生數(shù)學(xué)知識(shí),數(shù)學(xué)知識(shí)又蘊(yùn)藏著思想方法,這樣有利于揭示知識(shí)的精神實(shí)質(zhì),有利于提高學(xué)生的整體素質(zhì)與數(shù)學(xué)素養(yǎng)。
從教育的角度來看,數(shù)學(xué)思想方法比數(shù)學(xué)知識(shí)更為重要,這是因?yàn)椋簲?shù)學(xué)知識(shí)是定型的,靜態(tài)的,而思想方法則是發(fā)展的,動(dòng)態(tài)的,知識(shí)的記憶是暫時(shí)的,思想方法的掌握是永久的,知識(shí)只能使學(xué)生受益于一時(shí),思想方法將使學(xué)生受益于終生。增強(qiáng)數(shù)學(xué)思想方法的培養(yǎng)比知識(shí)的傳授更為重要,數(shù)學(xué)思想方法的掌握對(duì)任何實(shí)際問題的解決都是有利的。因此,數(shù)學(xué)教學(xué)必須重視數(shù)學(xué)思想方法的教學(xué)。
實(shí)踐證明,培養(yǎng)初中生的數(shù)學(xué)思想方法,能使學(xué)生的認(rèn)知結(jié)構(gòu)不斷地完善和發(fā)展,使學(xué)生將已有的思想方法運(yùn)用在學(xué)習(xí)新知識(shí)的過程中,能夠把復(fù)雜問題轉(zhuǎn)化為簡(jiǎn)單問題來解決,提高學(xué)習(xí)效益,提高學(xué)生分析問題和解決問題的能力。目前,數(shù)形結(jié)合思想、分類討論思想、方程與函數(shù)思想是各地試卷考查的重點(diǎn),因此,也應(yīng)注重初中生數(shù)學(xué)思想方法的培養(yǎng),考查學(xué)生的數(shù)學(xué)思想方法是考查學(xué)生能力的必由之路。
二、初中主要的數(shù)學(xué)思想方法
初中數(shù)學(xué)中蘊(yùn)含的數(shù)學(xué)思想方法很多,最基本最主要的有:轉(zhuǎn)化的思想方法,數(shù)形結(jié)合的思想方法,分類討論的思想方法,函數(shù)與方程的思想方法等。
1.對(duì)應(yīng)的思想和方法。在初一代數(shù)入門教學(xué)中,有代數(shù)式求值的計(jì)算題,通過計(jì)算發(fā)現(xiàn):代數(shù)式的值是由代數(shù)式里字母的取值所決定的,字母的不同取值可得不同的計(jì)算結(jié)果。這里字母的取值與代數(shù)式的值之間就建立了一種對(duì)應(yīng)關(guān)系,再如實(shí)數(shù)與數(shù)軸上的點(diǎn),有序?qū)崝?shù)對(duì)與坐標(biāo)平面內(nèi)的點(diǎn)都存在對(duì)應(yīng)關(guān)系……在進(jìn)行此類教學(xué)設(shè)計(jì)時(shí),應(yīng)注意滲透對(duì)應(yīng)的思想,這樣既有助于培養(yǎng)學(xué)生用變化的觀點(diǎn)看問題,又助于培養(yǎng)學(xué)生的函數(shù)觀念。
2.數(shù)形結(jié)合的思想和方法。數(shù)形結(jié)合思想是指將數(shù)(量)與(圖)形結(jié)合起來進(jìn)行分析、研究、解決問題的一種思維策略。著名數(shù)學(xué)家華羅庚先生說:“數(shù)與形本是相倚依,怎能分作兩邊飛,數(shù)缺形時(shí)少直覺,形少數(shù)時(shí)難入微,數(shù)形結(jié)合百般好,隔離分家萬事休?!边@充分說明了數(shù)形結(jié)合思想在數(shù)學(xué)研究和數(shù)學(xué)應(yīng)用中的重要性。
3.整體的思想和方法。整體思想就是考慮數(shù)學(xué)問題時(shí),不是著眼于它的局部特征,而是把注意和和著眼點(diǎn)放在問題的整體結(jié)構(gòu)上,通過對(duì)其全面深刻的觀察,從宏觀整體上認(rèn)識(shí)問題的實(shí)質(zhì),把一些彼此獨(dú)立但實(shí)質(zhì)上又相互緊密聯(lián)系著的量作為整體來處理的思想方法。整體思想在處理數(shù)學(xué)問題時(shí),有廣泛的應(yīng)用。
4.分類的思想和方法。教材中進(jìn)行分類的實(shí)例比較多,如有理數(shù)、實(shí)數(shù)、三角形、四邊形等分類的教學(xué)不僅可以使學(xué)生明確分類的重要性:一是使有關(guān)的概念系統(tǒng)化、完整化;二是使被分概念的外延更清楚、更深刻、更具體,并且還能使學(xué)生掌握分?jǐn)?shù)的要點(diǎn)方法:
(1)分類是按一定的標(biāo)準(zhǔn)進(jìn)行的,分類的標(biāo)準(zhǔn)不同,分類的結(jié)果也不相同;
(2)要注意分類的結(jié)果既無遺漏,也不能交叉重復(fù);
(3)分類要逐級(jí)逐次地進(jìn)行,不能越級(jí)化分。
5.類比聯(lián)想的思想和方法。數(shù)學(xué)教學(xué)設(shè)計(jì)在考慮某些問題時(shí)常根據(jù)事物間的相似點(diǎn)提出假設(shè)和猜想,從而把已知事物的屬性類比推廣到類似的新事物中去,促進(jìn)發(fā)現(xiàn)新結(jié)論。教學(xué)中由于提供了思維發(fā)生的背景材料,既活躍了課堂氣氛,又有利于在和諧、輕松的氛圍中完成新知識(shí)的學(xué)習(xí)。
6.逆向思維的方法。所謂逆向思維就是把問題倒過來或從問題的反面思考或逆用某些數(shù)學(xué)公式、法則解決問題。加強(qiáng)逆向思維的訓(xùn)練,可以培養(yǎng)學(xué)生思維的靈活性和發(fā)散性,使學(xué)生掌握的數(shù)學(xué)知識(shí)得到有效的遷移。
7.化歸與轉(zhuǎn)化的思想和方法?;瘹w意識(shí)是指在解決問題的過程中,對(duì)問題進(jìn)行轉(zhuǎn)化,使之成為簡(jiǎn)單、熟知問題的基本解題模式,它是使一種數(shù)學(xué)對(duì)象在一定條件下轉(zhuǎn)化為另一種數(shù)學(xué)對(duì)象的思想和方法。其核心就是將有等解決的問題轉(zhuǎn)化為已有明確解決程序的問題,以便利用已有的理論、技術(shù)來加以處理,從而培養(yǎng)學(xué)生用聯(lián)系的、發(fā)展的、運(yùn)動(dòng)變化的觀點(diǎn)觀察事物、認(rèn)識(shí)問題。
三、數(shù)學(xué)方法的培養(yǎng)策略
(一)認(rèn)真鉆研教材,充分發(fā)掘教材中蘊(yùn)含的數(shù)學(xué)思想和方法
我們?cè)趥湔n時(shí)要認(rèn)真鉆研教材,充分發(fā)掘提煉在教材中的數(shù)學(xué)思想和方法,并弄清每一章節(jié)主要體現(xiàn)了哪些數(shù)學(xué)思想,運(yùn)用了什么數(shù)學(xué)方法,做到心中有數(shù)。例如平面幾何圓這一章就是用分類和聯(lián)系的思想把全章分成;圓的有關(guān)性質(zhì);直線和圓的位置關(guān)系;圓和圓的位置關(guān)系;正多邊形和圓四大類,在根據(jù)不同的類型研究各自圖形的性質(zhì)和判定,此外還要掌握四點(diǎn)共圓的方法,把直線形的問題轉(zhuǎn)化成圓的問題,再歸納在四大類中分別運(yùn)用有關(guān)性質(zhì)加以解決。再如一元二次方程這一章,內(nèi)容豐富,方法多樣,蘊(yùn)含著轉(zhuǎn)化的思想,把未知轉(zhuǎn)化為已知,把高次方程轉(zhuǎn)化為低次方程,把多元方程轉(zhuǎn)化為一元方程,把無理方程轉(zhuǎn)化為有理方程,把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題等。
(二)提高認(rèn)識(shí),把數(shù)學(xué)思想和方法的數(shù)學(xué)納入教學(xué)目的
數(shù)學(xué)思想、方法的數(shù)學(xué)是數(shù)基礎(chǔ)知識(shí)教學(xué)的重要組成部分,為了使數(shù)學(xué)思想、方法的教學(xué)落到實(shí)處,首先要從思想上提高對(duì)數(shù)學(xué)思想、方法教學(xué)的重要性的認(rèn)識(shí),進(jìn)而把數(shù)學(xué)思想、方法的教學(xué)納入教學(xué)目的中去,并且具體落實(shí)在每節(jié)課的教學(xué)目的中。
(三)結(jié)合教材內(nèi)容,加強(qiáng)數(shù)學(xué)思想和方法的滲透、解釋和歸納
在數(shù)學(xué)教學(xué)過程中,對(duì)教材內(nèi)容所反映出來的數(shù)學(xué)思想、方法要結(jié)合教學(xué)實(shí)際分別予以滲透、解釋和總結(jié)歸納,以提高學(xué)生的認(rèn)識(shí),逐步培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)思想、方法解決問題的能力。例如在代數(shù)中數(shù)形結(jié)合的思想就滲透到各個(gè)章節(jié),適時(shí)的為學(xué)生歸納和總結(jié)利用數(shù)形結(jié)合研究代數(shù)問題的規(guī)律和方法,就成了代數(shù)教學(xué)的基本特點(diǎn)。同樣,在幾何中分類思想和轉(zhuǎn)化思想也是滲透在各個(gè)章節(jié),因此,在講圓這一章時(shí),有必要給學(xué)生總結(jié)出如何用分類思想和轉(zhuǎn)化思想來解幾何題的規(guī)律和方法。
總之,數(shù)學(xué)思想、方法的教學(xué)研究是中學(xué)數(shù)學(xué)教研的一個(gè)重要課題,是提高教學(xué)質(zhì)量的關(guān)鍵,因此必須予以重視。